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Abstract: The paper describes a generalized classification - based scalarizing prob-
lem of multicriteria optimization. The basic properties of the generalized scalarizing
problem are discussed and it is shown that some of the known scalarizing problems of
the reference point and the classification based scalarizing problems as well can be
obtained from it with the help of different transformations.

Keywords: multicriteria optimization, scalarizing problem.

1. Introduction

The problems of multicriteria decision making can be divided in two separate classes
depending on their formal statement (Steuer [11], Vinc ke [15]). Afinite number
of explicitly set constraints in the form of functions defines an infinite number of fea-
sible alternatives in the first class. These problems are called problems of multicriteria
optimization (MO). A finite number of alternatives is explicitly set in the second class
of problems. These problems are called problems of multicriteria analysis (MA).

Several criteria (objective functions) are simultaneously optimized in the feasible
set of solutions (alternatives) in problems of MO. In the general case there does not
exist one solution only, which optimizes the criteria. There exists, however, a set of
solutions in the variables space and a respective set in the criteria space, which is
characterized by the following: each improvement in the value of one criterion leads to
deterioration in the value of one other criterion at least. These sets are called Pareto
optimal sets. The variables set is called also an efficient set, and the criteria set —a non-
dominated set. Every element of these sets could be a solution of the multicriteria opti-
mization problem. In order to select a given element, additional information is neces-
sary that is supplied by the so-called decision maker (DM). The information, which the
DM sets, reflects his/her global preferences with respect to the quality of the solution
obtained.
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The problems of MO are usually solved by scalarization (Hwang and M a -
sud[3],Sawaragi,NakayamaandTanino[9], Steuer[11], Mietti-
n e n [4]). Scalarization means transformation of the multicriteria optimization prob-
lem into one or several single-criterion problems. This transformation enables the use
of the theory and methods of single-criterion optimization. The basis of such transfor-
mation lies in the fact that each Pareto optimal solution of the multicriteria optimiza-
tion problem can be obtained as an optimal solution of the scalarizing problem. One
single-criterion scalarizing problem must satisfy the following two conditions, in order
to be a scalarizing problem of the multicriteria optimization problem:

— each Pareto optimal solution of the multicriteria optimization problem has to be
found altering the values of the scalarizing problem parameters;

— appropriate values of the parameters of the scalarizing problem should be found
for each Pareto optimal solution of the multicriteria optimization problem in such a
way, that its optimal solution be exactly this Pareto optimal solution of the multicriteria
problem.

The DM (DM is either one person or a group of persons with similar concepts)
can express his/her preferences among the separate Pareto optimal solutions with the
help of the parameters values. The DM has to select the final (most preferred) solution
and is responsible for this choice.

MO methods apply in a different way (M iettin e n[4]) different scalarizing
problems such as: the problem of the weighed sum; the problem of e-constraints; the
problem of the reference point; the classification based problems, etc. Though the
scalarizing problems used determine to a large extent the type of these methods, the
references suggest comparative analysis of the methods rather than comparison of the
different scalarizing problems (Miettinen and Makela[6]). Inan analogous
way some attempts to unite different methods (Gardiner and Steuer, 1994), are pre-
sented more often than attempts to generalize different scalarizing problems.

The present paper describes a generalized scalarizing problem, from which some
of the more famous scalarizing problems of the reference point and of the classification
based scalarizing problems can be obtained, altering given parameters. The general-
ized scalarizing problem connects the separate scalarizing problems to a high degree
and thus it can be said that this problem combines their features as well. A generalized
MO method can be developed on its basis, which joins extensively the features of the
separate methods that apply the respective scalarizing problems.

The paper is organized as follows. The second chapter presents a general state-
ment of the multictriteria optimization problem and some definitions are given. The
third chapter describes the generalized scalarizing problem and some of its properties
are proved. The transformation of this problem into well-known scalarizing problems
is shown in the fourth part. The conclusion is given in the fifth chapter.

2. Formal statement of the problem of multicriteria optimization

The general problem of multicriteria optimization can be stated as follows:

1) “max” {f (x)}, keK,
under the condition
2) xeX,
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where f (x), keK={1, 2,..., p} are different criteria (objective functions) f:R"—>R,
which have to be simultaneously maximized; x = {x,, ..., X, ..., X )" is the vector of the
variables, belonging to the non-empty feasible set XeR"; Z = f (X)c RP is the feasible
set of the criteria values.

The following definitions will be introduced for greater clarity:

Definition 1. The solution xeX is called a Pareto optimal solution of the multicriteria
optimization problem if there does not exist another X eX, for which the condition
below given will be satisfied:

f(x)>f(x), keK,
and f (X ) > f (x) for at least one index keK.

Definition 2. The solution xeX is called a weak Pareto optimal solution of the
multicriteria optimization problem if there does not exist another X X, for which the
following condition is satisfied:

f(x)>f(x), keK.

Definition 3. The vector z = f (xX)=(f,(x),..., f (x))T z =1f(x)eZ is called a (weak)
Pareto optimal solution in the criteria space, if XeX is a (weak) Pareto optimal solution
in the variables space.

Definition 4. The vector z*eZ is called an ideal vector, if its every component z,,
k = 1,p is obtained by individual optimization of the criterion f. onits feasible set X

Definition 5. The vector z**eZ is called a utopia vector, |f its every component
zx*, k= 1,p satisfies the following condition:

Zl;k* = Zk* té
where ¢, _is a small positive number.

Definition 6. The components of nadir vector z" are the low limits of Pareto
optimal set. It is usually difficult to obtain the exact values of these components, but
they can be evaluated approximately by the pay-off table (M iettinen[4]).

Definition 7. The current preferred solution z = (f,..., f,, ..., fp) is a weak Pareto
optimal or Pareto optimal solution in the ctiteria space, selected by the DM at the
current iteration.

Definition 8. A reference point (Wierzbicki (1980)) or a reference vector
z=(z,,..., ;)" is called that vector, the criteria values of which are equal to the desired
or aspiration values set by the DM. These aspiration values may be achieved or not.

Definition 9. Classification or partition of the criteria(Benayoun et al. [2],
Nakayamal[7], Narula and Vassilev[8], Miettinen [4])is called the
implicit partition of the criteria into classes accomplished by the DM with relation to
what changes of the criteria values the DM wishes to obtain, compared to the corre-
sponding criteria values at the current solution.

3. Generalized scalarizing problem

In order to obtain a (weak) Pareto optimal solution of the multicriteria optimization
problem, starting directly or indirectly from the current (weak) Pareto optimal solution
found, the following scalarizing problem A could be applied:

90



Minimize
(3) S(x)=max( EEZ((F; - fk (X))/G;’keT%).is(sz - fk (X))/sz)R EEZ((F; - fk (X))/Gf

under the constraints

(4) ,
(5) f.(x)>f, -D,, ke K=,

(6) ,

() ,
8) xe X,

where are constants;

-t andt* are the upper and lower limit of the desired interval of change in the
values of the criterion with an index k;

— D, is the maximal value of deterioration of the criterion with an index k;

— R is equal to the arithmetic operation + or a separating symbol , ;

— K= is the set of the criteria, the values of which the DM wants to improve to the
aspiration values;

— K> is the set of the criteria, the values of which the DM wants to improve;

— K=is the set of the criteria that the DM agrees to be deteriorated to be deterio-
rated by a maximal value D,;

— K= is the set of the criteria the values of which the DM wants to preserve;

— K=>is the set of the criteria the values of which the DM wishes to be within
defined intervals;

— KO is a set of criteria the DM is not interested in.

Theorem 1. The optimal solution of the scalarizing problem A is a weak Pareto
optimal solution of the multicriteria optimization problem.

Proof. Let K*and/or K>= & and x* be an optimal solution of the scalarizing
problem A. Then the following condition is satisfied:
) S(x*) < S(x), xeX,
and constraints (4)—(7) are satisfied for x*.

Let us assume that x* is not a weak Pareto optimal solution of the multicriteria
optimization problem. Then there must exist x'eX, for which the following conditions
are satisfied:

(10) f(x)>f(x*), kekK,
and constraints (4)-(8) are fulfilled for x'.

After a transformation of the objective function (3), using inequalities (10), the
following inequality is obtained:

(1)S(x)=max(max(F; - f, (x))/G;, max (F/—f, (x))/G/)Rmax(F’ - f,(x)/G; =
= max(max((F; = ,0<)+ (f, (X) = £, (<)/ G,
max ((F = f,(x)) + (£, () = £,(x))/G]) x
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xRMax(F 1, (X)) +(F, (<)~ ()G <
<max(max(F; = f, (<))/GL, max (F? = f,(<))/G; Rmax(F. - f, (X))/ G} =S(x).

From (11) and the definition of R, it follows that S(x")< S(x*), which is in contra-
diction with (9). Hence x* is a weak Pareto optimal solution of the multicriteria optimi-
zation problem.

A (weak) Pareto optimal solution of the multicriteria optimization problem is
found with the help of scalarizing problem A. If the wish is to obtain Pareto optimal
solutions only, scalarizing problem B could be solved, that has the form:

Minimize

(TR =max(max(F: — T, ())/ G, max (R~ ,0)/G? Rmax(F? — f,())/ G +
o S R0+ S (R 00+ 3 (R - 1,00))

under constraints (4)—(8) and p — a small positive number.

Theorem 2. The optimal solution of scalarizing problem B is a Pareto optimal
solution of the multicriteria optimization problem.

Proof. Let K= and/or K>= &, and x* be an optimal solution of scalarizing
problem B. Then the condition will be satisfied:
(13) T(X*) < T(x), xeX,
and constraints (4)—(7) are fulfilled for x*.

Let us assume that x* is not a Pareto optimal solution of the initial multicriteria

optimization problem. Then there must exist x'eX, for which the conditions below
given are fulfilled:

(14) f(x)>f(x*), kekK,
and f(x) >f(x*), forat least one index keK, and constraints (4)-(8) are satisfied
for x'.

After a transformation of the objective function T(x') of scalarizing problem B,
using inequalities (4), the following inequality is obtained:

(15)T(x)=max (max(F; - f, (X))/G,, max (R’ f,(x))/G)Rmax(F’ - f,(x))/G] +

+A 2 (F - fk(X'))+k z (F2—f, (x'))+sz> (F2—f, (x'))):
= max(rglgg(pkl — £ )+ (f, () f (X))/G;,
_max ((F7 = f, (¢ +(f, (¢ = £, (x))/ G¢

x Rmax(((F - ,009)+ (£, (X) = £, (x))/ G{ +
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t2 (R = 0N+, 0¢)— T, (X)) < max(max(F, - f, (x*)) /G,

max (R’ = f, (x*))/ Gy )Rmax(F — f, (x*))/G; +

fp SR-A0DE 3 (R R0+ 3 (- 6,00)|=T00).

From (15) and from the definition of R it follows that T(x") < T(x*), which contra-
dicts to (13). Hence x* is a Pareto optimal solution of the multicriteria optimization
problem.

4. Transformation of the generalized scalarizing problem into known
scalarizing problems

The scalarizing problems A and B are a generalization of the more or less wide- spread
classification based scalarizing problems (Benayoun et al.[2],Narula and
Vassilev[8],Miettinenand Makela[5],Vassilev et al. [13], Vassileva
etal. [14]) and of the scalarizing problems of the reference point (Wierzbicki[16],
NakayamaandSawaragi[7], Buchanan[1]). The reference point contains
the aspiration levels of the criteria, which the DM wants or agrees to achieve: During
the classification, the DM defines what changes of the criteria values with respect to
their values at the current solution are desired or acceptable for him/her. These two
ways of defining DM’s preferences are relatively close and could be combined. Further
on it will be demonstrated how some of the already familiar scalarizing problems can
be obtained from scalarizing problem A.

4.1. STEM scalarizing problem

This scalarizing problem is used in STEM method (Benayoun etal. [2], Van-

derpooten andVincke[12]). The DM is supposed to classify the criteria in two

groups: K=and K>. More precisely, he/she determines which criteria he agrees to be

deteriorated and the maximal value of deterioration for each one of them. The remai-

ning criteria have to be improved. STEM scalarizing problem has the following form:
Minimize

e
max —=

kek™ Z eJ

jek”

z - f.09)

under constraints
f.(x)>f —A,, keKs,
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f.(x)=f, kek,
xeX,

A, — maximal value of deterioration for the criterion with an index k.

The scalarizing problem STEM can be obtained from scalarizing problem A with
the help of the following replacements:

1) K*=K*=K==K™*=K° =&;

2) D, =A,;

3)F2=1z%

4) G =—

jek”

4.2. STOM scalararizing problem

STOM scalarizing problem is applied in the method of the satisfying compromise (N a-
kayama andSawaragi[7]). The DM must set the aspiration levels of the criteria
in the reference point z . After comparison of these aspiration levels of the criteria with
their corresponding values at the current solution, the criteria can be divided into three
groups: K=, K= and K=. Different statements of STOM scalarizing problem are used,
one of them being:

Minimize

i sk i

keK?> Zk _Zk keK*= Zk _Zk

zy - f () 7 - fk(x)]

max(max — ,max

under the conditions
f(x)>f, keK,

xeX,
where z, is the k-th component of the reference point, z,** — the k-th component of the
utopia point.
STOM scalarizing problem can be obtained from scalarizing problem A by the
replacements:

]_) K> = K<:K><:KO: J;
)R =F2=17>%

3) ;

4)D, = .
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4.3. Scalarizing problem of the reference point

This scalarizing problem is used in the reference point method (Wierzbicki[16]).
The DM has to set the aspiration levels of the criteria at the reference point z. Compar-
ing these aspiration levels of the criteria with their respective values at the current
solution, thecriteria can bedivided in two groups: K=and K=. Then the statement of the
scalarizing problem has the following form:

Minimize
max| max Zk__—fk(x) , max fk__—fk(x)
keK?® |Zk| keK*= |Zk|

under the condition xeX.
The scalarizing problem of the reference point can be obtained from scalarizing
problem A after the following replacements:

1) K?’=K*=K==K™~=K"=g;
2)Fl=F2= Z,;

3) ;

4)D, = oc.
4.4. GUESS scalarizing problem

GUESS scalarizing problem is applied in GUESS method (Buchanan[1]). The DM
has to determine the components of nadir and of the reference point — z," and z. After
the comparison of the criteria values at the reference point and at the current solution,
the criteria may be divided in two groups: K= and K=. One of the statements of this
scalarizing problem has the type:

Minimize:

ma)\( = nad ’ma)<( k— nad
keK= Zk — Zk keK* Zk — Zk

max{ 2 () o (@ - fk(x))J

under the condition xe X and the aspiration levels be not smaller than the corresponding
values of the criteria at nadir point.

GUESS scalarizing problem can be obtained from scalarizing problem A after the
following replacements:

1) K’=K“=K"=K=K’=@;
Q)Fl=F2= z™;

3)Gk1 =sz =_#
Z

nad ’
k k

4)D, = oc.
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4.5. Scalarizing problem of the modified reference point

The scalarizing problem of the modified reference point is applied in the reference
direction method (V assilev et al.[13]). The DM has to define the aspiration levels
of the criteria at the reference point z. Comparing these aspiration levels of the criteria
with their respective values at the current solution, the criteria can be divided in three
groups: K=, K= and K=. The statement of this scalarizing function has the following

form:
max(max{ —_ k(X)J { f - fk_(X)B
keK Zk k keK= fk — Zk

Minimize

under the conditions:
f(x)>f,, keKs,
xeX,

where f, is the value of the criterion with an index keK in the current preferred solu-
tion.

The scalarizing problem of the modified reference point can be obtained from
scalarizing problem A after the replacements:

1) K>_K< K><_K0 @

2) Fkl = zk,

3)F 2=

4) ;
5) ;
6) D, = oc.

4.6. NIMBUS scalarizing problem

NIMBUS scalarizing problem is applied in the classification based method NIMBUS

(Miettinenand M akela/[6]). The DM must divide the criteria in five groups:

K>, K* K=, K=, K= and K depending on what alterations of the criteria values he wishes

in relation to their respective values at the current solution. Several versions of the

scalarizing problem are applied in the method, one of them having the following form:
Minimize

x| max B B0 (2= 1,00)

keK* ‘Z ‘ keK ZI:

under the conditions

ke
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, keK=,

xeX.

NIMBUS scalarizing problem can be obtained from scalarizing problem A, re-
placing:

1) Ki=K™=g;
)R = %
3)F2=1,
4))D=A;

k
5) ;
6) R=,.

4.7. Classification based scalarizing problem

This classification based scalarizing problem is used in the method described by V a s-
sileva et al. [14]. The DM possesses a wide range of setting his/her preferences for
the desired changes of the criteria values in comparison with the criteria values at the
current solution. On the basis of these preferences, the criteria may be divided into
seven or less than seven classes. The scalarizing problem has the type:

Minimize

max mag@‘_—m, ma)((m_'_max (fk_ Ik(X))
O [T S I

under the conditions

f021f, kel ]
f(x)>f —A keK",
f () f, —t ke K™,

f(x)<f +t ke K™,
xeX,

. Z{g,if | <e,

f,,otherwise

where

and ¢ is a small positive number.
This scalarizing problem can be obtained from scalarizing problem A after the
following replacements:
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DF! =2,

2)F2=1;

)F2= T,

4) ;
5)D, =A.;

6) R=+.

The seven scalarizing problems above discussed, which can also be obtained from
the generalized scalarizing problem with the help of different transformations, ensure
(weak) Pareto optimal solutions only. Each one of these scalarizing problems has an
modifications (M i e ttine n [4]), which facilitates the obtaining of Pareto optimal
solutions. These scalarizing problems can be obtained from the generalized scalarizing
problem B with the help of different transformations.

5. Conclusion

The scalarizing problems are an important part of the interactive methods solving
multcriteria optimization problems. The scalarizing problems of the reference point
and the classification based scalarizing problems have found wide application. The
scalarizing problem described in the present paper is a generalization of the known
scalarizing problems of the reference point and of the classification based sclalarizing
problems. One of the advantages of the scalarizing problem discussed is that it may
serve as a basis for the construction of a scalarizing problem with apriori set proper-
ties. Another advantage is that this problem only could be built in the design of soft-
ware systems solving multicriteria optimization problems instead of the alternative of
including many scalarizing problems. A number of other famous scalarizing problems
can be dynamically obtained from it.
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O06o0011eHa ckanapu3upaiia 3agada
Ha MHOTOKpUTEPHATHATA OTITHMH3AIUS

Bacun Bacunes

Huemumym no ungpopmayuonnu mexnonocuu, 1113 Cogus

(Pe 3rome)

CratusiTa onrcea o0olIeHa Kiiacu(UKalMOHHO Oa3upaHa cKajiapusupalia 3ajaqa Ha
MHOTOKpHUTEpHAHaTa ONTHMH3AIKsA. Pasriexaar ce OCHOBHUTE CBOWCTBA Ha
o0o0IIeHaTa ckajapu3upalna 3ajiadya U ¢ MOKa3aHo, Ye HIKOM OT U3BECTHUTE
CKaJapu3upaliy 3a/7a4yd Ha OTIpaBHATAa TOYKA M KIACU(PHUKAMOHHO Oa3upaHHUTE
CKaJlapu3HMpally 3a/laud MOraT Jia Ce IMOJydYaT OT Hesl C MOMOIITa Ha pa3in4yHu
TpaHchopMaIIHH.
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