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Abstract: The aim of this paper is to propose a model reference adaptive neural
control of a variable structure plant, described by an implicit realization with
variable order and parameters, using only output feedback. The neural control
scheme proposed is composed by two recurrent neural networks, named: neuro-
identifier and neuro-controller. A variable structure plant model together with
the realized adaptive neural control are simulated by means of the MatLab-
Simulink and the obtained simulation results are compared with those obtained
by the use of an ideal implicit control, applying the true descriptor variable. The
simulation results show a great similarity of the obtained graphics for both con-
trol schemes, which demonstrated the applicability of the proposed adaptive neural
control.
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1. Introduction

The application of Neural Network (NN) modeling to system identification, prediction
and control was discussed by many authors, [12, 13, 14]. Mainly, two types of NN
models are used: Feed forward (FFNN) and Recurrent (RNN). Narendra and
Parthasarathy [14], applied FFNN for system identification and direct model refer-
ence adaptive control of various non-linear plants. They considered four plant models
with a given structure and supposed that the order of the plant dynamics is known.
H u n t  et  al. [12], J i n et al. [13], surveyed some schemes of NN and RNN
applications to control, especially for direct model reference adaptive control. All draw-



backs of the described in the literature NN models could be summarized as follows: 1)
there exists a great variety of NN models and universality is missing [12, 14]; 2) all NN
models are sequential in nature as implemented for systems identification (the FFNN
model uses one or two tap-delays in the input [14] and RNN models usually are based
on the autoregressive model [12], which is one-layer sequential one); 3) some of the
applied RNN models are not trainable, others are not trainable in the feedback part,
[12]; 4) most of them are dedicated to a SISO and not to a MIMO applications [14]; 5)
in more of the cases, the stability of the RNN is not considered [12], especially during
the learning; 6) in the case of FFNN application for systems identification, the plant is
given in one of the four described by N a r e n d r a and P a r t h a s a r a t h y [14] plant
models, the linear part of the plant model, especially the system order, has to be known
and the FFNN approximates only the non-linear part of the plant model,
[7, 14] all these NN models are nonparametric ones, [12] and all NN models do not
perform state and parameter estimation at the same time [1].

B a r u c h  et  al. [1, 2] in their previous paper, applied the state-space approach
to describe RNN in an universal way, defining a Jordan canonical two-layer RNN
model, named Recurrent Trainable Neural Network (RTNN). This NN model is a
parametric one, permitting the use of the parameters for control systems design, ob-
tained during the learning [1, 2]. Furthermore, B a r u c h  et al. [2] used the RTNN
model as a system state predictor/estimator and parameter identifier in an indirect
adaptive control system of nonlinear plants. The aim of this paper is to use the RTNN
as an identification and control tool in a direct model reference neural control system
of a variable structure plant and to compare the proposed neural control with the ideal
implicit one. The proposed model reference adaptive neural control system is studied
by means of a continuous-time variable structure dynamic plant model and simulation
results, compared with the implicit control, are given.

2. Model reference adaptive neural control

This part of the paper is related to a model reference adaptive control scheme whose
aim is to track a reference obtained as the output of a given reference model. This
purpose is realized using the neural network approach that is able to generate identifi-
cation and control models without the necessity to define the parametric structure of
the system and to adjust so as to fit the acquired system data, [1]. First, the work
hypothesis is stated. Next, an adequate scheme of a neural identifier is defined. Next,
the topology of the neural network is described. Then the training algorithm is shown.
And finally, the neural controller is designed.

2.1. Assumption
Given a variable structure system which changed its internal structure between switching
intervals, it is going to be assumed that in each interval the system can be modeled as:
                                             xp(k + 1) =  [xp(k), u(k)],
(1)
                                                  yp(k) =  [xp(k)],

where u is the input, xp is the internal state and y is the output of dimensions m, np, l,
respectively.



2.2. Neural identifier (Forward modelling)
The procedure of training a neural network to represent the forward dynamics of a
system will be named forward modelling, [12, 13]. The neural model is placed in paral-
lel with the system and the error between the system and the network output is used as
a training signal. This learning structure is a classical supervised learning problem
where the teacher (in this case the system output) provides the target values directly in
the output coordinate system of the learner (the neural model).

2.3. Recurrent Trainable Neural Network topology
A discrete time model of Recurrent Trainable Neural network (RTNN) is proposed
with dynamic backpropagation (BP) weight updating rule, taken from the papers of
B a r u c h  et al. [1, 2]. The RTNN structure is described by the following equations:

(2)                                          xn(k + 1) = J xn(k) + B un(k),
(3)                                                 z (k) = S [xn(k)],
(4)                                                y (k) = S [C z(k)],
(5)                                            J 1,
where xn(.) is an n-internal state vector: un(.) is an m-input vector; yn(.) is an l-output
vector, z(.) is an auxiliary variable; S(.) is a vector-value sigmoid function with elements
                                                                 1
(6)                                               Si(.) =   

                                                      1 + e(.)

J is a nn weight state block-diagonal matrix with ll block structure; B, C are nm
and ln weight input and output matrices with structure, corresponding to the structure
of  J. The condition (5) is a RTNN model stabilizing condition. As it can be seen from
equations (2) to (4), the given RTNN model is a two-layer hybrid one, with one feed
forward output layer and one recurrent hidden layer. It is also completely parallel and
parametric one, so it is useful for identification and control purposes.

From (2), (3), (4) it is clear that the structure of the RTNN is similar to the
structure of the plant so the RTNN could be trained to emulate (.) and (.). In this
way the resulting neural identifier, given by (2), (3) and (4) can be described by:
(7)                                           xn(k + 1) =  [xn(k), un(k)],
(8)                                               yn(k+1) =  [xn(k+1)],
where yn is the estimated plant output, which is the output of the neural identifier and xn
is the internal state vector of the RTNN. Here the plant and the RTNN states, xp and
xn are independent variables.

Some RTNN characteristics: the RTNN application to process control re-
quires defining of the following characteristics and properties of the RTNN model:

 Parallel distributed processing: The architecture proposed leads immedi-
ately to parallel implementation.

 Multivariable systems: The RTNN naturally process many inputs and have
many outputs; they are readily applicable to multivariable systems.

 Nonlinear systems: The RTNN call great promises in the field of nonlinear
control problems solutions. So it is clear that the RTNN has the ability to approximate
nonlinear systems.



 RTNN training: In the same way as in the case of FFNN, here the learning
BP through time algorithm for RTNN, could be derived using the sensitivity model
[14]. The most general BP learning algorithm is:
(9)                              Wij(k + 1) = Wij(k) + Wij(k) +Wij(k  1),
where Wij is the (i, j)-th weight element of each weight matrix C, J, B of the RTNN
model to be updated; Wij (Cij, Jij and Bij) is the weight correction of Wij (C, J and
B);  are learning rate parameters, k is the iteration number.

The Cij, Jij and Bij  updates of the model weights C, J, B are given by:
(10)    Cij = ej(k)  yj [1  yi(k)] zj(k),
(11)     Ri = C(k) e(k) zj  (k)[1  zi(k)],
(12)    Ji (k)= Rj xj (k 1),
(13)    Bij (k)= Rj uj (k),
where the Ji weights are restricted as it is indicated in (5), in order to assure the RTNN
stability during learning. Using this algorithm, the training of the neuro identifier could
be easily accomplished via on-line learning scheme in order to minimize a norm of the
instantaneous identification error. The identification error eM and the performance in-
dex  EM   to be minimized are:
(14)       eid (k) = yp(k)  yn(k),
(15)         Eid = (1/2) e2

id (k).

2.5. Neural controller
The neural controller is another RTNN, which means that the controller is a dynamic
system, given in the form:
                                          xc(k + 1) =  [xx(k), un(k)],
                                               up(k) =  [xc(k)].

The controller input here is the vector v(k), defined as:
(16)                                           vn(k) = [yn(k+1); ec(k+1)],
where yn(k+1)  is the estimate output prediction, given by the identifier, and  ec(k+1) is
the error prediction. The neural controller is trained in order to minimize the instantane-
ous control error performance index:
(17)         Ec = (1/2) e2

c (k),
(18)       ec (k)= yref (k) yn(k).

In the above equation yref (k) is the output of the reference model. In the model
reference adaptive control the reference is acquired using a reference model, given in
linear form. The complete block diagram of the neural control system, containing two
RTNN is shown in Fig. 1.

Fig. 1. Block-diagram of the proposed neural model reference adaptive control scheme
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This identification and control scheme is proved and compared with the well
known implicit control by means of a simulation example.

3. An implicit description of a variable structure control system.
Illustrative example

Rosenbrock [15] was the first to introduce the Implicit Descriptions,
(19)                                  Ex.(t) = Ax(t) + Bu(t); y(t) = Cx(t),

where E: X X  , A: U X  , B: U X   and C: X Y , are linear operators of
appropriate dimensions, as a generalization of the standard State Space case (E = I).
In [6] it was shown that when dimX  dimX, it is also possible to describe linear sys-
tems with an internal Variable Structure. Indeed, when and if the system is solvable
(i.e. possesses at least one solution), the solutions are generally non unique. In some
aspect, there is a degree of freedom in (19), which can be used, for instance, to take
into account, a possible structure variation in an implicit way. Different kinds of
structure variations have beentaken into account in the papers of B a s e r and S c h u-
m a c h e r [3], and H e  e l m s  et  al. [11].

Let us consider as an example (this example will be used further as a simulation
example) the following implicit flat description:

(20)                     
  ),(011)(

);(
1
0

)(
010
111

)(
100
001

txty

tutxtx







 



















with the additional linear constraint [ a  b  c ]x(t) = 0.
 If  [ a  b  c ] =[ 0  1    1 ], namely x2 = x3, the system behaves as a first order

one:

(21)                              

   ,)()(10)(

;)(
1
0

)(
)(

10
01

)(

)(

T 
31

3

1

3

.
1

.

txtxty

tu
tx
tx

tx

tx















































( 11 xx  and 313 xxx  ) with input-output description )()()( tutyty  .
 If [ a  b  c ] =[ 0  1    0 ], namely x2 = 0, the system behaves as of second order:
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 Finally, if  [ a  b  c ] =[ 0  1    5 ], namely x2 = 5x3, the system behaves as a
second order one with a dominant zero:

(23)                                  
   ,)()(51)(

;)(
1
0

)(
)(

50
41

)(
)(

T 

31

3

1

3

1

txtxty

tutx
tx

tx
tx



















































with input-output description ).()(5)(5)(6)( tututytyty  

In the general case, if the matrices E and A are not square, F r a n k o w s k a [9],
extended the geometric characterization of the controllable subspace Rx*, using differ-
ential inclusion techniques, as follows:

                                            Rx* = Vx*Sx*,
where Vx*= sup {T X: AT = ET + Im B} and Sx*= inf {T X: T = E1(AT + Im B)}.

In the case of non square (flat) E, A matrices, one may be faced to controllable
systems, even in the absence of any input. This is possible because of the existence of
the free descriptor variables (degree of freedom), acting as internal controls. Indeed,
for the autonomous system [ 1   0] x.(t) = [ 0   1] x(t) + [0] u(t), we have Rx* = X; since
AX = EX EX + Im B implies that Vx* = X, and E1(A{0} + Im B) = Ker E  {0},
E1(AKer E + Im B) =E1X   =X  Ker E, E1(X + Im B) = E1A X = E1E X = X, imply
that  Sx* = X. In order to avoid such pathologies, the concept of output dynamics
assignment has been introduced by B o n i l l a  et al. [6], which guarantees controlla-
bility by means of the control input, based on proportional and derivative feedbacks.

Definition 1 (B o n i l l a  et al. [6]). The implicit system (19) is called reachable
with output dynamics assignment if it is reachable and if the supremal observable part
of the spectrum of  (E  BFd) (A +BFp) can be chosen arbitrarily with the help of
the control law  u(t) = Fd x

.(t) + Fpx(t).
T h e o r e m  1 (Bonilla et al. [6]). The implicit system is reachable with output

dynamics assignment if and only if the following two geometric conditions hold:
                                               Rx* = X

and dim (Vx*Ker E) dim (Im B(Im B Im E))dim ( V* E1Im B),
where V*= sup {T Ker C: AT = ET + Im B}.

Continuing with the illustrative example, it is shown by B o n i l l a  et al. [5], that
(21) is reachable with output dynamics assignment and applying the methodology given
by B o n i l l a  et al. [6] to synthesize a linear controller for such an implicit flat
description, the following control law is obtained:
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After the change of variables: 1(t) = x1(t), 2(t) = x3(t),  3(t) = x1(t) +x2(t),
applying the control law (24), the flat description (20) takes the following form:
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Thus, the degree of freedom has been made unobservable, in other words, the
variation of the structure is no longer presented at the output. The closed loop system
behaves as

                                          )()()(
0

tRtyty  ,
whether the constraint:

                     510,010,110 cba
is active. In the paper of  B o n i l l a  et  al. [5], a procedure for approximating the non-
proper control law (24), guaranteeing internal stability, by the following proper control-
ler (see also [4, 7]), is proposed. The control law obtained is the following:
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(26)                              )(111)()( 44 txtxtxc  .
Applying the control law (25)(26) to the plant (20), the following closed loop

system, is obtained:
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Since the control law (the non-proper controller (24) and the proper (25), (26)
requires knowledge of the descriptor variable, it is necessary to estimate it. Since the
synthesis of a descriptor variable deeply depends on the knowledge which internal



structure is active, a structure detector has been proposed by B o n i l l a  et al. [8],
based on a normalized gradient adaptation algorithm, projected along a given hyper-
sphere, with the aim to identify in finite time which internal structure is presented. As
another alternative, a neural classifier has been proposed by G o i r e  et  al. [10] in
order to estimate the descriptor variable.

The next chapter of this paper applies a model reference control scheme for
variable structure systems using output feedback in order to avoid the descriptor vari-
able reconstruction. A variable structure plant model tests the proposed model refer-
ence neural control system and the obtained simulation results are compared with the
results obtained by the use of the classical implicit control.

4. Simulation results

We show here some MatLab-Simulink simulation results of the variable structure sys-
tem (20), controlled by the neuro-controller, described in Section 2, and by the implicit
control (25), (26). During the simulation, the variable structure system switches among
systems (21), (22) and (23), every 150 s. The simulation results assume that the refer-
ence model is a first order system described by:

                                         Yref /R = 0.2/(s + 0.2).
The parameters of the neural networks, used in the simulations, are shown in

Table 1.
                      Table 1. Neural networks parameters

The reference R(t) is a symmetric square wave with a period of 100 s and ampli-
tude of 1. The gain Kc=10 is used to amplify the effect of ec in weight adjustment for
the neuro controller. The response of the reference model output and the variable
structure system output are shown in Fig. 2. Here it can be seen that the behaviour of
the controlled system is close to the desired model reference output. Note that there
are overshoots when the system switch occurs, because of changes in the initial
conditions.

Fig. 3 shows the control signal, generated by neural network and the control error
between the variable structure system output and the reference model.

Figs. 4 and 5 show the simulation results for variable structure system with the
implicit control using the true descriptor variables of the system.

Parameter Value

Internal nodes, n 4

Momentum gain,  0.00015
Training gain,  0.00015

Sampling time, Ts 0.01sec



Fig. 2. Model Reference Adaptive Control simulation results – reference and system output signals:
a reference model output; b plant output with neurocontrol (the time given in seconds)

Fig. 3. Model Reference Adaptive Control simulation results – control and system error signals:
a  neurocontrol signal; b  systems error (ec= yref yp) (the time given in seconds)
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Fig. 4. Implicit Control simulation results – reference and system output signals: a  reference model
output; b  plant response using the implicit control, given by the eqns. (25), (26) (the time in seconds)

The implicit control signal, computed using the equations (25), (26), and the con-
trol error are shown in Fig. 5.

Fig. 5. Implicit Control simulation results – control and error signals: a  implicit control signal; b 
systems error (ec= yref yp)(the time given in seconds)

It is interesting to note that the output and control behaviour using the implicit
control and the one, when using the proposed neuro controller, are very similar.
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5. Conclusions

The aim of this paper is to propose a model reference control scheme for variable
structure systems, described by the implicit realization (19), using only output feed-
back, in order to avoid the descriptor variable reconstruction. A neural controller scheme
is proposed as an alternative solution. This neural controller scheme is composed by
two stages, namely: neuro identifier and neuro controller (see Fig. 1). The aim of the
neuro identifier is to predict the output behavior one step ahead. A learning algorithm,
using the predicted output error, adjusts the parameters of the neuro identifier. The
neuro controller is composed by a dynamic neural network whose inputs are the pre-
dicted error between the model reference and the output estimation, and the predicted
output estimation itself. The parameters of the neuro controller are adjusted by the
same learning algorithm, using the error between the model reference and the output
estimation. The model reference control scheme is based on systems on-line identifi-
cation and control. Notice that the proposed control strategy does not require full knowl-
edge of which internal structure is active, i. e. whether the system is of first order or
second order, or second order with dominant zero. The recurrent neural network used
has constraints in its feedback weights, in order to guarantee stability during the learn-
ing. The neural network uses the input-output signals for training, and the applied learning
law allows on-line identification and control. The system performance, obtained by the
neural approach, is close to that, given by the implicit control law (25), (26), using the
descriptor variables of the system.
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(Р е з ю м е)
Цел на настоящата статия е да предложи адаптивно невронно управление с
еталонен модел на обект с променлива структура, описан чрез имплицитна
реализация с променлива размерност и параметри, с използване само на обратна
връзка по изхода. Предложената невронна схема на управление е съставена от
две рекурентни невронни мрежи, а именно: невронен идентификатор и невронен
контролер. Моделът на обекта с променлива структура, заедно с реализираната
схема за невронно управление, са симулирани с използване на Матлаб Симулинк
и получените графични резултати са сравнени с тези, получени с използване на
идеално имплицитно управление, използващо истинската дескрипторна про-
менлива. Симулационните резултати показват голямо сходство на получените
графики чрез двете схеми на управление, което демонстрира приложимостта на
предложеното адаптивно невронно управление.


