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Abstract: In this paper we consider a Monte Carlo technique for valuation of
derivatives securities. Metropolis algorithm is used to sample probability distri-
bution of histories of underlying stocks.  We consider options on portfolios
consisting of linear combinations of correlated log-normal assets, including basket
and spread options. The present purpose is to examine feasibility and accuracy
of the method, so we start with the simplest valuation problem of a European call
on a stock with constant volatility and no dividends, where we can easily compare
Monte Carlo results with the analytic Black- Scholes solution. In this relation a
practical example is discussed in part three.
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I. Application of Monte Carlo simulation

A great number of Monte Carlo simulation models are known and used in practice.
The purpose of this paper is not related to the presentation of all the models, but
only to some of the major applications of Monte Carlo simulation processes for
options evaluation. Accent is placed on the analysis of the results which have
been obtained on the basis of practical examples and experiments connected
with the application of the simulation models.

1. Base models of Monte Carlo method

Monte Carlo simulation is suitable for options, in which tendencies are observed
for certain parameters development. This model can also be improved for
evaluation of options, whose assessment is influenced by many stochastic
processes, accidental variables, etc. Its main disadvantage is that it requires very
1 This research is supported by the National Science Fund of the Bulgarian Ministry of Education and
Science, Contract No �-1305/2003.
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intensive calculations, since a great number of simulations are usually necessary.
With the purpose of solving this problem, some techniques have been developed
related to variance reduction, control variates, antithetic variates, etc.

Despite that this technique is efficiently used for the European options evalu-
ation, it is not applied on a mass scale for the American derivatives, which are
usually evaluated by numerical methods. The problem with the American options
is connected with the fact, that the possible dates of exercising the option are
several. That is why the option owner has to decide whether to exercise the option
or to wait for every of the possible moments. The decision depends on:

a) the amount which the exercising of the option will bring to him (the value of
the immediate exercising);

b) the amount which he/she will receive in eventual future exercising (the value of
continuation).

Due to this reason the optimal decision will be based on the assessment of the
option value on the date of exercising. Recently L o n g s t a f f and S c h w a r t z
[13] have developed an algorithm where the price of the non-exercised option is
evaluated better by means of a regression model with the help of the Least Squares
Method (LSM). This method is used along with the intermediate technique of the
Least Squares Monte Carlo Simulation (LSMCS) [13]. In this regression model a
group of basic functions is used, whose parameters are based on the prices of the
assets. The values obtained from these regression models are used as expected
values of continuation. The optimal rule for stopping is determined comparing
the values of continuation with these of immediate exercising. This procedure is
recursively repeated back in time. The price of the American option is found by
discounting the cash flows obtained to the initial point. In this relation, in order to
understand how the Least Squares Monte Carlo simulation is applied, we have to
analyze the so-called risk-neutral evaluation [6]. When using risk-neutral
evaluation, in contrast to the European call option, whose equation is given by:
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for all the moments of discontinuance  T. In this case S() is the final asset
price at moment   K is the price of exercising, T is the date of the option maturity,
and r(w,s) is the possible risk-free interest, related to given tendency of
development w.

We suppose here that the American option can be exercised only in L discrete
moments, so that 0 tt...  tLtL = T. In practice the American options can
be exercised continuously in time and the option price can be defined taking a
sufficiently great number for L.

The Least Squares Monte Carlo simulation method consists of two major
steps. For the method used N simulations of the stochastic model are necessary.
The first of them are related to the assessment of the coefficients of  V(w, ti),
wherethe formula for V(w, ti) is V(w, ti) = ai0 + ai1 X + ai2 X2,and of C(w, s, ti , T)
on the basic functions for given tendencies, which are the so-called “in-the-
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money” options at a fixed moment ti. Based on the function of conditional ex-
pectation, the second step is to make a decision for early exercising at moment ti
, comparing the value of immediate exercising with the value V(w, ti) for any
possibility of “in-the-money” options. Immediately after taking the decision for
option exercising, the option cash flows C(w, s, ti, T) can be specified. The analysis
continues by our returning to the preceding moment ti1 and repeating the
procedure until the decisions for the option exercising at any moment for any
possibility (tendency of development) are taken. Finally, the price of the American
option is given by the following formula:
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Let us consider a numerical example, which shows that if we use the Monte Carlo

simulation for the least squares, some values are obtained, with which the American
option may have a lower price than the corresponding European one.

For example, the American put option is evaluated, under which no dividends are
paid. The price of exercising is 1.1 and we have three possible dates of exercising. The
compound risk-free interest in the option continuation is equal to 0.05. For the pur-
poses of the analysis we simulate eight tendencies of development of the asset price, as
shown in Table 1 [12].
            Table 1. The valuation American put option with the Least Squares Monte Carlo Simu

lation

Path t=0 t=1 t=2 t=3 Payoff at t=3 
1 1 0.917938 * 1.272171 1.417021 0 
2 1 1.133931 1.290983 1.669802 0 
3 1 1.162833 0.917742* 1.228432 0 
4 1 1.096706* 1.081163* 1.118280 0 
5 1 1.056690* 0.871784* 0.818722* 0.281278 
6 1 1.416442 1.672474 1.263264 0 
7 1 0.937138* 0.945920* 0.861259* 0.238741 
8 1 0.872576* 0.658605* 0.475270* 0.624730 

 

The last column of the table shows the realized final yield of the European
option. Discounting these yields at moment 0 and finding the average, we can
define that the price of the European option is equal to 0.123162. The symbol (*)
means that these options are “in-the-money”.

For the American put option, the Least Squares Monte Carlo simulation maxi-
mizes its value on any date of exercising along the separate trajectories when the op-
tions are “in-the-money”. For each date we mark by X the price of the reviewed
asset and by Y (the discounted) cash flows obtained on future dates, if the option
will not be exercised. In this relation, the values obtained are presented in
Table 2.
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Table 2. The valuation American put option with the Least Squares Monte
Carlo Simulation when all the options are  “in-the-money”.

Path Y  X  
1 - - 
2 - - 
3 005.0 e  0.917742 
4 005.0 e  1.081163 
5 281278.005.0 e  0.871784 

6 - - 
7 238741.005.0 e  0.945920 
8 624730.005.0 e  0.658605 

 
The use of multi-asset options as hedging instruments has the advantage that

unless the underlying assets are perfectly correlated, the volatility of the multi-asset
product or portfolio can be less than that of the individual assets. This should lead in
most of the cases to a more cost-efficient hedge as compared to the use of a collection
of single-asset options. In this paper we consider put and call options on portfolios
consisting of linear combinations of different assets, including basket and spread op-
tions.

Numerical integration formulae can provide approximate values for the integrals,
with the accuracy of the values improving as the amount of computational effort ex-
pended increases. A compromise must be achieved in practice between the amount of
the time spent to obtain an option value and the reliability or accuracy of that value. A
good method will enable given accuracy to be attained with minimal amount of work,
or conversely allow maximal increase in the accuracy for a given increase in the com-
putational time.

Gauss-Hermite integration formulae take the form:
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where wq are the weights and yq are the abscissae. Such a formula is exact, if q is
a polynomial of a degree less than 2Q; it will be accurate if f can be closely
approximated by such a polynomial, which will be the case if f is smooth. In this
paper we do not consider the numerical evidence of convergence: theoretical
error estimates and the proof of convergence will be a subject of future work
[19].

When the approximation is applied to the recursive formulation of the option
pricing formula, we obtain
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The one-dimensional formulae are evaluated using standard routines for the
calculation of cumulative normal distributions.

Some simplifications are possible. If the asset weights i are all positive (so
that S i are also positive), K is negative. On the other hand, if all the asset weights
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are negative, and K   0, then the option is worthless. We obtain Algorithm 1 for

the evaluation of  KASVn ,, .
The equations can be used to provide a similar algorithm for the calculation

of the option deltas. The deltas for the special cases can be found differentiating
the corresponding option formulae directly. Incorporating these results gives

Algorithm 2 or the calculation of  KASVD ni ,, .

Once a value for   KASVD ni ,,  has been found, the true option deltas can be
deduced via
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Notice that Algorithm 2 can be coded in such a way as to provide all the deltas in
a single recursive calculation.

Here we consider two option payoffs on two underlying assets. The first one is a
call option on a basket and the second one – a call option on a spread. We assume
(continuously compounded) interest rate of 10%, and dividend payments of 5% and
0% on the two assets. The volatilities of the two uncorrelated lognormal assets are
both 20% and both assets are assumed to have an initial value of $100. The expiry time
for each option is 6 months. The option payoffs are:

Basket: max (S1 + S2 200,0),
Spread: max (S1 S2 2,0).

The results of the calculations are shown in Table 3 for the two options.
“True” option values were calculated in each case using Algorithm 1 with
Nq = 60  integration points.
          Table3. Multi-assets options

Basket Spread 
Option value  26120.8$V  Option value 46868.6$V  

qN  

value error time resuts value error time resuts 
1 7.25179 1.009 0.02 227 5.61559 0.85 0.02 179 
2 8.32673 0.06553 0.02 336 6.54334 0.075 0.03 359 
3 8.25069 0.01051 0.02 785 6.46004 0.0086 0.03 760 
4 8.26363 0.002435 0.03 1266 6.46927 0.00059 0.03 1266 
5 8.26046 0.0007364 0.04 2076 6.46889 0.00021 0.04 2074 
6 8.26146 0.0002618 0.04 3320 6.46853 0.00015 0.04 3320 
7 8.26110 0.0001006 0.04 4454 6.46875 6.5e–0.5 0.04 4462 
8 8.26124 3.97e–0.5 0.05 6154 6.46866 2.5e–0.5 0.05 6210 
9 8.26118 1.569e –0.5 0.05 8176 6.46869 9.1e–0.6 0.05 8161 
10 8.26121 6.096e –0.5 0.06 11274 6.46868 3.2e–0.6 0.06 11340 
11 8.26120 2.3e–0.6 0.07 14226 6.46868 1.1e–0.6 0.06 14188 
12 8.26120 8.306e–0.7 0.07 18032 6.46868 3.6e–0.7 0.07 18088 
13 8.26120 2.805e–0.7 0.07 21990 6.46868 1.2e–0.7 0.07 22008 
14 8.26120 8.466e–0.8 0.08 26796 6.46868 3.9e–0.8 0.08 26852 
15 8.26120 2.016e–0.8 0.08 33578 6.46868 1.3e–0.8 –0.08 33576 
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The results of the calculations are illustrated in Figs. 1, 2 and 3. The figures
show the relative errors in the computed option values (i.e., errors relative to the
actual option value) for Nq ranging from 1 up to 10. The relative errors are shown
in Fig. 1 (for various option expiry times) on a log-log scale as functions of the
time required to obtain the corresponding option values. The same number is
plotted in Fig. 2 against the number of floating point operations used. In each
case the results shown in the four subplots were generated using input data that
differed only in the time of expiry for the options being evaluated. Finally we
show the results of a similar calculation on a basket of just three assets. Fig. 3
shows the relative errors as a function of time.

2. Metropolis algorithm

Before describing the advantages of promoting complete paths to be the
fundamental objects of Monte Carlo simulation, we describe Metropolis method
for generating probability distribution of the paths, in order to be able to take
advantages of importance sampling. Metropolis method constructs a Markov
process in the path space, which asymptotically samples the path probability
distribution. This process is not related to Markov process that governs the
evolution of the state variables. Since it is the formal device to obtain the desired
distribution, there is much freedom in constructing this process, which will prove
advantageous for variance reduction techniques [5].

The Markov process will be defined by the transition probability W(12),
which denotes the probability of reaching point 2 starting from 1. There are two
restrictions on the choice of the probability W. First, the stochastic dynamics defined
must be ergodic, i.e., every point in the path space must be accessible. The second
requirement is that the transition probability must satisfy the ”detailed balance
condition”

              122211  WPWP .
These two restrictions do not specify uniquely the stochastic dynamics. We

will use the transition probability proposed by Metropolis (1953), [8], which is
known as the Metropolis algorithm:

                    
   









.

21

2112
21 if1

,if/
PP
PPPP

W .

We now outline a proof that this Markov chain will asymptotically sample the
desired distribution P() [1]. If we start from an initial probability distribution P0(),
then the probability distribution after  steps of the Markov chain will be denoted by
Pn(). Probability distribution at successive Markov steps n and n+1 satisfy the
following relationship:

        nnnnnn PWDP 111 .
  P() is the fixed point distribution of this Markov process. Substitution of P()

for Pn() in the above equation, combined with the detailed balance condition, implies
that Pn+1() = Pn() = P(). One has also to show that the distribution converges
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towards P(). A simple measure of deviation from the desired distribution is

     PPDD nn . Deviation decreases as one goes further along the
Markov chain:
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Therefore, P() is the asymptotic probability distribution of the points gen-
erated by this random walk,

               P() = lim Pn().
                                                                       n 
One can view the evolution of the original probability distribution along the Markov

chain as a relaxation process towards the “equilibrium distribution”, P(). In practice,
one assumes that the relaxation occurs within Markov chain of finite length R. The
actual number  is usually determined by experimenting and depends on both probabili-
ties P and W and the desired accuracy of simulation. Given P and W, R has to be
chosen large enough so that the systematic error due to deviation from the true
distribution is smaller than the statistical error due to the finite size of the sample.
In applications with a large number of degrees of freedom, where state vector 
may have millions of strongly coupled components, the relaxation process is
non-trivial. For the present purpose, the state vector is low-dimensional and
relaxation occurs within just a few steps along the Markov chain [14].

The prescription for a practical algorithm can now be summarized as
follows:

1. Pick an arbitrary initial path.
2. Generate a new trial path.
3. The new path is with probability W. Specifically, if W 1, the new path is

accepted without further tests. If  W <1, a random number between 0 and 1 is gener-
ated, and the new path is accepted if the random number is smaller than W. If the trial
path is accepted, it becomes current path v , otherwise the old path remains as current
path  v.

4. If we have enough progressed along the Markov chain so that the relaxation is
completed, (i.e. v  R), the current path is sampled from the desired distribution P().
We compute the payoff function for the current path  F(v ) and accumulate the result
A = A + F(v ).

5. Perform an estimate of the statistical errors due to Monte Carlo sampling pro-
cedure. If the error is above a desired level of accuracy, go to (2), otherwise go to (6).

6. Compute Monte Carlo estimates of the required integrals. If L denotes the last
value of the step index v and R  is the number of the relaxation steps, the total number
of Monte Carlo measurements is Mv = LR. Monte Carlo estimate of the option price
<Q>MC, given the payoff function F,  is obtained as:



8 1

                              



L

Rv
v

vv

F
MM

AmcQ
1

1
.

The error estimate requires also the accumulation

                                  



L

Rv
v

v

F
M

mcQ
1

22 1
.

The estimate of the sampling error is obtained as a root of the variance of the
Monte Carlo run:
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7. Stop.

II. Application of Monte Carlo simulation models

1. Basic conclusions about application of models

Monte Carlo technique for valuation of derivatives securities is a method, which
is based on the probability distribution of complete histories of the underlying
security process. We used Metropolis algorithm to generate this probability dis-
tribution. We showed that this approach is efficient, accurate and allows one to
obtain a complete solution of the valuation problem in a single simulation. One
can obtain only price in a single simulation using the standard Monte Carlo method.
Using path-integral Monte Carlo simulation one can get price sensitivity with
respect to all the input parameters and even compute prices for multiple param-
eter values. Path-integral method can easily incorporate global constraints on the
underlying security dynamics, which may prove very useful for applications such
as bond option pricing [14].

2. Practical examples

Our present goal is to examine the feasibility and accuracy of the method, so we
will begin with the simplest valuation problem of a European call on a stock with
constant volatility and no dividends, where we can easily compare Monte Carlo
results with the analytic Black-Scholes solution. The practical examples are
illustrated in Tables 4, 5, 6  and 7.

We show results for a couple of realistic parameter choices in Table 4 and exam-
ine their accuracy as the number of Monte Carlo steps is varied. Exact results are
always within estimated confidence limits of Monte Carlo results. Statistical errors
after 100 000 Monte Carlo steps are less than half percent for all maturities. The error
is less than tenth of a percent for 1.6 106 steps. These statistical uncertainties
reflect improvements achieved by explicit use of all the symmetries of path prob-
abilities, which enable us accumulate more independent results per path. For
example, if a stock prices path is reflected with respect to the deterministic path,

6
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its probability is the same, so we can accumulate results for the reflected path as
well with negligible computational cost. This can be regarded as a rudimentary
variance reduction technique. A promising technique we are experimenting is
the inclusion of additional global Monte Carlo updates. Table 4 also shows that
statistical errors scale  N1/2  with the number of Monte Carlo steps, which is in
agreement with the central limit theorem and also shows that successive Monte
Carlo steps are not correlated. Correlation between Monte Carlo steps is reduced
because at every step we pick with equal probabilities either the current path or
any of its reflection symmetry related paths.

In Table 5 we present results for parameter sensitivities using the same
parameter choices as in Table 4. They are obtained concurrently with the option
price itself. They show even higher level of accuracy than the corresponding
option price for a given number of Monte Carlo steps. If these values were obtained
by numerical differentiation, it would require at least 3 simulations besides the
original one to compute the three partial derivatives. Additional simulation may
also be required, depending on the statistical accuracy of Monte Carlo results. If
the statistical errors are large, one would need simulation for a few nearby parameter
values, combined with a least-squares fit to produce estimates of derivatives.
This may lead to unacceptably large errors for higher order derivatives, unless
statistical errors for option prices are very small. In the path integral approach
there are no additional sources of errors.

The possibility of computing Monte Carlo results for different parameters in a
single simulation is illustrated in Table 6, where the option values in a window of about
10% variation of initial stock prices are computed in a single run. Within a few percent
difference from the stock price used in the simulation, the results are roughly of the
same statistical quality as for the original price. This is a very cheap and efficient way
to explore option price variations in a limited parameter range, particularly if there is
uncertainty about the input parameter estimates. It is clear from the table that the fur-
ther one goes from the original simulation parameters, the worse the statistics becomes
(larger relative errors) due to inefficient importance sampling. The same trend is appar-
ent for longer periods to maturity, because the differences between the simulation
probability distribution and the true ones are amplified for longer time periods.
For shorter periods to maturity, there is an apparent asymmetry between the errors,
which are much smaller for the initial prices below the simulation price Si < S0 ,
than for prices above the simulation price, Si > S0. The reason is that the stock
price distribution is skewed towards higher stock prices, so that the overlap between
simulation price distribution and actual price distributions is greater for Si < S0
than for Si > S0. This effect becomes less and less important for longer time periods
to maturity.

As a first step we show results for a jump diffusion model, where jumps are
superimposed upon the continuous Wiener process. We will consider the following
differential/difference equation corresponding to this process:

d logS = dy = dt + d+ dZ,
where dZ is the stochastic variable describing the jump process. It is assumed
that the number of jumps is Poisson distributed while the jump size is uniformly
distributed with average of dZ = 0. The finite average value of the jump size will
amount to a trivial shift coefficient . Merton was able to obtain a series solution
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     Table 4

  Table 5
Number of 
periods to 

maturity 
r(f) 

Stock 
price 

variance 
MC   (MC)   (MC) 

1 0.00483 0.001875 0.5530 0.00039 0.5532 0.1143 0.0005 0.1141 0.04443 0.00005 
2 0.00483 0.001875 0.5745 0.00045 0.5750 0.1610 0.0006 0.1600 0.09083 0.00011 
3 0.00483 0.001875 0.5914 0.00049 0.5916 0.1949 0.0008 0.1942 0.13848 0.00019 
4 0.00483 0.001875 0.6060 0.00051 0.6054 0.2219 0.0010 0.2222 0.18710 0.00027 
5 0.00483 0.001875 0.6167 0.00053 0.6175 0.2469 0.0012 0.2463 0.23555 0.00035 
6 0.00483 0.001875 0.6276 0.00054 0.6283 0.2687 0.0013 0.2673 0.28485 0.00043 
7 0.00483 0.001875 0.6386 0.00055 0.6382 0.2867 0.0014 0.2862 0.33526 0.00052 
8 0.00483 0.001875 0.6474 0.00056 0.6473 0.3034 0.0016 0.3032 0.38522 0.00061 
9 0.00483 0.001875 0.6564 0.00057 0.6558 0.3179 0.0017 0.3188 0.43615 0.00071 

10 0.00483 0.001875 0.6635 0.00057 0.6638 0.3323 0.0018 0.3330 0.48614 0.00080 
11 0.00483 0.001875 0.6707 0.00057 0.6713 0.3451 0.0019 0.3461 0.53639 0.00089 
12 0.00483 0.001875 0.6772 0.00058 0.6784 0.3577 0.0021 0.3583 0.58630 0.00099 

1 0.00483 0.002500 0.5485 0.00035 0.5486 0.1146 0.0004 0.1143 0.043845 0.000045 
2 0.00483 0.002500 0.5682 0.00040 0.5685 0.1617 0.0006 0.1605 0.089164 0.000106 
3 0.00483 0.002500 0.5838 0.00044 0.5837 0.1960 0.0009 0.1950 0.135424 0.000174 
4 0.00483 0.002500 0.5966 0.00046 0.5964 0.2236 0.0010 0.2235 0.182223 0.000248 
5 0.00483 0.002500 0.6074 0.00048 0.6075 0.2490 0.0012 0.2481 0.229169 0.000324 
6 0.00483 0.002500 0.6167 0.00049 0.6175 0.2715 0.0013 0.2697 0.276238 0.000402 
7 0.00483 0.002500 0.6270 0.00050 0.6266 0.2901 0.0015 0.2892 0.324568 0.000488 
8 0.00483 0.002500 0.6354 0.00051 0.6350 0.3072 0.0016 0.3068 0.372574 0.000572 
9 0.00483 0.002500 0.6433 0.00052 0.6428 0.3226 0.0017 0.3230 0.420538 0.000658 

10 0.00483 0.002500 0.6506 0.00052 0.6502 0.3373 0.0019 0.3380 0.468612 0.000745 
11 0.00483 0.002500 0.6569 0.00053 0.6572 0.3508 0.0020 0.3519 0.516353 0.000833 
12 0.00483 0.002500 0.6629 0.00053 0.6637 0.3641 0.0021 0.3648 0.563794 0.000929 

 

Number of 
periods to 
maturity 

Stock 
price 

variance 
C(1x105) (1x105) C(4x105) (4x105) C(16x105) (16x105) 

1 0.001875 1.9792 0.0064 1.9769 0.0032 1.9750 0.0012 
2 0.001875 2.9508 0.0106 2.9456 0.0053 2.9430 0.0026 
3 0.001875 3.7522 0.0139 3.7492 0.0069 3.7469 0.0034 
4 0.001875 4.4710 0.0168 4.4678 0.0083 4.4673 0.0041 
5 0.001875 5.1446 0.0193 5.1324 0.0096 5.1326 0.0048 
6 0.001875 5.7822 0.0216 5.7610 0.0108 5.7608 0.0054 
7 0.001875 6.3823 0.0238 6.3599 0.0118 6.3595 0.0059 
8 0.001875 6.9456 0.0258 6.9309 0.0129 6.9337 0.0064 
9 0.001875 7.4969 0.0276 7.4881 0.0138 7.4875 0.0069 

10 0.001875 8.0335 0.0294 8.0259 0.0147 8.0235 0.0073 
11 0.001875 8.5593 0.0312 8.5511 0.0156 8.5493 0.0078 
12 0.001875 9.0780 0.0338 9.0663 0.0169 9.0660 0.0084 

1 0.002500 2.2467 0.0075 2.2436 0.0037 2.2415 0.0018 
2 0.002500 3.3269 0.0123 3.3198 0.0061 3.3168 0.0030 
3 0.002500 4.2089 0.0161 4.2024 0.0080 4.2004 0.0040 
4 0.002500 4.9935 0.0195 4.9873 0.0097 4.9864 0.0048 
5 0.002500 5.7262 0.0224 5.7086 0.0112 5.7085 0.0056 
6 0.002500 6.4168 0.0252 6.3873 0.0125 6.3855 0.0062 
7 0.002500 7.0602 0.0277 7.0302 0.0138   7.029 0.0069 
8 0.002500 7.6629 0.0301 7.6415 0.0150 7.6434 0.0075 
9 0.002500 8.2483 0.0322 8.2351 0.0161 8.2348 0.0080 

10 0.002500 8.8169 0.0343 8.8066 0.0172 8.8041 0.0086 
11 0.002500 9.3733 0.0364 9.3634 0.0182 9.3594 0.0091 
12 0.002500 9.9226 0.0395 9.9076 0.0197 9.9028 0.0099 

 



8 4

for the option price only under the assumption that the jump size distribution is
normal [3]. This restriction can be lifted in a Monte Carlo simulation, so we
chose an uniform distribution for experimentation purposes, since it is
computationally cheap and there is no analytic solution. The results for a European
call on an asset following this process are shown in Table 7. The prices and
sensitivities are concurrently obtained and the accuracy is comparable to the one
achieved in Black-Scholes problem. Relative errors for  1105 steps are below
one percent for option price and below two tenths of a percent for some  and 
sensitivities. As for Black-Scholes model, price sensitivities are more accurately
determined than the option price itself. The relative quality of the estimators
depends on the form of the corresponding function, which is integrated with
respect to the path probability measure. If one computes the sensitivities using
numerical differentiation, errors would be at least as large as the price error.

Examples

Example No 1 is shown in Table 4  Comparison of Monte Carlo estimates and
exact results for European call values. This table shows accuracy, which can be
achieved as the number of Monte Carlo steps ranges from  1105 up to 16105 .
Risk-free rate per period is set to rj = 0.004853; Nj  is the number of periods to
maturity, 2  is the stock price variance per period. European call values Monte
Carlo estimates after N Monte Carlo steps and  (N) is the error estimate after N
Monte Carlo steps. Initial stock price is S = 100, the strike price is X = 100 for all
data in the table (see Appendix No 1).

Example No 2 is shown in Table 5  option price sensitivities to input
parameters. This table lists some of the price sensitivities, which are computed
along the option price in a path-integral simulation. The initial stock value is set
to S = 100 and the strike price is X = 100. The number of Monte Carlo steps is
1105. Each parameter sensitivity estimate (MC) is immediately its error estimate
 and the exact value obtained by differentiation of Black-Scholes formula.  is
the stock pricing sensitivity (CS), is the volatility sensitivity (CS),
  is the interest rate sensitivity  (  Crj) (see Appendix No 2).

Example No 3 is shown in Table 6  Computation of option prices for
multiple parameters in a single simulation. This table shows the level, which can
be obtained if multiple option prices are computed in a single simulation. The
number of Monte Carlo steps is 1105. The initial stock price is S0 = 100 and the
strike price is X=100, volatility per period is 2 = 0.0025 and risk less interest rate
rf = 0.004853  per period. Each option price estimate C(Si) for initial stock price
Si is followed by its error estimate exact value from Black-Scholes formula C; Ni
denotes the number of time periods to maturity (see Appendix No 3).

Example No 4 is shown in Table 7  Call option price and sensitivities for a
jump diffusion process. This table lists results for the option, its input parameter
sensitivities when a jump is superimposed on the continuous process of Black-
Scholes formula. The initial stock value is set to S = 100 and the strike price is
X =100. The number of Monte Carlo steps is 1105. The Monte Carlo results are
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Table 6

Table 7

Number 
of periods 
to maturity 

C(95)  C C(99)  C C(101)  C C(105) 

1 0.4632 0.0006 0.4629 1.7364 0.0047 1.7325 2.8358 0.0117 2.8287 5.8448 0.0572 
2 1.1827 0.0051 1.1790 2.7907 0.0080 2.7757 3.9362 0.0154 3.9121 6.8103 0.0639 
3 1.8600 0.0098 1.8613 3.6494 0.0107 3.6390 4.8268 0.0183 4.8059 7.6560 0.0714 
4 2.5060 0.0145 2.5049 4.4087 0.0130 4.4080 5.6044 0.0207 5.6004 8.4129 0.0774 
5 3.1353 0.0192 3.1165 5.1283 0.0151 5.1164 6.3470 0.0230 6.3310 9.1655 0.0826 
6 3.7185 0.0232 3.7024 5.8012 0.0170 5.7813 7.0462 0.0251 7.0160 9.8878 0.0877 
7 4.2810 0.0269 4.2671 6.4267 0.0188 6.4133 7.6846 0.0271 7.6662 10.5269 0.0926 
8 4.8267 0.0312 4.8140 7.0248 0.0205 7.0191 8.2981 0.0288 8.2888 11.1462 0.0968 
9 5.3438 0.0345 5.3457 7.5966 0.0220 7.6032 8.8850 0.0305 8.8887 11.7508 0.1010 

10 5.8616 0.0380 5.8641 8.1616 0.0235 8.1691 9.4637 0.0321 9.4693 12.3372 0.1052 
11 6.3681 0.0415 6.3710 8.7055 0.0249 8.7194 0.0198 0.0336 10.0335 12.9117 0.1086 
12 6.8597 0.0450 6.8676 9.2435 0.0264 9.2561 0.5745 0.0352 10.5834 13.5007 0.1139 

 

Number 
of periods 
to maturity 

 C      

1 0.02 2.12671 0.01505 0.55233 0.00121 0.12487 0.00108 0.04426 
2 0.02 3.16259 0.02458 0.57517 0.00141 0.17626 0.00159 0.09056 
3 0.02 3.97857 0.03243 0.59134 0.00151 0.21151 0.00202 0.13789 
4 0.02 4.77069 0.03896 0.60583 0.00159 0.24485 0.00244 0.18604 
5 0.02 5.47055 0.04516 0.61457 0.00161 0.27364 0.00281 0.23328 
6 0.02 6.19997 0.05057 0.62528 0.00165 0.30257 0.00316 0.28164 
7 0.02 6.85696 0.05560 0.63553 0.00168 0.32708 0.00349 0.33073 
8 0.02 7.50037 0.06024 0.64449 0.00170 0.34980 0.00382 0.37966 
9 0.02 8.10141 0.06485 0.65231 0.00172 0.36877 0.00412 0.42847 

10 0.02 8.68738 0.06891 0.66075 0.00173 0.39014 0.00443 0.47823 
11 0.02 9.23218 0.07319 0.66640 0.00174 0.40439 0.00472 0.52623 
12 0.02 9.78240 0.07923 0.67459 0.00175 0.42227 0.00503 0.57677 
1 0.05 0.02526 0.02526 0.55565 0.00110 0.19220 0.00192 0.04376 
2 0.05 0.04117 0.04117 0.57536 0.00120 0.28671 0.00285 0.08821 
3 0.05 0.05421 0.05421 0.59300 0.00131 0.35139 0.00363 0.13372 
4 0.05 0.06491 0.06491 0.60581 0.00136 0.41691 0.00432 0.17878 
5 0.05 0.07494 0.07494 0.61854 0.00141 0.47293 0.00502 0.22451 
6 0.05 0.08419 0.08419 0.62963 0.00144 0.53323 0.00569 0.26977 
7 0.05 0.09320 0.09320 0.63949 0.00146 0.58649 0.00627 0.31485 
8 0.05 0.10119 0.10119 0.64944 0.00149 0.63476 0.00693 0.36049 
9 0.05 0.10962 0.10962 0.65942 0.00153 0.67822 0.00754 0.40639 

10 0.05 0.11694 0.11694 0.66944 0.00156 0.73089 0.00826 0.45278 
11 0.05 0.12495 0.12495 0.67883 0.00159 0.76241 0.00883 0.49956 
12 0.05 0.13614 0.13614 0.68505 0.00160 0.81260 0.00942 0.54295 
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immediately followed by its error estimate . The jump rate per period is set to
kp = 0.1. The risk-free rate per period is set to rf = 0.004853 and the variance per
period is 2 = 0.001875. The jump sizes are uniformly distributed in the interval
(, +).  is the stock pricing sensitivity (CS),  is the volatility sensitiv-
ity (CS), is the interest rate sensitivity  (Crj) (see Appendix No 4).

III.  Problems with Monte Carlo simulation

1. Basic problems with Monte Carlo simulation

Monte Carlo simulation has enjoyed resurgence in financial literature in recent
years. This paper explores the reasons why implementing Monte Carlo simulation
is very difficult at best and can lead to incorrect decisions at worst. The problem
is that the typical assumption set used in Monte Carlo simulation assumes normal
distributions and correlation coefficients of zero, neither of which are typical in
the world of financial markets. It is important for planners to realize that these
assumptions can lead to problems connected with their analysis.

In 1981 Rubinstein has developed a set of criteria to be used in deciding whether
it is appropriate to use Monte Carlo simulation [15]. Monte Carlo simulation is appro-
priate when

 It is impossible or too expensive to obtain data;
 The system observed is too complex;
 The analytical solution is difficult to be obtained;
 It is impossible or too costly to validate the mathematical experiment.
Monte Carlo is just one type of simulation used to generate values for the

exogenous variables. Exogenous variables are changed to reflect certain courses
of action. This is the famous “what if” simulation technique. What if we implement
this action? What if that happens? This type of simulation generally relies on a
model built on historical data and sometimes may be called historical simulation.
However, it can be used with other types of models including Monte Carlo
simulation. The key is to set up a model of how the world works and then test
different policies or decisions on the model to see what works.

In finance, exploratory simulation is generally the most useful one. It does not
create a large computational burden and is relatively easy to implement. Monte Carlo
variables assume that the processes being studied are independent on each other and
that each value is a random draw from a distribution, or serially independent. Propo-
nents of Monte Carlo simulation point out that the available computer programs can
handle dependent relationships between exogenous variables. However, the problem is
that the inter-relationships between two or more variables are generally quite complex
and it is difficult to determine the correct relationships and distributions. The portfolio
performance generated by Monte Carlo simulation to model the portfolio is lackluster.
It does reduce the risk compared to an all-stock portfolio but with a lower return. The
lower return results in poor risk-reward performance as evidenced in a lower
reward to semivariability (R/SV) ratio.

Since the investment literature is fond of pointing out legal reasons, past
performance is not a guarantee of future returns [18]. This counsel applies equally
to both exploratory simulation and Monte Carlo simulation. Picking historic
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periods for an exploratory simulation that are equivalent to the current situation
is problematic. However, still more problematic is picking the distribution to use
in a Monte Carlo simulation. It should be noted that we are not forecasting per se
when we use exploratory simulation. We are trying different policies to find out
which one will best meet our needs. Monte Carlo simulation homogenizes away
the factors that drive stock returns. Can you forecast stock returns without bringing
forward a forecast for any financial variable? Monte Carlo simulation lets you do
this by simply specifying the distribution for stock returns. The probability results
from Monte Carlo simulation may appear impressive to a client. However, if that
number is derived from assumptions that are not realistic, there is no value to the
number.

When should a financial planner use Monte Carlo simulation? Whenever a vari-
able in the problem cannot be estimated or is not available. Appropriate variables
might include a person’s life span or irregular cash flow needs for a retirement prob-
lem. This seems to be an appropriate application of Monte Carlo simulation, but only
for those variables where the data is not available. Monte Carlo simulation gives infor-
mation through its assumption set whenever variables with readily available data
are used [17].

2. Other Problems with Monte Carlo Simulation

Other problems with Monte Carlo simulation are concern the presentation of a
picture of Monte Carlo simulation that is, at best incomplete, especially in the
contexts of long range financial planning. It is important to know how simulation
methods can be used as the “gold standard” to evaluate simplified models suit-
able for use in everyday financial planning practice.

There are important differences between the application programs that an-
swer financial planning questions and the methods used to compute the outcome
of a financial plan. The computer application programs are set up to give an-
swers to certain questions. Different methods are used to compute the outcome
of a financial plan. The Monte Carlo simulation is such a method. Historical data
for asset returns and inflation are summarized in statistical quantities (e.g., mean,
standard deviations) and these quantities are inserted into assumed probability
distributions. Then, samples are drawn from these assumed distributions for each
year in the planning horizon to arrive to an outcome. This is replicated many
times (from 1000 up to 10 000), and these outcomes are summarized into results
such as “probability of meeting retirement goal”, “mean terminal wealth”, etc.

In the financial world Monte Carlo simulation is preferred instead of using a
formula to compute returns. The formula is derived under the assumptions that the
returns have a lognormal distribution and no serial correlation. Then, after citing refer-
ences which describe investment returns as being other than log-normal, the authors
state that the same log-normal assumptions are bad assumptions which “… can lead to
incorrect decisions and that the implementation of Monte Carlo simulation is
going to take a great deal of care.” [4]

Another problem is to display the nonlinear relationship between the S&P
500 from one day to the next (daily data) from 1970 to 2000. This is quite in-
formative because the linear correlation, the usual measure of dependence, is
very small, but there is a strong non-linear relationship.
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As an example, a two-asset portfolio consisting of the S&P 500 and timber
is studied. The example has been chosen to show the advantages of historical
simulation over Monte Carlo simulation. The example intends to show that the
annual return of a 50-50 portfolio using historical simulation is 10.4% and only
8.5% when using Monte Carlo simulation. This difference is ascribed to the inter-
relationships between the two data series that are not modeled by Monte Carlo
simulation.[17]

Table 8 below shows the essential simulation results.

Table 8. Computation of arithmetic means from geometric means (Data historical simulation and Monte
Carlo simulation)

Basic conclusions

Monte Carlo simulation is useful for those cases where data and analytic models sim-
ply are not available. Otherwise, it requires more work and does not result in a demon-
strably better answer than other analytic techniques. The benefit/cost ratio just is not
there.

The problem with Monte Carlo simulation is connected with the assumptions that
are  made in the model in order to easily deploy Monte Carlo simulation. Since few
planners have formal training on operations research, they will tend to make these
assumptions without understanding their implications. Other forms of simulation, ex-
ploratory and tactical, do not make these assumptions and are easier to deploy. Monte
Carlo simulation implies that we are operating under conditions of risk and know the
underlying distributions. However, the financial markets are really operating under
conditions of uncertainty where we do not know the distribution. Under these condi-
tions the best policy is the one that adapts to uncertain conditions. It is important
to stress-test policies to see which have proved most adaptable under severe
conditions. This is the role of exploratory simulation with historic data.

Finally, the proponents of Monte Carlo simulation have to demonstrate the
additional benefits of Monte Carlo simulation before its recommendation for wider
use within the profession. Its benefits do not lie in the area of analyzing aggregate
market returns. However, it could prove useful in other areas of financial planning
practice, where data is not readily available. The proponents of Monte Carlo
method should explore those areas so that it becomes valuable addition to financial
planning.

Simulation 
method: 
50-50 

portfolio 

Annual 
return 

(geometric 
mean), % 

Semi-annual 
geometric 
mean, % 

Semi-annual 
standard 

deviation, % 

Semi-
annual 

variance 

Semi-annual 
arithmetic 
mean, % 

Inferred 
annual 

arithmetic 
mean, % 

Monte Carlo 8.55 4.19 9.98 0.0100 4.66 9.54 
Historical 10.40 5.07 9.00 0.0081 5.45 11.21 
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Използване на Монте Карло-симулация при оценка на опции

Иван Попчев, Надя Велинова

Институт по информационни технологии, 1113 София

(Р е з ю м е)

В настоящата статия е разгледана една техника на процеса Монте Карло-
симулация. Алгоритъмът “Метрополис” е използван, за да покаже вероятностното
разпределение на определени исторически параметри на базовите акции.
Разгледани са портфейли от опции, съдържащи линейна комбинация от коре-
лирани активи, включващи опции от типа “кошница” и “спред”.

Целта е да се разгледа приложимостта и точността на метода, като се
започне от най-простия проблем за оценка на Европейска кол опция, която е
създадена на базата на акция с постоянно ниво на променливост и без дивиденти
по нея. Така се дава възможност да са направи лесно сравнение на резултатите,
получени чрез процеса Монте Карло-симулация, с резултатите, получени по
модела на Блек-Скулс. В тази връзка са разгледаните практически примери в
част трета.

Appendix No1
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