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Abstract: A learning-oriented interactive method is proposed intended to solve dis-
crete multicriteria choice problems with a large number of discrete alternatives and a
few quantitative criteria. The method suggested is inspired by the partition-based
methods designed to solve multiple objective mathematical programming problems.
At each iteration, the DM may choose the current preferred alternative from one
ranked set or from two ranked sets of alternatives. The first ranked set of alternatives
is obtained by solving a discrete optimization scalarizing problem based on the pref-
erence information given by the DM about the desired changes of the values, desired
directions of changes and desired intervals of changes for some or for all of the
criteria in relation to their values in the current preferred alternative. The second
ranked set is obtained using AHP or an outranking procedure when the DM is willing
(able) to provide additional preference information, e.g., pairwise comparisons of the
criteria or inter- and intra-criteria information. The DM can successively and sys-
tematically screen the set of non-dominated alternatives by the proposed method.
The method is illustrated with the help of an example.

Keywords: multicriteria decision analysis problem, discrete multicriteria choice prob-
lem, multiobjective optimization problem, AHP method, outranking methods.
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1. Introduction

Multiple criteria decision-making problems can be divided, Vi n ¢ k e [30], into two
classes according to their formal statement: in the first one a finite number of explicitly
stated constraints implicitly determine an infinite number of feasible alternatives, whereas
in the second a finite number of alternatives are stated explicitly. The first class of
problems is called multiple objective mathematical programming (MOMP) problems
or multiple criteria choice problems with continuous alternatives, Yu, Huang and
Masud[8],ChankongandHaimes[4],Steuer[26]andMiettinen[18].
The multiple criteria decision analysis (MCDA) problems, which are also called dis-
crete multiple criteria or multi-attribute analysis problems, belong to the second cat-
egory, HuangandYoon[9andVincke[30]

Interactive methods, Benayoun,deMontgolfier,Tergny,andLa-
richev[2], Wierzbicki[31l], KorhonenandLaakso[15],Nakaya-
mal[20],Buchanan[3],MiettinenandMakela[l9],andVassiley,
NarulaandGouljashki[28], are widely used to solve the MOMP problems. In
these methods, the decision and computational phases are executed alternately. In the
computational phase, a scalarizing problem is solved to generate one or several (weak)
non-dominated solutions that satisfy the local preferences of the decision-maker (DM)
to the greatest extent. In the decision phase, the DM chooses the best local (the
preferred) solution. If this solution also satisfies his/her global preferences, it becomes
the best global (the most preferred) solution. Otherwise, the DM provides additional
information about his/her local preferences that is used in the next computational phase
to search for new solutions. In these methods it is assumed that the DM optimizes an
implicit value (utility) function or that by learning during the search process he/she tries
to satisfy his/her aspirations concerning the values of the criteria (the aspiration levels
of the criteria) to the highest degree. Convergence of the solution process is presumed
in both types of methods, GardinerandVanderpooten[7]. Mathematical
convergence of the computational process is ensured in the “search-oriented methods”,
whereas in the “learning-oriented methods”, the DM ensures behavioural or intuitive
convergence of the solution process. In both types of methods it is assumed that the
DM can compare two solutions, that is, decide whether to prefer one of them or the
two are equivalent to him/her.

The problems of MCDA can be classified into three main groups, Hwang and
Y o0 n [9]. In the first group of problems, the discrete multicriteria choice problem,
DMCCP, the objective is to search for the best-preferred non-dominated alternative.
In the second group of problems, the ranking problem, the non-dominated alternatives
are ranked in a descending order, i.e., starting from the best to the worst alternative. In
the third group of problems, the sorting problem, the set of alternatives is partitioned
into separate groups.

Most of the MCDA methods use two types of preference models or DM prefer-
ence structures, Vi n ¢ k e [30], for comparing two nondominated alternatives. The
first type of DM preference model does not allow the existence of incomparable alter-
natives, and preference information obtained by the DM is sufficient to determine
whether one of the alternatives is to be preferred or the two alternatives are equivalent
to the DM. This type of DM preference model is used in the multiattribute utility theory
methods, Fishburn[6], Keeney and Raiffa[ll], Farquhar[5], and the
analytical hierarchy process methods (AHP), Saaty [11]. The second type of DM
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preference model allows the existence of incomparable alternatives, and the prefer-
ence information obtained by the DM may be insufficient to determine whether one of
the alternatives is to be preferred or whether the two alternatives are equivalent to the
DM. This type of DM preference model is used by the outranking methods, Roubens
[22],Brans and Mareschal[l],and R oy [23, 24]. In the outranking methods,
the DM provides inter- and intra-criteria information, whereas in AHP method he/she
has to provide pairwise information on the criteria.

To solve multicriteria choice problems with a large number of alternatives and a
small number of quantitative criteria, which can be regarded as close to MOMP prob-
lems, the “optimizationally motivated” interactive methods, inspired by MOMP meth-
ods, have been suggested (see Korhonen[13], Sun and Steuer[27], Lotfi,
StewartandZionts[16],andJaszkiewicz and Slowinski[10]. The
first two methods use the first type of DM preference model and the DM provides in
every iteration only the desired values of the criteria. The last two methods use the
second DM preference model where the DM provides at each iteration not only the
desired values of the criteria but also inter- and intra-criteria information.

We propose a learning-oriented, optimizationally motivated, interactive method
designed to solve multicriteria choice problems with a large number of alternatives and
a small number of quantitative criteria that is inspired by the MOMP method described
in VassilevyNarula Vassileva and Genova [29]. This method uses
the first type of DM preference model. Besides the desired values of the criteria, the
DM may provide the desired intervals and desired directions of changes. In addition, if
the DM wants, he/she may also provide information such as pairwise comparisons of
the criteria, or inter- and intra-criteria information.

The rest of the paper is organized as follows: we give some notations and defini-
tions in the next section. We describe the proposed method in section 3 and state the
algorithmic scheme of the method in section 4. We provide an illustrative example in
section 5. We conclude the paper with a few remarks in section 6.

2. Preliminary considerations and definitions

The discrete multiple criteria decision analysis problem is defined as follows: Given a
set | of n (n >1) deterministic alternatives and a set J of k (k > 2) quantitative criteria,
we define a nxk decision matrix A. The element a; of the matrix A denotes the evalu-
ation of the alternatives i<l with respect to criterion jeJ. The vector (a,, a,,, ..., &)
shows the evaluation of alternative i<l with respect to all the criteria in the set J. The
column vector (a,;, a,;, ..., 8,;)" gives the assessment of all the alternatives in set I for
criterion jeJ. The objective is to search a non-dominated alternative that satisfies the
DM mostly with respect to all the criteria simultaneously, where more is better than
less for each criterion. We assume that all the alternatives are known in advance.

Definition 1. The alternative i<l is called non-dominated if there is no other
alternative sel, for which a;; > a; for all jeJ and a; > a;, for at least one jeJ.

Definition 2. A current preferred alternative is a non-dominated alternative cho-
sen by the DM at the current iteration.

Definition 3. The most preferred alternative is a preferred alternative that satis-
fies the DM to the greatest degree.
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Definition 4. The desired changes in the criteria values are the amounts by
which the DM wishes to improve or agrees to worsen the criteria compared to their
values in the current preferred alternative.

Definition 5. The desired directions of change of the criteria are the directions in
which the DM wishes to change (to improve or agrees to worsen) the criteria with
respect to their values at the current preferred alternative.

Definition 6. The desired intervals of changes in the values of the criteria speci-
fied by the DM denote the limits within which the values of the criteria may lie.

Definition 7. A current ranked sample of alternatives is a subset of I non-domi-
nated alternatives (I being set by the DM) that are obtained after a discrete optimiza-
tion-scalarizing problem is solved.

Definition 8. A current re-ranked sample of alternative is obtained from the cur-
rent ranked sample of alternatives based on the pairwise comparison of the criteria or
inter- and intra-criteria information provided by the DM using AHP or outranking
methods.

Since it is comparatively simple to identify dominated alternatives, (S u n and
Steuer[27]), we shall assume in the rest of the paper that matrix A contains only
non-dominated alternatives.

3. Method description

To solve multicriteria discrete choice problems with a large number of alternatives and
a small number of quantitative criteria, we propose a partition-based interactive method
that is inspired by MOMP method described in Vassilevatal [29]. At every
iteration of the proposed method, the DM has the possibility to choose from the current
ranked set or the current re-ranked set of the alternatives to improve the current
preferred alternative.

To obtain the current ranked set, we use a Tchebychev type optimization scala-
rization problem that is a discrete analog of the scalarization problem described in
Vassilev et al. [29]. This scalarizing problem is based on the information given by the
DM for the desired changes of the values, desired directions of changes and the de-
sired intervals of changes for some or for all the criteria in relation to their values in the
current preferred alternative. Using this scalarizing problem, the alternatives are ranked
in an increasing order by the value of the objective function of the scalarizing problem.
The smaller the value of the objective function of a given alternative is, the more
preferable (desirable) the alternative is. The first | alternatives in this ranking order
establish the current set of the alternatives that are shown to the DM for evaluation
and choice of the current preferred alternative, where | << n is specified by the
decision maker. It is possible that there may not be | alternatives which satisfy the
requirements of the DM.

If the DM is willing (able) to provide additional preference information, e.g.,
pairwise comparisons of the criteria, S a a ty [25] or inter- and intra-criteria informa-
tion—-Brans and Mareschall[l], then it is possible to re-arrange the current
ranked set of alternatives. This ranking can be accomplished by AHP method, Saaty
[25], or an outranking method such as PROMETHEE Il method, Brans and M a -
reschal[l]. The DM can choose the current preferred alternative from the current
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ranked set or the current re-ranked set. Note that the DM has two rankings of the
same set of alternatives based on different information.

3.1. Discrete partition-based scalarizing problem

To improve the current preferred alternative, we propose that the DM uses a discrete
analog of the continuous partition-based scalarizing problem described by Vassi -
lev etal. [29]. The scalarizing problems available in the literature for discrete choice
problems until recently are discrete analogs of the continuous aspiration level scalarizing
problem proposed by Wierzbicki[31]. Inthe partition-based scalarizing problem,
the DM can express his/her desires not only in the form of aspiration levels, but also as
aspiration directions and aspiration intervals of changes in the values of the criteria. In
this way the DM can express his/her desires with more flexibility and precision. This
flexibility is more important in the discrete choice problems where the number of alter-
natives is finite (although large) than in MOMP problems where the number of choices
is infinite.

Before presenting the discrete partition-based scalarizing problem, we introduce
the following notations.

Let h denotes the index of the current preferred alternative.

I' is the set of alternatives without alternative with index h; I' = I \h;

a,,; — the value of a criterion with an index jeJ in the current preferred alterna-
tive.

K, K, is the set of indices jeJ of the criteria, for which the DM wishes to
increase their values compared to their values in the current preferred alternative, where:
K, is the set of indices of the criteria jeJ that the DM wants to improve by
desired (aspiration) values Ay
K, — the set of indices of the criteria jeJ that the DM wants to improve but for
which he/she is able to provide only the direction.

K= K, <is the set of indices jeJ of the criteria for which the DM agrees to
worsen their values compared to their values in the current preferred alternative, where:

K,,® is the set of indices of the criteria jeJ that the DM agrees the values of the
criteria to be worsened by no more than §,;

K,,“— the set of indices of the criteria jeJ that the DM agrees to worsen but for
which he/she is able to provide only the direction.

K>< is the set of indices of the criteria jeJ for which the DM wants the criteria
values to lie within an interval, (a,— t},<a,; < a,+ t') around the current value a,;

K=— the set of indices of the criteria jeJ for which the DM wants to either pre-
serve or improve the current value of the criteria;

K°— the set of indices of the criteria jeJ about which the DM is indifferent about
the value of these criteria and as such may be altered freely;

a hi the desired (aspiration) value of the criterion with an index jeK, > and
ay=ay+ A, jeK
Aj— the difference between the maximal and minimal value for the criterion with
an index jeJ and
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Aj = maxa; — min a;.
iel iel

Now we can formulate the discrete partition-based scalarizing problem (S) as
follows:
(S): min S(i) = min{max[max (a; — a;) /A;, max ((a,; —a;)/A] + max (a,;—a; )/A}

iel iel jeK; jeK UK jeK
subject to:

a;= a, iel', jeK, UK,

H 1 H <.
a;=a, — 5, iel', jeKs;
a;=a, — t,, iel', jeKp<;

a;< ay + b, iel', jeK~,

¢ if A'ng,
A =
A'j if A'j>s

where

and ¢ is a small positive number.

When solving a discrete optimization problem S, the value of S(i) is computed for
each alternative i that satisfies the constraints of this problem. The objective function
S(i) denotes the distance to the “modified” Tchebychev metric for each feasible alter-
native from the virtual alternative as defined by DM’s wishes.

3.2. The ranked and re-ranked current sets of alternatives

By solving the discrete partition-based scalarizing problem S, the alternatives are ranked
in an ascending order of the value of S(i), i.e., from the smallest to the largest value.
The first | ranked alternatives are included in the current ranked subset M,, where |
denotes the number of the alternatives specified by the DM. These alternatives satisfy
to the greatest extent the preferences of the DM in relation to the current preferred
alternative with an index h.

If the DM wishes, it is possible and may be preferable, to re-rank the alternatives
that belong to the set M, by a formal procedure based on his/her pairwise comparison
of the criteria, or inter- and intra-criteria preference information. The formal proce-
dure depends on the type of information provided by the DM and may be accomplished
by AHP, PROMETHEE Il or any other procedure. This re-ranked set of alternatives is
the set M,.

4. Algorithmic scheme

Based on the discrete partition-based scalarizing problem and in order to obtain the
ranked and re-ranked sets M, and M., we develop an algorithmic scheme to solve dis-
crete multicriteria choice problems with a large set of alternatives and a small number
of quantitative criteria.

The main steps of the algorithmic scheme are:
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Step 1. Reject (see Remark 1) all dominated alternatives in the decision matrix
A. The new decision matrix A consists of non-dominated alternatives only. Assign
index h to the first initial preferred alternative (see Remark 2). Set iter = 1, and LIST
= J, where LIST is a set of stored preferred alternatives.

Step 2. If the DM wants to store the current preferred alternative h, check if it
has been saved before. If “not” — add h to LIST.

Step 3. Ask the DM to define the desired changes, direction of changes and the
intervals of changes for the criteria values in relation to the current preferred alterna-
tive h. Ask the DM to specify a parameter | — the number of alternatives he/she would
like to see in M.

Step 4. Solve the discrete partition-based scalarizing problem S and determine the
current ranked set of alternatives M.

Step 5. Present set M, to the DM for evaluation. If the DM would like to re-rank
the alternatives in set M, to obtain set M,, ask him/her to provide additional preference
information (pairwise comparison of criteria, or inter- and intra-criteria). If the DM
does not provide the required information, ask him/her to choose the preferred alterna-
tive from set M, . If the DM provides the required additional information, determine set
M,. Ask the DM to choose the preferred alternative from sets M, and M,,.

Step 6. If the DM selects the preferred alternative chosen in Step 5 as the most
preferred alternative — Stop.

Step 7. If the DM selects the preferred alternative chosen in Step 5 as the current
preferred alternative — assign index h to it, update iter = iter + 1, and go to Step 2.
Otherwise, ask him/her to choose the current preferred alternative or most preferred
alternative from the stored list of alternatives, LIST. In the first case, assign index h to
this alternative, update iter = iter + 1 and go to Step 3. In the second case — Stop.

Remark 1. The dominated alternatives are rejected only once in the initial phase
of the algorithm, Sun and Steuer [27]. The computational complexity of this
operation is of order O(kn?).

Remark 2. Any alternative can be selected as an initial preferred alternative, or
the DM may specify an alternative as an initial preferred alternative.

5. An illustrative example

We illustrate the method proposed by a part of a real problem in Bulgarian “Melinvest”
fund. Their interest was to acquire state-owned companies in “Wine Industry”. The
four characteristic ratios most often used as criteria for evaluation of these companies
are: assets turnover ratio, liquidity ratio, profitability on net sales, and gearing ratio.
When choosing an enterprise, it is desirable to maximize the values of the first three
criteria and to minimize the value of the fourth criterion. Twenty non-dominated enter-
prises with respect to the values of these criteria are included in the analysis.

In order to solve this discrete multiobjective choice problem, we used the experi-
mental decision support system DSS for solving multicriteria analysis problems. The
system consists of a control and an interface module, an editing module, and the mod-
ules that include the AHP method, the ELECTRE methods, the PROMETEE methods
and the proposed partition-based interactive method. Our main purpose is to illustrate
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the more important features of the interactive method, but not to satisfy the prefer-
ences of a real DM.

The decision matrix A for the multiple criteria choice problem is shown in
Table 1. The ratios have been scaled for ease of computations. Since the proposed
algorithm searches for maximum values of each criterion, whereas the minimal value
for the fourth criterion (gearing ratio) is desirable, the last column of the decision
matrix has been multiplied by (-1).

Table 1. The decision matrix A

i i 1 2 3 4

1 135 9.8 1.0 -23.7
2 7.7 11.8 14.6 -42.5
3 121 21.8 1.6 -16.0
4 5.1 27.5 1.9 —67.2
5 154 16.9 2.1 -35.8

6 5.8 6.6 3.4 -23.8
7 5.0 5.9 15.0 -36.0
8 3.8 255 105 -23.8
9 7.8 30.1 2.8 -12.6
10 7.3 21.3 5.1 -35.2
11 5.5 9.5 7.2 -22.0
12 6.3 7.1 14.4 -355
13 115 37.2 6.5 -531
14 6.9 21.1 9.0 -57.0
15 43 14.0 5.5 -34.7
16 10.3 15.7 5.3 =37.7
17 8.8 195 3.4 -32.7
18 6.1 7.5 141 -23.8
19 8.4 8.2 5.1 -15.8
20 12.7 131 2.9 -18.8
Max 154 37.2 15.0 -12.6
Min 3.8 5.9 1.0 —67.2
Aj 11.6 313 14.0 54.6

Let us assume that the fifth alternative is selected as the initial preferred alterna-
tive based on the maximal value of the first criterion. Set —h =5, iter =1 and LIST={5}.

Suppose that with respect to the fifth alternative, the DM would like to improve
the value of the third criterion by A, = 7.9 and a, = 10. For the second and fourth
criteria the DM expresses his/her wish to improve their values and agrees that, if
necessary, he/she is willing to worsen the value of the first criterion. The DM wants to
examine a set of three alternatives (I = 3).

The sets K.* = {3}, K;” = {2, 4} and K= = {1} are formed. For each alternative
iel', that satisfies the conditions a, > a., and a,, > a,,, the values of the scalarizing
function S(i) are computed:

54!
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i 3 8 9 10 17
S() |0.6000|0.7802 | 0.5143 | 0.6873 | 0.5123
rank 3 5 2 4 1

The set M, = {17, 9, 3}consists of the first three alternatives with the smallest
values for S(i). The set M, is presented to the DM for evaluation. The DM chooses
alternative 17 at this iteration as the current preferred alternative.Then h = 17,
iter = 2 and LIST={5, 17}.

At the second iteration the DM sets his/her local preferences relative to the
values of the criteria for the current preferred alternative h = 17 as follows: the value
of the first criterion is to be preserved within the interval t;,, =3 and t},, = 3; -K ;<=
{1}, if necessary, he/she agrees to worsen the value of the second criterion —K < =
{2}; he/she wishes to improve the value of the third criterion —K > ={3}; and for the
fourth criterion, he/she sets an aspiration level a,, = — 22.7, -K > = {4}. At this
iteration the DM also changes the number of alternatives he/she wants to see in the set
M,, assign l as | = 4.

The feasible set of alternatives of scalarizing problem (S) is defined by the con-
straints:

a,> 5.8,
a, < 11.8,

a,> 3.4.
The value of function S(i) is computed for each alternative in the feasible set:
The first four alternatives with the smallest value of S(i) are included in the set

M, = {18, 10, 12, 19}. In order to make his/her choice, the DM decides to re-rank the

i 2 6 10 12 13 14 16 18 19
S(i) |0.3626|0.4121 |0.2289 |0.2344 | 0.5568 | 0.6282 | 0.2747 | 0.0202 | 0.2395
rank 6 7 2 3 8 9 5 1 | 4

set M, providing weights, and indifference and strict preference thresholds for each
criterion.
Are-ranked set M, = {19, 18, 12, 10} is obtained on the basis of this information

j

1

2

3

4

w, 0.2 0.4 0.1 0.3
q, 0.5 1 0.5 1
p, 5 10 5 10

using outranking procedure PROMETHEE Il in the DSS. The sets M, and M, are
presented to the DM for selection of a preferred alternative. The DM selects alterna-
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tive 18 as a current preferred alternative — h = 18, iter = 3 and decides to save it in
LIST —and LIST ={5, 17, 18}.

The DM sets his/her local preferences at the third iteration as follows: to improve
the values of the first and the second criterion —K . ={1, 2}, if necessary,
he/she is willing to worsen the values of the third and fourth criterion, with deteriora-
tion of the fourth criterion not greater than &, ,= 14.2, -K & ={3}, K 5 ={4}.

The constraints of scalarizing problem (S), formed at this iteration are:

a,> 6.1,
a,> 7.5,
a,> — 38.

The values of the scalarizing problem S(i) are computed for the alternatives sat-
isfying the preceding inequalities. The set M, = {16, 3, 17, 10} is presented for evalu-
ation to the DM and he/she chooses alternative 16 as the most preferred alternative.

i 1 3 5 9 10 16 17 19 20

S(i) 0.8622 | 0.4360 | 0.5568 | 0.6606 | 0.5394 | 0.3666 | 0.5315 | 0.6205 | 0.6211
rank 9 2 5 8 4 1 3 6 7

6. Conclusion

We have proposed a learning-oriented interactive method for solving discrete multicriteria
choice problems with a large number of alternatives and a small number of quantitative
criteria. The method assists the DM in learning about the problem and in evaluating
systematically the set of alternatives. At every iteration the DM can provide not only
aspiration levels, as it is in most of the known interactive methods, but also aspiration
directions and aspiration intervals of changes in the values of the criteria. In this way
the DM can express his/her wishes with more flexibility and precision. If the DM
wants, he/she may provide additional preference information such as pairwise com-
parison of the criteria or inter- and intra- criteria information. On the basis of this
information, the method proposed enables the use of discrete optimization scalarizing
problems, weighting and outranking procedures, with the help of which the DM has the
possibility for a more systematic and successful screening of the set of alternatives.
The software for the proposed partition-based interactive method is included in
the experimental decision support system for solving multicriteria analysis problems.
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(Pe3wmMme)

[IpennoxkeH € MHTEpaKTUBEH METOJ], M3IOJI3Balll pa3JelsiHe Ha KpUTEpUHUTe, 3a
pelaBaHe Ha JUCKPETHU 3aJa4M 3a MHOTOKPUTEpHAJIEH aHaJIU3 C ToisM Opoii
aNTEpHATHBH M MABK Opoii KpuTepur. MEeTOABT € MHCIIUPUPAH OT HHTEPAKTUBHHUTE
METOM Ha MHOI'OKpUTEpHasiHaTa onTuMH3anys. Ha Bcsika ureparius JUIETo, B3EMalo
pemenue (JIBP), moxxe ma n3bepe TekymiaTa MpennovynTaHa alTepHATHBa OT €IHO
WJIM OT JBE TOApEIeHN MHOXKECTBa alTepHAaTUBU. [IBpPBOTO MoApeneHo MHOXKECTBO
aJITEpHATHBH C€ II01y4aBa, KaTo CE pelllaBa AUCKPETHA ONTHMM3AaLMOHHA 33/aua,
OCHOBaHa Ha HH(]oOpMaIHsI 3a IPeANoYnTaHuATA, IpenocTaBeHa oT JIBP 3a sxenanute
WJIM IOMTyCTUMUTE IIPOMEHHU B CTOMHOCTHUTE, KeJTaHUTE UM TOMyCTHUMHUTE OCOKH Ha
MPOMSIHA U KETAHUTE UM AOMYCTUMHUTE HHTEPBaIN Ha MPOMSHA B CTOMHOCTUTE Ha
HSAKOU (MM Ha BCUYKH ) KPUTEPUHU 110 OTHOILIEHHE Ha TEXHUTE CTOWHOCTH B TEKyIllaTa
IIPEANIOYUTaHa alTepHaTHBA. BTOPOTO MoapeneHo MHOKECTBO C€ 10Iy4aBa, U3I0-
3aiiku AHP wnum pankupamara npouenypa, korato JIBP sxemae (Moxe) ma mane
JOIBbIHUTENHA HHPOPMAIIUS 3a IPESANOYUTAHUATA, HATPUMEDP CPaBHEHHE 110 IBOUKH
Ha KpUTEpPHHTE, HHTEP- U MHTpakpuTepuanna uapopmanus. JIBP moxe mocre-
JIOBATEJIHO M CUCTEMAaTHYHO J1a aHaJU31upa MHOKECTBOTO OT HEJIOMUHHUPAHU ajTep-
HaTUBHU 4Ype3 MPEATIOKEHNUS METOJl. METONbT € UITIOCTpUpaH ¢ MpUMep.
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