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Abstract: An alternative approach for stability analysis of uncertain systems
modelled in state-space is suggested.A new candidate for Lyapunov function
and based on it stability condition which generalizes most of the available results
in the field are presented.
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1. Introduction

Stability analysis for linear systems affected by structured parameter uncertainties is
an active and important for practice field of research. Even though the problem is NP-
hard in general, a number of more or less conservative tests are available. This paper
concerns the class of uncertain systems described by a state space model
(1)

where p
p

R ),...,(
1

  is a vector of uncertain parameters. The state matrix
depends affinely on  , i.e.

(2)           pp AAAA   ...)( 11

and all iA  are fixed matrices.
Research in this area has been directed mainly to the following cases: (i)   is

constant, but not exactly known; (ii)   is very fast time-varying; (iii)   has bounded
rate of variation. The following assumptions are usually made:
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a) each  i ranges between two extremal values, i.e. ,0],,[  
iiiii



so vector   is valued in a hyper-rectangle 
p

  with 2p vertices,

b) r parameters ,0 pr  are time variant, their rate of variation being well

defined and satisfying ,0],,[  
iiiii

rrrr  or similarly,   is valued in another

hyper-rectangle 
r

  with  2r vertices.
An widely applied approach to solve the stability problem is based on Lyapunov

theory and the usage of fixed structure quadraric in the sta te function
.)(),( T xPxxv    If  ,)0()(

0
PPP  then )()0,(),( xvxvxv   is a parameter

independent, or pi-function. The functions

                                          ,)(),( T
p

i iia
xPxxvxv 

                                       
p

ji ijjiaq
xPxxvxv

,
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are said to be affine and quadratically dependent on the uncertain parameters, or
simply a-function and q-function, respectively. In general, fixed structure Lyapunov
functions have the form

                l

pJ
PPxPxxvxv 
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where ,0),...(
21


iL

  are L-tuples of partial degrees in the finite set J. AA
distinction is made between quadratic and robust stability in the literature. The notion
of quadratic stability consists in seeking for a pi-function and it means stability for any
(possibly infinite) time variation of , which may be quite conservative in many
applications, except for case (ii), mentioned above. Stability tests are based on convex
optimization over linear matrix inequalities (LMI) [3]. Robust stability means stability
for all possible (but frozen) values of  in case (i). The third case above, which is the
most general one, has also been studied recently, but to a lesser degree. For time-
invariant uncertain systems, robust stability domains assessed by parameter dependent
functions are always less conservative. On the other hand, robust stability (even for
a- or q-functions) cannot in general be analyzed using convex optimization techniques.

That is why in [1], a great deal of interest has been devoted to robust stability
analysis. Most of the works deal with model (1), (2) and are based on a-functions.
The latter methods differ in the assumptions made regarding the uncertainty and in the
overbounding techniques adopted. E.g., in [5], under suppositions a) and b) and using
multiconvextity arguments, a sufficient condition for robust stability based on LMI is
proposed. Several relaxation techniques to replace parametrized LMI by a finite set
of LMI are developed in [14]. The resulting relaxed feasibility problems thus become
convex and hence can be solved by interior point methods. A robust stability method
for uncertain ( possibly time-varying) system described by (1), (2), based on q-functions
is proposed in [13] and is referred to as biquadratic stability approach. It consists in
LMI based sufficient condition for biquadratic stability, including quadratic and affine
quadratic stability as particular cases. By considering the companion form of A(), it
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can be shown that the respective Hermite matrix of its characteristic polynomial is a
valid Lyapunov matrix P() ensuring stability. Based on this result, it is shown in [7]
that for robust stability analysis it is enough to seek for a parameter dependent function
of degree at most np. If all matrices Ai are rank-one, the degree estimate becomes 2p,
independently from the system order. Robust stability can be assessed by global
minimization of a multivariate scalar polynomial by means of the proposed hierarchy
of LMI relaxations.

The main sources of conservatism for all similar approaches consist in:
 the a priori fixed structure of the Lyapunov function,
 the necessity to apply some convexifying techniques, required to put the problem

in a numerically tractable form,
 the inevitable treatment of  and   as independent uncertainties.
Another major group of approaches, e.g. [6], [9], [12], [15], is based on the

conversion of the original stability problem into nonsingularity analysis of a suitable
uncertain matrix (Kronecker, Lyapunov or bialternate sum of A() with itself).The
stability domain is calculated through a guardian map which involves the determinants
of the respective matrices.

This paper is an attempt to suggest an alternative approach for stability analysis
of uncertain systems modeled by (1) and (2). It proposes a candidate for Lyapunov
function and based on it stability condition which to a great extent generalizes most of
the available approaches.

2. Main result

Let  X  be a tt   matrix with spectrum }...,,{)(
1 t

X   . The following set notations

are introduced: H is the set of Hurwitz matrices, SXXXH },0:{ T   and SS are
the sets of symmetric and skew-symmetric matrices, and
(3)

)}.1(5.0,,...,1,,,...,1,;0)(,:{F  ttbbSjitjiXX
jiSji



Consider case (i) under assumption a), i.e. the uncertain vector parameter  is time-
invariant and .

p
  From now on, it is assumed that “ HX )( ”, “rank tX )( ”,

“ SX )( ”, etc., should be understood in sense that X() is Hurwitz, has rank t and

is symmetric, etc., respectively, for all .
p



It is well known, that
(4)        ,)]([rank,)( nAIjRHA  

since 
p

  is a compact set,  
p

0 and therefore .)0( HAA   Due to the term

“  ” the above condition has only theoretical significance, but it also shows that
the original stability problem could be suitably restated as a nonsingularity problem
of increased order thus eliminating .
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2.1. Linear matrix (vector) equations

Consider a linear (in the unknown matrix X) equation (LME):

(5)           .,;T nnRZYZXYYX 

For Z general, symmetric or skew-symmetric matrix, LME (5) can be put in
compact vector form, respectively, as
(6)                      ),(vec)(vec)( ZXYK

kk


(7)                       ),(vec)(vec)( ZXYL
ll



(8)                       ),(vec)(vec)( ZXYB
bb



where ,,,),(vec blks
s

  denotes operator stacking the )1(5.0,2  nnlnk  and

)1(5.0  nnb  entries columnwise of a general, symmetric  or skew-symmetric matrix
)( , respectively, in a suitable way. The coefficient matrices in (6) and (7) are known

as the Kronecker sum of Y with itself and the Lyapunov matrix of Y, respectively. It is

well known [4] that },...,1,,...,1,);()({)]([ kSnjiYYkYK
jiS

  and

)]([ YL  is comprised of the l distinct eigenvalues of K(Y). Therefore, mat

[vec XX
k

)](  or mat [vec XX
l

)](  is unique solution to (5) for any respective
right-hand side matrix Z iff
(9)         .)(rank or   )(rank)()( lYLkYKYY  

The case when a skew-symmetric solution X is searched for represents special
interest.

Theorem 1[10]. LME (5) has unique solution
S

SX   for any SZ   iff  FY (rf.
to 3).

Details of the proof are omitted, but it is based on the vector representation (8) of
(5).It turns out that the coefficient matrix B(Y) is exactly the bialternate sum of Y with
itself. In [4] it is proved that

(10)                     }.,...,1,{)]([ bSYB
S

 

Now let )(AY   in (3). Suppose that rank kAK )]([   or rank .)]([ lAL 
Then for any real  )]([,  Aj   and in accordance with (4) this is the iff condition
for .)( HA   The Lyapunov functions  ,)(),( T xPxxv

SS
   )],([vecmat )( XP

SS


 HZrks ,,  or  Z<0, ensuring robust stability for the uncertain system (1), (2) are
obviously not structurally fixed.

2.2. Generalized Lyapunov function

Let  
S

SX  and C be some (possibly parameter dependent) nn  matrices. Consider
the uncertain time invariant matrix )()()]([)(  ACXgG

ij
  and the associated

with it parameter dependent matrix
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(11)                   ,)]([]),([F PfPG
ij

 

where for ,,,...,1, jinji 

                                           ),()()( 
jijiijijij

ggf 

                                    ),()1()()1()( 
jijiijijji

ggf 
)1(][  nn

ij
R  is an arbitrary real vector and SP  is an arbitrary (possibly

parameter dependent) matrix. Denote by *   the particular case when .
jiij

 
Theorem 2.2.1. The uncertain system (1), (2) is robustly stable, i.e. ,)( HA   if
and only if there exist matrices SPCSX

S
 ,,  and vector , such that

(12)   .0)(]),([F]),([)()())(()( TTTT   APGPGFAACCAL
If condition (12) holds, the function xPGGxxv

g
]}),([)({),( T  F   is a Lyapunov

function for system (1), (2).
P r o o f. Let .)( HA   Since FH  , in accordance with Theorem 1., there

exists unique matrix 
S

SX   satisfying LME (5) for )(AY   and any  ,
S

SZ  e.g.
).(])([ T  CACAZ   Then (5) can be rewritten as

                              .)()]()[()()( T SGACxACX  
This implies

                .,]),([F)()()()( SPSPGfgf
jiijjiijij

 

Consider the matrix inequality (12), which can be always guaranteed by suitable choice
of matrices C,  P and vector .  E.g. *,0  P  and ,HC  or

0)()](,0[F0   PPCX  and  ,0)()()()(T   APPA  or for any C,
and 0)( P , such that  0)( L  ( )(P  is independent from )(G ), etc. This
proves the necessity part.

Let (12) holds for some  )(A  and let also ]),([F PG   be taken as in (11).
Condition (12) can be rewritten as

(13)                
S

PGAACXAL ]}),([F)()())(({2)( TT 

S
PGACXA ]}),([F)()){((2 T   

S
PGGA ]}),([F)(){(2 T 

                                 0)]()([2 T 
S

RA  ,
where  ])()[(5.0)( T

S  denotes the symmetric part of matrix )( . From the
definition of ]),([F PG   in (11) it follows that SR )(  for all p

 , including the
uncertainty free case ( )0 . Therefore, ,0)0( R  due to  .)0( HAA   Since

0)( L , it follows that rank ,)( nR   which for this class of uncertain systems is
equivalent to 0)( R . As a consequence ,)( HA   which proves the sufficiency
part.

Obviously v xRxx
g

)(),( T    is a valid Lyapunov function for system (1), (2)
under condition (12).

Theorem 2. includes most of the available robust stability analysis approaches
as particular cases which becomes evident from the following:
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1) For X + C = 0 and )(PP  , one has ,0)( G )()](,0[F  PP   and a
standart parameter dependent function with fixed structure xPx )(T   is searched to
ensure condition (12).

2) Suppose that rank nR )(  and unique matrix 
S

SX   is searched for, such

that LME (5), for )(T AY   and arbitrary ,
1

T
1

ZZZ   be satisfied. This, in

accordance with Theorem 2, is equivalent to nonsingularity of matrix )]([ AB . Then,

(5) can be rewritten as SGAAZX   )()()]([
1

1
1

  and for ),(
1

CAZ 

,HC *  and 0P ,  one has ),()()()(
1

 GACXG 

.0)(0)0,0(  LF

The proposed parameter dependent function ),( xv
g

 has a structure, which

enables some extensions in robust stability analysis. As it was already said, the case
0 CX  is only a particular one. Suppose that X and C are some parameter dependent

matrices. By means of a suitable choice for them, vector  and matrix )(PP   it
becomes possible to get more chances to convexify condition (12) (in the sense of [5]
or [14]), in comparison with the standard robust stability approach based on functions

),( xv
a

 or ),( xv
q

. Note also, that the vector form (8) of LME (5) can be suitably

used to show that for )(AY   a solution vector (not even unique) vec )(X
b  exists

for some (not all) right-hand side vectors, by applying the solution of uncertain systems
of linear equations approach.

As far as time-varying (with bounded rate of variation) uncertain systems are
considered, the proposed structurally fixed version of the function ),(v x

g
 is suitable

for the application of the procedures presented in [5], or [13]. The advantages outlined
above for time-invariant uncertain systems are retained in this case as well.

3. Uncertain systems of linear equations

Consider an interval system ][][ zyX  , where [X] and [z] are mm  and 1m  interval
matr ix and vector, respectively. The set of all possible solutions is

}],[],[:{ zXyzzXXyD  . This model supposes that the entries of [X] and
[z] represent independent uncertainties. In many engineering and control problems
one faces the case when these entries depend on a single interval vector ,

where   is a compact set, e.g. a polyhedron 
p

 . Define the augmented 1)1( p

vector T)1(   . Such an uncertain system is modelled as
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(14)     midzcxzyx
iiijiji

m

j jij
,...,1,,,

1



 ,

where cij and di are given real fixed row vectors. Then (14) is called an uncertain
linear system with dependent coefficients, or simply a parametrised linear system
(PLS). Note that when A(a) has an affine structure, i.e. 

pp
AAAA   ...)(

110

the vector equation (1) exactly matches the PLS (14). The solution set is
)}.()(,:{)(  zyXyD   Obviously PLS can be viewed as interval systems

as well, but in general this leads to contraction of . One of the problems dealt with
in interval analysis is to get an outer estimation )(* D  of the interval hull of )(D ,

i.e. )()( *  DD  , guaranteeing that any solution of the PLS lies within some enclosure

set, e.g. 
ph

 . A fundamental necessary and sufficient condition for )(Dy  is

0)()(   zyX . A significant number of approaches are developed to
solve the problem for both interval and PLS. Among one should mention the application
of the interval Gauss-Seidel method in [8, 11] and the procedure of consecutive uncertain
parameters elimination in [1]. An important fact concerning PLS(1) is that is required
to find some set )(* D  thus guaranteeing that )(D  is not empty..
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(Р е з ю м е)

Предлага се алтернативен подход за анализ на устойчивостта на неопределени
системи, моделирани в пространството на състоянията. Представен е нов
вариант на функцията на Ляпунов и базирано върху нея условие за устойчивост,
което обобщава повече от съществуващите резултати в тази област.


