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Abstract: An alternative approach for stability analysis of uncertain systems
modelled in state-space is suggested.A new candidate for Lyapunov function
and based on it stability condition which generalizes most of the available results
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1. Introduction

Stability analysis for linear systems affected by structured parameter uncertainties is
an active and important for practice field of research. Even though the problem is NP-
hard in general, a number of more or less conservative tests are available. This paper
concerns the class of uncertain systems described by a state space model

1) dx /dt = A(a)x, Ala) € R,

where @ =(a,....a p) €RP is a vector of uncertain parameters. The state matrix
depends affinely on «, i.e.
2) Ala) =A+a, A +..+a, A,

and all A, are fixed matrices.

Research in this area has been directed mainly to the following cases: (i) « is
constant, but not exactly known; (ii) ¢ is very fast time-varying; (iii) a has bounded
rate of variation. The following assumptions are usually made:
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a) each o, ranges between two extremal values, i.e. a e[a-,a*],a- <0<a*,
1 1 1 1 1
so vector « is valued in a hyper-rectangle Qp with 2P vertices,

b) r parameters 0<r < p,are time variant, their rate of variation being well

defined and satisfying a e[r-,r+],r-<0<r+, or similarly, a is valued in another

hyper-rectangle Qr with 2" vertices.

An widely applied approach to solve the stability problem is based on Lyapunov
theory and the usage of fixed structure quadraric in the state function

v(x,a) =x"P(a)x. If P(a)=P(0)= P, then v(x, a) =Vv(x, 0) =Vv(x) is a parameter
independent, or pi-function. The functions

va(x, a)=V(x)+ xTiaiPix,

P
vV (Xa)=v (X,a)+X"Yaa PXx
q a iy i

are said to be affine and quadratically dependent on the uncertain parameters, or
simply a-function and g-function, respectively. In general, fixed structure Lyapunov
functions have the form

v(X, @) =v(X)+ X P(a, v)X, P(a,v) = Y alP , o =alviazv2aavs...a;'

vel

where v=(v v_..v ), v. 20, are L-tuples of partial degrees in the finite set J. A

distinction is made between quadratic and robust stability in the literature. The notion
of quadratic stability consists in seeking for a pi-function and it means stability for any
(possibly infinite) time variation of a, which may be quite conservative in many
applications, except for case (ii), mentioned above. Stability tests are based on convex
optimization over linear matrix inequalities (LMI) [3]. Robust stability means stability
for all possible (but frozen) values of o in case (i). The third case above, which is the
most general one, has also been studied recently, but to a lesser degree. For time-
invariant uncertain systems, robust stability domains assessed by parameter dependent
functions are always less conservative. On the other hand, robust stability (even for
a- or g-functions) cannot in general be analyzed using convex optimization techniques.

That is why in [1], a great deal of interest has been devoted to robust stability
analysis. Most of the works deal with model (1), (2) and are based on a-functions.
The latter methods differ in the assumptions made regarding the uncertainty and in the
overbounding techniques adopted. E.g., in [5], under suppositions a) and b) and using
multiconvextity arguments, a sufficient condition for robust stability based on LMI is
proposed. Several relaxation techniques to replace parametrized LMI by a finite set
of LMI are developed in [14]. The resulting relaxed feasibility problems thus become
convex and hence can be solved by interior point methods. A robust stability method
for uncertain ( possibly time-varying) system described by (1), (2), based on g-functions
is proposed in [13] and is referred to as biquadratic stability approach. It consists in
LMI based sufficient condition for biquadratic stability, including quadratic and affine
quadratic stability as particular cases. By considering the companion form of A(w), it
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can be shown that the respective Hermite matrix of its characteristic polynomial is a
valid Lyapunov matrix P(a) ensuring stability. Based on this result, it is shown in [7]
that for robust stability analysis it is enough to seek for a parameter dependent function
of degree at most np. If all matrices A, are rank-one, the degree estimate becomes 2p,
independently from the system order. Robust stability can be assessed by global
minimization of a multivariate scalar polynomial by means of the proposed hierarchy
of LMI relaxations.
The main sources of conservatism for all similar approaches consist in:

— the a priori fixed structure of the Lyapunov function,

— the necessity to apply some convexifying techniques, required to put the problem
in a numerically tractable form,

— the inevitable treatment of oo and @ as independent uncertainties.

Another major group of approaches, e.g. [6], [9], [12], [15], is based on the
conversion of the original stability problem into nonsingularity analysis of a suitable
uncertain matrix (Kronecker, Lyapunov or bialternate sum of A(c) with itself).The
stability domain is calculated through a guardian map which involves the determinants
of the respective matrices.

This paper is an attempt to suggest an alternative approach for stability analysis
of uncertain systems modeled by (1) and (2). It proposes a candidate for Lyapunov
function and based on it stability condition which to a great extent generalizes most of
the available approaches.

2. Main result

Let X bea txt matrix with spectrum o (X) E{/ll, ...,it}. The following set notations

are introduced: H is the set of Hurwitz matrices, H- ={X : X7 + X <0},S and S, are
the sets of symmetric and skew-symmetric matrices, and

3
F(X: 4,4 €0 (X) =B = A+2 #0;i, j =Lt i< j,S =1..,b,b = 0.5t(t - D)}.

Consider case (i) under assumption a), i.e. the uncertain vector parameter o is time-
invariantand o Qp. From now on, it is assumed that “ X (o) e H 7, “rank X (&) =t”,
“X(a) €S, etc., should be understood in sense that X(ct) is Hurwitz, has rank t and
is symmetric, etc., respectively, for all o Qp.

It is well known, that
4 Ala)eH @ Va,meR=rank jal + A(a)]=n,

since Qp is a compact set, 0 erand therefore A(0)= A< H. Due to the term
“V @ ” the above condition has only theoretical significance, but it also shows that

the original stability problem could be suitably restated as a nonsingularity problem
of increased order thus eliminating .
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2.1. Linear matrix (vector) equations

Consider a linear (in the unknown matrix X) equation (LME):
(5) YX +XYT=Z:Y,Z eRr,

For Z general, symmetric or skew-symmetric matrix, LME (5) can be put in
compact vector form, respectively, as

(6) K(Y)veck(X) =veck(Z),
(7 L(Y)vecI(X) = Vec, (2),
(8) B(Y)vecb(X) =vecb(Z),

where vec (e),s=k,l,b, denotes operator stacking the k =n2,1=0.5n(n+1) and

b =0.5n(n-1) entries columnwise of a general, symmetric or skew-symmetric matrix

(e), respectively, in a suitable way. The coefficient matrices in (6) and (7) are known
as the Kronecker sum of Y with itself and the Lyapunov matrix of Y, respectively. It is

well known [4] that o[K(Y)l={k =A(Y)+4 (V)i j=1...n,S=1..K}and
o[L(Y)] is comprised of the | distinct eigenvalues of K(Y). Therefore, mat
[veck(X)]s X or mat [vecI(X)] = X is unique solution to (5) for any respective
right-hand side matrix Z iff

) c(Y)No(-Y)=D < rankK(Y)=k or rank L(Y)=I.

The case when a skew-symmetric solution X is searched for represents special
interest.

Theorem 1[10]. LME (5) has unique solution X e SS forany Z €S iff Y e F(rf.
to 3).
Details of the proof are omitted, but it is based on the vector representation (8) of

(5).1t turns out that the coefficient matrix B(Y) is exactly the bialternate sum of Y with
itself. In [4] it is proved that

(10) o[B(Y)I={B,, S =1..,b}.

Now let Y = A(a) in (3). Suppose that rank K[A(a)]=k or rank L[A(a)]=1.
Then forany real @, jo ¢ o[A(a)] and inaccordance with (4) this is the iff condition
for A(a) e H. The Lyapunov functions v_(x,a) =x"P_(a)X, P (a) =mat [vec_(X)],
s=k,r,Z eH- or Z<0, ensuring robust stability for the uncertain system (1), (2) are
obviously not structurally fixed.

2.2. Generalized Lyapunov function
Let X €S_and C be some (possibly parameter dependent) nxn matrices. Consider

the uncertain time invariant matrix G(«) = [g (@)]= (X +C)A(«) and the associated
with it parameter dependent matrix
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(1) FIG (), P1=[f (@)]+P,
where for i, j=1,....n,i# j,
f@=p9,)-p,9,@)

f(@)=(+p)g, (@)-@+p )9, @)

p=Lp,1eR™™™ is an arbitrary real vector and P €S is an arbitrary (possibly
parameter dependent) matrix. Denote by p = p" the particular case when £, =P,
Theorem 2.2.1. The uncertain system (1), (2) is robustly stable, i.e. A(a)eH, if
and only if there exist matrices X €S_,C,P S and vector p, such that
(12) L(a)=A"(¢)(C+CT)A(a)+ AT (x)F[G(«),P]+FT[G(a),P]A(x) < 0.
If condition (12) holds, the function v (X,a) = X™{G(a) + F[G(«), P]}x isa Lyapunov
function for system (1), (2). ’

Proof. Let A(lw)eH. Since H « F, in accordance with Theorem 1., there
exists unique matrix X €S_ satisfying LME (5) for Y = A() andany Z €S, eg.
Z =[A(x)C]" —CA(ax). Then (5) can be rewritten as

(X +C)A(@) =[(x+C)A(a)]" =G(a) €S.
This implies
f.@)=(p,—p )9, (@)="1 (a)=F[G(a)PleS, vPeS.

Consider the matrix inequality (12), which can be always guaranteed by suitable choice
of matrices C, P and vector p. E.g. P=0,p=p* and CeH-, or
X+C=0=F0,P(a)]l=P(x) >0 and AT ()P () + P()A(xx) <0, or for any C,
pand P(a)>0, suchthat L(x)<0 (P(a) is independent from G(a)), etc. This
proves the necessity part.

Let (12) holds for some A(a) and let also F[G(«),P] be taken as in (11).
Condition (12) can be rewritten as

(13) L(a) = 2{AT(a)(X +C)A(a) + AT(a)F[G(a), PI}, =
= 2AT(@){(X +C)A(a) + F[G(a),PI}, =2AT(a){G(a) + F[G(a),P]}, =

=2[AT(0)R(a)], <0,

where (¢)_ =0.5[(*)+(*)"] denotes the symmetric part of matrix (). From the
definition of F[G(e), P] in(11) it follows that R(«x) € S for all & er' including the
uncertainty free case (a =0). Therefore, R(0)>0, due to A(0)=AeH. Since
L(e) <0, it follows that rank R(«) =n, which for this class of uncertain systems is
equivalent to R(a) >0. As a consequence A(a) e H, which proves the sufficiency
part.

Obviously v (X, &) =XTR(a)X s a valid Lyapunov function for system (1), (2)
under condition (12).

Theorem 2. includes most of the available robust stability analysis approaches
as particular cases which becomes evident from the following:
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1) For X+ C=0and P=P(«), one has G(a)=0, FO0,P(a)]=P(x) and a
standart parameter dependent function with fixed structure xTP(«)x is searched to
ensure condition (12).

2) Suppose that rank R(a) =n and unique matrix X e SS is searched for, such
that LME (5), for Y =A7(«) and arbitrary Z =ZlT—Zl, be satisfied. This, in
accordance with Theorem 2, is equivalent to nonsingularity of matrix B[A(c)]. Then,
(5) can be rewritten as [X +Z A(a)]A(@)=G (¢)eS and for Z =CA(),

CeH-, p=p’and p=0, one has G (a)=(X+C)A(a)=G(a)
F(0,0)=0= L(x)<0.
The proposed parameter dependent function vg(x, a) has a structure, which

enables some extensions in robust stability analysis. As it was already said, the case
X + C =0 isonly a particular one. Suppose that X and C are some parameter dependent

matrices. By means of a suitable choice for them, vector p and matrix P =P(«a) it

becomes possible to get more chances to convexify condition (12) (in the sense of [5]
or [14]), in comparison with the standard robust stability approach based on functions

va(x, a) or v, (x, «) . Note also, that the vector form (8) of LME (5) can be suitably

used to show that for Y = A(a) a solution vector (not even unique) vec, (X) exists

for some (not all) right-hand side vectors, by applying the solution of uncertain systems
of linear equations approach.
As far as time-varying (with bounded rate of variation) uncertain systems are

considered, the proposed structurally fixed version of the function v, (x,c) is suitable

for the application of the procedures presented in [5], or [13]. The advantages outlined
above for time-invariant uncertain systems are retained in this case as well.

3. Uncertain systems of linear equations

Consider an interval system [ X ]y =[z], where [X] and [z] are mxm and mx1 interval
matrix and vector, respectively. The set of all possible solutions is
D ={y:VX €[X], Vz €[z], Xy = z}. This model supposes that the entries of [X] and
[z] represent independent uncertainties. In many engineering and control problems
one faces the case when these entries depend on a single interval vector o €Q,

where ¢ is a compact set, e.g. a polyhedron Q3 . Define the augmented (p+1)x1
p

vector o = (La)T. Such an uncertain system is modelled as
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(14) Zx__yj :zi,xij:cija,zi:dia,lzl,...,m

j=1 U !

where ¢, and d, are given real fixed row vectors. Then (14) is called an uncertain
linear system with dependent coefficients, or simply a parametrised linear system

(PLS). Note that when A(a) has an affine structure, i.e. A(a) = AO +a1A1 + ...+apAp

the vector equation (1) exactly matches the PLS (14). The solution set is
D(a)={y:Va eQ, X(a)y=z(cx)}. Obviously PLS can be viewed as interval systems
as well, but in general this leads to contraction of Q. One of the problems dealt with

in interval analysis is to get an outer estimation D*(«) of the interval hull of D(«),

i.e. D(a) < D*(«) , guaranteeing that any solution of the PLS lies within some enclosure

set, e.g. Q . A fundamental necessary and sufficient condition for y e D(a) is
ph

aeQ= X(a)y—1z(a) 0. A significant number of approaches are developed to

solve the problem for both interval and PLS. Among one should mention the application
of the interval Gauss-Seidel method in [8, 11] and the procedure of consecutive uncertain
parameters elimination in [1]. An important fact concerning PLS(1) is that is required

to find some set D*(«) thus guaranteeing that D(«a) is not empty.
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AHanu3 Ha yCTOWYMBOCTTA HAa HEOIIPEIETIEHU CUCTEMHU Ype3 MapaMETPUYHO
He3aBrcuMa (PyHKIWMS Ha JIsmyHOB
Ceemocnas Caesos, Hean Ilonuees

Hnemumym no ungpopmayuonnu mexnonozuu, 1113 Coghus
E-mail: savovsg@yahoo.com

(Pe3wme)

[penyara ce antepHaTHBEH MMOIXO]] 32 aHAJIU3 HAa YCTOMYMBOCTTA HA HEONPEICIICHN
CUCTEMHU, MOJCINPAaHNU B MPOCTPAHCTBOTO HAa CHCTOAHUATA. HpeZ[CTaBeH € HOB
BapHaHT Ha QyHKIUATA Ha JISMyHOB 1 6a3upaHo BBPXY HEsl yCIOBHE 33 YCTOHYNBOCT,
KoeTo 0000I11aBa MOBEUE OT CHIIECTBYBAIUTE PE3y/ITaTH B Ta3u OONACT.
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