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Abstract: It is proposed to  use  two points of support when estimating the nadir
vector components in Multiobjective Linear Programming (MOLP) problems: to
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1. Introduction

The importance of mathematical models for decision making  under a set of criteria is
steadily increasing. These models find application in different theoretical and practical
investigations. This is confirmed by the immense amount of journal papers and books
concerning the multiobjective optimization problems.

The simplest model of this kind (with continuous variables) is the Multiobjective
Linear Programming (MOLP) problem. It can be presented as follows

          max  f1 (x)
          max  f2 (x)

(1)           ...
          max  fm (x)

s.t.
        x    S     Rn

The symbol fi (x), i = 1, 2, …, m, denotes a linear fuction, defined on Rn. The
functions fi (x) are the optimization criteria in MOLP problem (1). The vector  f(x) =
(f1(x), f2 (x),…, fm (x)) is called criterion vector. The set S  Rn is called decision
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space or feasible set in  Rn. In  MOLP problems the set S is defined in the following
way:

S = {x  Rn | ci(x)  0, i = 1, 2, …, k}.
All ci(x) are linear functions too. We will consider problems, where S is a bounded set.
In general the set of constraints describing S includes the constraints xj  0, j = 1, 2,
…, n. But in the algorithm presented in this paper we take notice of these constraints
especially. The set

          Z = {z  Rm | z = f (x), x  S}
is called objective space or criterion space.

The point z1 = f (x1)  Z , x1  S,  is called a nondominated (Pareto)  point if
there does not exist a point x2  S, x2  x1, such that

       fi (x2) fi (x1), i ,
and

fl (x2) > fl (x1) for one l at least.
If the point  z1 = f (x1) is nondominated, the point x1 is called  efficient point. The set  P
of all nondominated points in Z is called nondominated  (Pareto) set. The set E of all
efficient points in S is called efficient set. The point x1  S is called weak efficient if
there does not exist another point x2  S, x2 x1, such that  fi (x2) > fi (x1), i. The set
of all weak efficient points in  S  is denoted by Ew,   E  Ew.  If   x1   Ew , then  f (x1)
is called weak nondominated point in  Z.  The set  Pw  of all  weak nondominated points
in Z is called weak Pareto set P  Pw  Z.

It is accepted in the most part of the studies on multiobjective optimization
problems that the needed solution xs  E and f (xs)  P respectively. Then the following
question arises: for a chosen criterion fj (x) what are the minimal and the maximal
values of  fj (x) on the set  E?  It is clear that

fj (x) <  max fj (x) =  max fj (x) = Uj, j = 1, 2, ..., m.
    xE                  xS

On the other hand
fj (x) < min fj (x) = Lj , j = 1, 2, ..., m.

  xE

The vector  L = (L1, L2 , …, Lj ,…, Lm) is called nadir vector. The computing of the
vector  L  is not easy even in the case of MOLP problem (1)  because the set  E   is not
a convex set. In this paper a method for estimating the numbers Lj ,j , is proposed .

2. A short survey of the literature

In most textbooks on multiobjective optimization it is noted that the problem of
determining  the vector L is a difficult one. In Steuer’s book [12] for such purposes an
optimization problem is proposed, where a linear function must be minimized under a
set of nonlinear constraints. The author points out that this problem is hardly usable
because it is large. The problem for determining the vector L is noted in the book of
V i n c k e [14], too. K. M i e t t i n e n [9]  refers to three methods for finding the
vector L but all they are attended with great computational difficulties .

For estimation of the vector L the payoff table is used very often. Having in
mind problem (1)  the corresponding payoff table is a mm  matrix . The first  row  of



1 7

this matrix consists of the vector  f (x1), where x1 is determined  as a solution of the
problem

        max f1 (x)
            xS

under the additional assumption that  x1 E. The second row consists of the vector
f(x2), where x2 is determined as a solution of

        max f2 (x)
            xS

under the assumption x2E. Following this rule the whole payoff table is fulfilled by
analogy. The numbers in the first column are the values of the first criterion  f1 (x)
when each one of the rest part of criteria is maximized  (plus the maximal value of
f1 (x), of course).  The second column contains the values of the criterion  f2 (x) when
each one of the rest part of criteria is maximized, and so on. The minimal value in the
first column is an estimate of the number L1, the minimal value in the second column
is an estimate of the number L2, and so on. Many authors point out that the Li estimates
obtained from the payoff table may be very different from the exact values.

An approach using the reference direction idea is proposed in the paper of
K o r h o n e n, S a l o, S t e u e r  [7]. The idea of reference direction is a well known
extension of the notion of reference point (W i e r z b i c k i [17, 18]) and is used with
the purpose to obtain a sequence of Pareto points on the base of corresponding reference
points.  In the obtained  Pareto points sequence the values of chosen criterion decrease.
It is a heuristic method and the computational results show that the obtained results
are much better than the estimates obtained from the payoff table. The same paper
cites several other papers  (B e n s o n [1, 2, 3], D a u e r [4], E c k e r  and S o n g  [5]),
describing procedures “which are theoretically able to calculate the nadir criterion
components but which present formidable computerization challenges”. With the
intention to avoid similar complications the paper [7] proposes a technique which uses
simultaneously  an extended LP software (ADBASE) and a realization of the VIG
method (K o r h o n e n [8]).

It is clear that determining of the numbers Lj needs a method for maximizing
(minimizing) a function over the set E. Many papers concerning this problem can be
found   in the literature of the last years. Some of the first results are based on the idea
to organize a movement in the set of efficient extreme points only [1, 5]. In the next
years the stream of ideas has development. In one of the recent papers Y a m a m o-
t o [20] proposes a classification of the existing algorithms for optimization over the
efficient set. This classification contains six classes:

adjacent vertex search algorithms;
 nonadjacent vertex search algorithms;
 branch and bound search algorithms;
 lagrangean  relaxation based algorithms;
 dual approach;
 bisection algorithms.
In Yamamoto’s paper  each  class is presented by one typical algorithm and

these  algorithms are compared  from computational point of view.
H o r s t  and T h o a i [6] proposed to use utility function. They described some

conditions allowing to use such function. The proposed method  gives  ε-approximate
solutions.
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D.  J. W h i t e [19] proposed to use penalty function. The paper contains
information about the computational aspects, ε-efficiency, the closeness to the original
problem, some nonlinear extensions.

T h o a i [13]  proposed to use a special quasiconvex function of the criteria   fi
and considers  maximization of this function. The proposed algorithm gives satisfactory
results in the case of small number of criteria and relatively large dimensionality of
decision space.

A branch and bound type algorithm is proposed in the paper of Y a m a d a, T a-
n i n o  and  I n u i g u c h i [21] for maximization of convex function over the set Ew
of a multiobjective optimization problem.

Even this short review shows that the problems concerning optimization over the
efficient set can be too complex and the authors try to cover this complexity as good
as possible. The purpose of this paper is to propose a simple method for estimating the
nadir vector in the case of MOLP problems.

3. An auxiliary LP problem

The following LP problem is used in the rest part of this paper. This problem is
formulated on the base of the reference point method theory (W i e r z b i c k i [17,
18]) and under the assumption that problem (1) is a MOLP problem and the used LP
software computes nonnegative variables only. Having in mind problem (1),  the  auxiliary
LP problem is
(2)       min (D1 – D2)
s.t.

(a1)                   fi (x) – FAi + FBi  =  0, i = 1, 2, …, m,
(a2)                              cj (x)  <  0,  j = 1, 2, …, k,
(a3) (FAi – FBi) – FAs + FBs = 0,

      i

(a4) FAi – FBi + 0.01(FAs – FBs) + D1 – D2  >  ri, i = 1, 2, …, m.

We need to minimize  the quantity  D,  but  D  is nonrestricted in sign. So we
minimize D1 – D2, where D1 and D2 are nonnegative. Following the same idea
constraints (a1) introduce the pairs (FAi , FBi ), i = 1, 2, …, m, for each corresponding
criterion  fi (x)  (FAi  and  FBi  are nonnegative  for all  i.) Constraints (a2) describe the
feasible set in decision space of problem (1). The pair ( FAs, FBs) is introduced through
constraint (a3) and is used in  constraints (a4) giving the guaranty for obtaining efficient
(or Pareto) points. Constraints   (a4) contain the reference point components ri,
i = 1, 2, …, m. The reference point theory has the following result: for an arbitrary
reference point r  Rm the obtained solution of problem (2) determines an efficient
point in decision space of problem (1) (a Pareto point in the criterion space of the
same problem).
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4. The proposed algorithm

We will use the notion of “a wall of the set S”. Let us consider the sets Wj

   Wj  = {x  S  |  cj  =  0},   j = 1, 2, …, k.
All these sets Wj are walls of the set S. In addition there are constraints xj  0,
j =1, 2, …, n. Suppose that the constraints xj  0,  j = 1, 2,… t, t  n,  are not redundant.
Then the rest part of walls of the set S are

Wk+ s = {x  S | xs = 0}, s = 1, 2, …, t;  t  n,
where the constraints xs = 0, s = 1, 2, ..., t,   are not redundant. Then the set of all walls
of S consists of

     W1, W2,…, Wk, Wk+ 1, … , Wk+ t ,  t  n.
We will use also the finite sequence Q:

            Q = { S, W1,W2,…,Wk,Wk+ 1, … , Wk+ t}.
An arbitrary element of  Q will be denoted by U .

The algorithm is based on the following reason. We suppose that each efficient
point of problem (1) is lying of some wall Wj . Therefore we will not inspect  the  inner
part  of  S . Trying to estimate the component Li of the nadir  vector L we  will consider
each  wall Wj , we will solve the problem

min f i (x).
                                                                       xWj

So we will obtain  the solution  x j  and next using the reference point method  we will
find the point  xe

 jE. We obtain the estimate
  min f i (x) = Li  min   f i (xe

 j).
   xE                             j

Algorithm “W + RP”(Wall + Reference Point)
Suppose that we are looking for estimate of L1.
1.  Let  U = S,  l: = 1
2. Solve the LP problem min f1 (x) .

         xU

As result we obtain the solution xuU and the corresponding values
     f i (x u)  =  FAi  –  FBi, i = 1,…,m.

3. Set  r i  =  f i(x u) for  all  i  in  LP problem (2),  solve this problem and denote
its solution as xl E. The values f i  (xl) are the components of the corresponding
Pareto point. This point may or may not be a point of  U. Set q1

l =  f1 (xl).
4. If l < k + t + 1 , set  l: = l + 1 ,  the next element of the sequence Q is denoted

as U, go to 2.
5. If  l = k + t + 1, stop. The obtained result is

L1  =  min f 1  < min  q1
l , l = 1, 2, …, k+ t +1.

         xE          l
6. End of the algorithm.
For the rest part of criteria   f i (x)  (i > 1), this algorithm is executed by analogy.
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5. An illustrative example

We will consider the following example from the book of  S t e u e r [12], ex.14, p. 267.
The formulation of the example is

x1   x2   x3   x4   x5   x6

f1: 3 –2   –5  max
f2: –2   –2   –2     1  max
f3:     –2   2     2     2  max
f4:  1   –2     1      –2  max ,

s.t.
c1:   2    1  10
c2  2     1   5   9
c3:  3     4   5     4    2   8
c4:  3   1     4     4       1  10
c5:  3   4    3  10
c6:     3   5     4   5
c7:  1   0
c8:   1   0
c9:     1   0
c10:    1   0
c11:      1   0
c12:     1   0,

where the constraints c1, c2,…, c12 describe the feasible set S.
Note. The constraints   c7, c8, …, c12  are taken into account automatically by

the software when solving standard LP programs . However they are written here
because Algorithm “W+RP” can use them taken explicitly as equalities (see below).

The set Q  is: Q = {S, W1, W2, W3,…, W12}.
The payoff table for this example is:

 f1  f2  f3  f4
8.00 0.00          5.333333 2.666667
0.0 3.333333 6.666667       –6.666667
–2.75          –1.25 7.75           –5.0
  7.0          –1.0           –4.333333     2.666667.

The maximal values of the criteria on the whole S are
  f1  f2  f3  f4
8.00 3.333333 7.75     2.666667.

The criteria minimal values taken from the payoff table are
 f1  f2  f3  f4
–2.75           –1.25        –5.333333     –6.666667.

The criteria minimal values on the  whole  S are
f 1  f2  f3  f4

        –7.5        –8.333333     –5.333333   –7.2.
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Criterion  f3. Because each row of the payoff table is a Pareto point we see that
   min  f3  =  min  f3  =  –5.333333.
   xE               xS

This is the exact value of the third component L3 of the nadir point.
Criterion  f1. We execute the first step of Algorithm “W + RP”. Here U = S and

          min  f1 =  –7.5.
              xS

The corresponding point in the objective space is
f 1  f2  f3  f4.

        –7.5           –7.5              5.0              1.25
This is Pareto  point  (problem (2) was used); then

min  f1  = min  f1  = –7.5 ,
 xE            xS

and this is the  exact  value  of  L1.
We can note that here  f2 = 7.5, but we will obtain this value later in the general

way.
Criterion  f4. The first step of Algotithm  “W + RP” (U = S)  gives :

       min  f4  = 7.2 ,
          x S

The corresponding point in the objective space is
    f1  f2  f3  f4

          0.0            3.333333       7.2            7.2
This is a Pareto point  (problem (2) was used again); therefore

     min f4   =  min f4  = 7.2 ,
       xE             xS

and, as we see, this is the exact  value of  L4.
Criterion   f2. Solving  min  f2 , we obtain the  criterion  vector   (5, 8.33333, 5, 0),
                                           xS
it is not Pareto vector and the corresponding Pareto vector obtained in problem (2) is
(5, 5,  5, 0). After this we need to apply the full power of the algorithm. Firstly we
describe the sets Wj

W1  = {x  S  |  c1  =  10},
W2  = {x  S  |  c2  =  9},
W3  = {x  S  |  c3  =  8},
W4  = {x  S  |  c4  =  10},
W5  = {x  S  |  c5  =  10},
W6  = {x  S  |  c6  =  5},
W7  = {x  S  |  x1  =  0},
W8  = {x  S  |  x2  =  0},
W9  = {x  S  |  x3  =  0},
W10 = {x  S  |  x4  =  0},
W11  = { x S |  x5  =  0},
W12  = { x S |  x6  =  0}.



2 2

We have made the computations prescribed by the algorithm and the obtained
results are presented in the next table. The first column   shows the corresponding set
Wj .The second column contains the objective vector, obtained when solving the problem
min  f2 (x), x  Wj .

The third column shows whether this objective vector is a Pareto point or not.
The next column contains the corresponding Pareto point obtained as solution of prob-
lem (2)

W1 (–5,   –5,   5,      0)          Pp   (–5, –5, 5, 0)
W2 (3,     0.0,   0.0   –1) NPp (3.2353,  3.2353,  3.2353,  –0.7647)
W3 (–2.9231, –7.5385, 3.4462, 0.4) NPp   (–2.9231,  –4.3077,  3.4462,  0.4)
W4 (–3.3333, –7.7777, 3.7037, 0.3703) NPp (–3.3333, –4.4444, 3.7037, 0.3703)
W5 (–5,  –8.333333,  5,  0) NPp (–5,   –5,   5,   0)
W6 (–5,  –8.333333,  5,  0) NPp (–5,   –5,   5,   0)
W7 (–5,  –8.333333,  5,  0) NPp (–5,   –5,   5,   0)
W8 (0.0,   –3.3333,   0.0,   0.0) NPp (0.7843, –2.5490, 0.7843, 0.7843)
W9 (–7.5,  –7.5,  5,  1.25) Pp (–7.5,  –7.5,  5,  1.25)
W10 (–5,   –8.33333,   5,   0) NPp (–5,   –5,   5,   0)
W11 (–5,  –8.333333,  5,  0) NPp  (–5,   –5,   5,   0)
W12 (–5,  –8.333333,  5,  0) NPp  (–5,   –5,   5,   0).
Now we can consider the last column, containing the obtained Pareto points.

The best value of the second components of these vectors is –7.5. On the other hand
S t e u e r [12] confirms that this is the exact value of L2. Thus we see that for this
example the proposed method for estimating the nadir vector gives the exact  values
of its components.

It is clear that in general the proposed method guarantees obtaining of upper
bounds  Ti

2  only for the values Li. If we would like to have lower bounds Ti
1 in order

to have the inequalities
Ti

1 < Li < Ti
2,

we can consider the set
Λ i  =  {x   S | f i (x)  =   Ti

1}.
If this set does not contain efficient points, then   Ti

1 < Li.  For the considered example
we have  obtained  L2 > –7.6.

Several examples of  S t e u e r [12, chapt.9] as well as all examples from the
paper [7] have been also analyzed. The obtained estimates of the values  Li are much
better than the estimates obtained from the payoff tables.

6. Discussion

The main idea of the proposed algorithm can be expressed as follows. We suppose
that  all  efficient  points  of problem  (1) are points from the frontier of  S. The union
of all walls  Wj covers the frontier. Therefore each efficient point belongs to one or
more walls. This allows to see a simple way for searching good efficient points (with
low value of   f i ): take a wall Wj, find the best point  x j (through  min f i ),  and the
corresponding point  f (x j ) in criterion space  (with minimal value of  fi  on the wall Wj)
and then find a good  nondominated point using the reference point method; repeat this
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series of operations with all walls and finally take the point that is the best from the
obtained.

The usage of the reference point method does not guarantee that the obtained
solution determines an extreme point of  S. But this condition must be satisfied because
in MOLP problems we handle linear functions. This means that the proposed algorithm
could be extended with an addition, that guarantees obtaining of an extreme point
of  S.

Of course it can be recommended to construct a version of the algorithm that
does not check all walls. But in this moment it is not clear – will the profit be sufficiently
high? On the other hand changing the parameters of problem (2) we keep the possibilities
to influence on some properties of the obtained Pareto points.

The proposed approach does not need any special extensions of LP software.
Standard (even old!) versions are sufficient. There is no need of some special
optimization techniques with corresponding program realizations. A small knowledge
about the reference point method is sufficient.  In addition,  the proposed method is not
based  on the theory of vector optimization and (as consequence) does not use the
notion of maximally efficient facet  and any methods for determining such facets.

It must be added also that the proposed method does not use the earlier developed
methods (see for example [1, 5])  for realizing a movement in the set of extreme
efficient points .
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Метод за оценка на надир-вектора в задачи
на многокритериалното линейно програмиране
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(Р е з ю м е)

Предлага се основата на подхода за оценяване компонентите на надир-вектора
в задачата на многокритериално линейно програмиране да съдържа два главни
елемента: да се разглежда границата на допустимото множество S и да се из-
ползва методът на еталонната точка. Получават се горни граници за оценяваните
величини .


