
6 8

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

КИБЕРНЕТИКА И ИНФОРМАЦИОННИ ТЕХНОЛОГИИ Том 2, № 2
CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 2, No 2

София . 2002 . Sofia

Clock Synchronization with Independent Adjustment
in Distributed Systems

Krassimir Djambazov, Edita Djambazova

Institute of Computer and Communication Systems, 1113 Sofia
E-mails: kbd@iccs.bas.bg ead@iccs.bas.bg

Abstract: The clock synchronization algorithm with independent adjustment is pre-
sented. It uses the cyclic nature of the TDMA strategy for continuous collection of
time differences among the nodes’ clocks and applies an independent adjustment.
Nodes decide locally when to apply the adjustment. The correction term is calculated
as in the fault-tolerant algorithms and is applied not periodically but upon exceeding
one phase bit. Two variants for algorithms implementation are presented – fixed-
point and checked adjustment.

A classification of the clock synchronization algorithms is presented. Two main
groups of algorithms are distinguished: with direct and with interactive synchroniza-
tion. The fault tolerance support, referred to as convergent and consistent, is intro-
duced as an upgrade of the basic algorithms. The proposed validity measure, local
time rate of change, is used along with the skew distribution to estimate the influence
of the failures and of the fault tolerance of the clock synchronization algorithms.

The algorithm is compared with other clock synchronization algorithms for dis-
tributed hard real-time control systems. A simulation model of clock synchronization
algorithms that includes failure injection properties is used.

The reported results from the experiments with the simulator program give a
base to make the conclusion that the proposed algorithm for clock synchronization
with independent adjustment tolerates input omission, output omission, and bad clock
failures to the same extent as the Fault-Tolerant Average algorithm.

Key words: fault tolerance, clock synchronization, distributed systems, hard real time.

6 9

1. Introduction

Keeping the clocks synchronous in distributed real-time process control systems is a
crucial condition for their correct operation. It is even more important for distributed
systems where the application poses hard real-time limits on the decision making pro-
cess [10, 11].

A node of a distributed system is equipped with hardware (physical) clock and
constructs some logical time units. The physical clock is composed of a pulse generator
and counters. The content of the counters is readable and measures the time elapsed
from a certain starting point. The value of the logical clock is visible for the other nodes
only by passing its value in a message. The abstraction of logical clock is presented by
a phase counter and a bit counter [18], forming microticks and macroticks, correspond-
ingly. The logical clock value is displayed at bit level while the phase items are hidden.

Clock synchronization is a process of equalizing the logical clocks of all nodes to
compensate the differences of their physical clock generators caused by the clock drifts.
Some problems, especially in distributed systems, arise because of the uncertainty of
the message delays in the system. Some other problems are caused by failures that
could be exhibited either by the computers (including both physical and logical clocks)
or by the communication channel.

The synchronization is usually performed periodically in resynchronization cycles
(rounds) when every node reads the clocks of the others, calculates a target time and
corrects its own logical clock. Between two resynchronizations the clocks are left to
work with their specific frequencies and count factors.

Clock synchronization is made by adjustment of the clock value with a correction
factor. Thus, the synchronization process could be divided into four phases: clocks
values difference measurement, error handling, correction factor determination and
correction factor application.

Two clocks are said to be synchronous if for any real time t their values differ by
less than some predefined value . A system is said to be synchronous if for any real
time t no pair of clocks differ by more than some predefined value .

The variety of clock synchronization algorithms and implementation protocols in
many cases makes the design of such systems difficult, because of: (i) the gap between
the theoretical results and implementation issues for most of the proposals and (ii) the
different comparison bases used by the different authors and designers [20].

In an attempt to propose a solution of those problems a simulation model is devel-
oped [4]. The subjects of modeling are the synchronization algorithms themselves, the
physical environment they are executed in, and the failures they are influenced by.

Section 2 of the paper presents a classification based on the most popular theoreti-
cal results and the corresponding synchronization algorithms, both fault sensitive and
fault tolerant. The classification separates the task of synchronization and that of
achieving fault tolerance. The algorithms are classified according to the way they de-
termine the clock adjustment value, i.e., the correction factor.

Section 3 introduces a method for clock synchronization with independent adjust-
ment that exploits the natural communication procedures instead of additional synchro-
nization protocols in case of time-triggered distributed systems.

A simulation model, developed for estimation and design purposes, is presented in
Section 4. Some results of modeling are given in Section 5 that demonstrate the fault-
tolerant properties of the method proposed in comparison with some other methods.

7 0

1.1. Distributed clock synchronization

1.1.1. General description
The system under consideration is a fully connected network of nodes. The nodes
execute local control tasks forming output signals to the local input stimuli, under the
global system strategy. Each node measures the time in local time units macroticks.

The hard real time requires the systems to be able to perform any control task in a
limited period in spite of the number of tasks that could be active at the same time. This
fact implies that the system is designed to meet peak load conditions without loss of
timeliness [10, 19].

The described specifics led to the time-triggered approach [11, 12, 19] that obeys
the hard real-time constraints via ensuring the worst-case communication traffic and
the worst-case distributed computational load satisfies best the described specifics. In a
time-triggered system, the elapsing of time intervals initializes all activities.

The time of a node is divided in cycles, each starting with polling of the inputs,
going through calculation of a control output and finishing with an output reaction.
Inside this control cycle a communication interval should be nested to meet the worst-
case conditions. The communication interval is the only window where a node can
transmit its data. Following this approach the system-level operation is organized in
communication cycles. The communication cycle is divided into time-slots, each as-
signed to a node.

In the “synchrony by design” (time division multiple access [10]) the time points
and the order of data transmissions are pre-scheduled for all nodes . This is used in the
class of time-triggered protocols [10, 11, 12, 16, 19].

The common assumptions applied to the target system and its components are as
follows.

The first assumption limits the drift rate of the physical clocks [1]. Hi(t) repre-
sents the hardware clock of node i at real time t. The upper bound defines the good
and the bad clocks, the latter violate inequality:

(1)

1

)()(

12

12

tt
tHtH ii for t2>t1.

The second assumption requires monotonic time function of the local clocks [1].
Ci

r(t) and Ci
k(t) are the clock values of a node local clock i at real time t and in

resynchronization cycles r and k, respectively:

(2) 21 tCtC k
i

r
i for t2>t1 and k >r..

Two properties define the synchronization:
 The agreement property of the synchronous clocks is defined by (3). The values

of clocks i and j at real time t are denoted as Ci
r(t) and Cj

r(t) , r is the resynchronization
cycle number. The clock values difference is often referred to as skew:

(3) tCtC r
j

r
i .

 The following property is called validity and defines linear envelope of syn-
chronized clock values; is an arbitrary small value:

7 1

(4) tCt r
i)1()1(.

Synchronization is achieved if both (3) and (4) are satisfied, given that (1) and (2)
are met.

To evaluate the validity property we introduce a new measure: local-time change
rate distribution [4]. The rate distribution is defined as the average of the rates diffe-
rences with the real time progress (5). Analyzing the rate distribution, the effect of
introducing fault-tolerant methods could be better assessed than when using only the
skew estimations:

(5)
rr

riri

tt
tCtC

θ

1

1 .

1.1.2. Impediments to clock synchronization

The factors that affect synchronization are reading errors and failures demonstrated by
the nodes, communication channels and clocks.

A full reading error is structured as follows (Fig. 1): (i) time interval between
placing the time stamp and the starting point of transmitting, (ii) physical communica-
tion delay and (iii) interval in the receiver between the first bit receiving and deter-
mining of the time point.

Fig. 1. Reading error

In general, the considerations are limited to partially synchronous systems, which
implies the upper bounds of the delays to be known. This results in including the maxi-
mum reading error in the admissible clock difference Some more specific approaches
are proposed for dealing with the different delays:

 The delay could be reduced by a dedicated hardware that places the time
stamp at the point of transmission [10].

 The delay could be directly measured by “round trip” method and therefore
compensated for [2, 10, 16].

 The delay could be avoided by using a dedicated hardware determining the
local clock value at the beginning of data reception.

Determining Tj

Start of sending

Message forming

Time stampTi

Message sending

Message receiving

Start of receiving

Transmitter

Receiver

t

t

7 2

1.1.3. Distributed measurement of time-related parameters

The measurement of time-related parameters is possible only on the basis of local clocks.
We define the time-related measurements of any pair of nodes as comparison of two
time periods: expected and observed. One and the same observed period differs in the
different nodes.

We also assume that every non-faulty node follows its local time and starts mes-
sage transmission exactly according to its time slot, thus announcing it to the others
local time.

Another important feature is that the parameters are measured in pairs.
The parameters that could be measured are:
Time difference between the expected time and the local point of receiving a

message.
Time interval between two successive received/transmitted messages from the

same node.
One of the purposes of the measurement should be to distinguish between phase or

clock differences and the message delay. Phase and clock differences could vary in
different measurements while the message delay is constant and is always positive. It is
also the same in both transmission directions of a pair of nodes.

Distributed control of time-related parameters
The parameters that could be locally controlled (observed) are listed bellow:
 Clock rate (frequency).
The clock rate could be controlled either continuously or digitally depending on

the hardware used. The continuous control can be applied to the non-stabilized clock
generators, where the phase difference is transformed into control voltage that specifies
the frequency. A problem could arise because of the need to keep the last frequency
during the pause between two successive messages.

Time period (number of ticks). The time periods could be controlled by adding
(subtracting) a corrective number of macroticksbits at given periods. The correction is
asymmetric but this does not corrupt the proper adjustment. The length of controlled
time periods could differ.

Phase of the time period. The phase is controlled either immediately by preset-
ting the phase counter, or continuously by suppression of the microticks. The immedi-
ate adjustment can be applied only if the correction value is less than one macrotick.
The continuous adjustment prevents the clocks from being set back and therefore the
correction value has no limits.

1.2. Failure model

1.2.1. Node failure modes
It is widely agreed that the failure model at system level comprises three kinds of fai-
lures of the nodes:

fail stop (crash), when the node is silent in case of internal failure or because of
local communication failure that prevents the node from access to the communication
links;

omission, when a message is either not received (input omission), or is not
transmitted (output omission);

 arbitrary failure, when the faulty behavior of the node is not specified.

7 3

1.2.2. Clock failure modes [2]
 Clock crash, when a clock stops ticking or the counters do not count the clock

ticks. In general, the clock crash cannot be associated with any specific system-level
failure. The time-triggered systems, however, interpret the clock crash as fail stop.

Arbitrary failure, when the faulty behavior of the clock is not specified. It could
be non-linear counting or change of the drift rate of the physical clock, etc. This failure
is regarded as bad clock in the paper.

1.2.3. Communication failure modes [2]
Late delivery (performance error), when the message is delivered too late and its

time stamp is not adequate to the receiving point because of bus access problems and
traffic overload.

Arbitrary failure, when physical noises prevent some receivers from correct
reading of a message. An arbitrary failure is interpreted either as input omission fail-
ures if some nodes can receive and some cannot the corrupted message, or as an output
omission failure if no node can receive the corrupted message.

Time-triggered systems are designed to operate correctly in the presence of arbi-
trary failures. For some studies, however, it could be more suitable to examine system
behavior under specific operational conditions, with less complex failure types, such as
input omission or output omission. This simplification does not reduce the range of the
results, since the arbitrary behavior is decomposed into different failures.

1.2.4. Fault tolerance of clock adjustment algorithms
The fault-tolerance property could be regarded as independent of the synchronization
algorithms. The main fault- tolerant algorithms are aimed at tolerating arbitrary fai-
lures. Most of the fault-tolerant algorithms discussed in the literature are aimed at
tolerating a finite number of arbitrary faulty nodes. It is proved that at least 3m+1
correct nodes are needed for m faults to be tolerated, if no authentication is applied, and
m+2 correct nodes are needed otherwise [8].

Distributed fault tolerance is achieved by filtering the reported clock values in
convergence methods and by data consistency in consistency methods (see Section 2).

The filtering could be independent or/and via co-operative agreement. The inde-
pendent filtering is based on relative or absolute comparison of the incoming values.

Relative comparison the received time values are compared to each other, and:
(i) m largest and m smallest values are rejected, or
(ii)m values are rejected that are most distanced from the others (local time).
 Absolute comparison values are rejected that lie out of some predefined bounds

with respect to the value of the clock that makes the comparison. The bounds form an
acceptance window.

It is proved that both methods are convergent and fault-tolerant [15, 16, 21].
The rejected values could be either replaced by the own value or ignored. It makes

difference which rejection method is applied: in the first case the number of items is
kept n, while in the second case the number of items is reduced by the number of
rejected values.

7 4

2. Distributed clock adjustment classification and methods

2.1. Clock adjustment principles (synchronization algorithms)

According to the methods of adjustment, the clock synchronization algorithms could be
classified as: methods/algorithms with direct synchronization and algorithms with co-
operative (interactive) synchronization [3].

2.1.1. Direct adjustment algorithms
The algorithms with selective direct adjustment discussed in [9, 14] use time stamped
messages. The receiver of a message adjusts its local clock to the time stamp of the
incoming message and if it is greater than its local clock, correction of the reading error
is provided. The selective function ensures that: (i) no clock is set back than its current
time, and (ii) the time of the fastest clock will be accepted by all local clocks as system
time. Most of the algorithms in that class work as every node upon receiving a
resynchronization message relays it to the other nodes, thus initializing their
resynchronization.

The algorithms with unconditional direct adjustment synchronization [18] sup-
pose that the receiver of a message adjusts its local clock to the time stamp of the
incoming message. The algorithm is correct while the time difference is less than one
macrotick communication bit.

2.1.2. Co-operative (interactive) adjustment algorithms
The algorithms with co-operative adjustment synchronization [13, 15, 17, 21] use time
information collected from other system node members during the resynchronization
phase. The algorithms should provide convergence of the synchronization targets. Two
convergence methods are known for determination of the local clock correction on the
basis of collected times:

Average value [13, 15]. In the average value algorithms each node calculates the
average of the collected differences and uses the result as a correction factor of its
clock.

Midpoint (median) value [21]. In the midpoint algorithm each node calculates
the median of the collected differences and uses the result as a correction factor of its
clock.

The consistent algorithms with co-operative adjustment apply an agreement pro-
tocol on the collected data to obtain consistency [15].

2.2. Background

The time-triggered distributed systems are of special interest for our study and the
presented review is limited to their specifics. They operate under hard real-time restric-
tions. Message exchange, synchronization, etc., events in the system occur in pre-de-
fined time points. All delays are limited and have known upper limit. This allows the
system to operate according to a pre-defined schedule that assures its predictable be-
havior. From synchronization viewpoint, the known time points for message exchange
and the constant delays in the communication channel ease the measurement of the time
differences between the local clocks values and the application of algorithms for syn-
chronization.

7 5

Fault-tolerant clock synchronization algorithms are convergence algorithms with
co-operative adjustment by average value. They can be used in the process control
applications where systems operate in a periodic manner. The control cycle could be
combined with the communication cycle. The strategy “time-division multiple-access”
(TDMA) [11] eases the communication. Nodes broadcast messages according to a pre-
defined schedule. Each node has a time slot attached and can send messages only when
its slot comes. During the resynchronization interval a node collects all time differences
measured between the incoming messages and the expected arrival time points of the
messages. In every resynchronization interval the fault-tolerant synchronization algo-
rithm is applied.

The distributed system DACAPO [16, 18] also uses TDMA strategy. In DACAPO,
however, a different approach is used for clock synchronization. The clock synchroni-
zation algorithm applies unconditional direct adjustment. It is not organized in rounds
and does not require measuring and collection of the time differences of the nodes, and
calculation of the adjustment. The clock adjustment is unconditional and direct. The
receiving nodes synchronize their clocks to the node that is currently sending. This
Daisy-Chain method is not fault-tolerant. A reception window is introduced to discard
the messages that deviate more than the pre-defined size of that window.

The synchronization scheme in DACAPO is simple and does not require a com-
plex hardware implementation. The clocks are synchronized on every message frame
and oscillators with lower precision can be used.

The fault-tolerant synchronization algorithms are more complex, use frequency
sources with high precision, but guarantee a tight synchronism among the nodes even in
the presence of failures.

3. Clock synchronization with independent adjustment

The approach clock synchronization with independent adjustment [5] is not organized
in resynchronization intervals. It uses the periodicity of the TDMA strategy for con-
tinuous collection of time differences among the clocks but the adjustment is indepen-
dent. Nodes decide locally when to apply the adjustment. The resynchronization inter-
val is individual for each node and is minimum one communication cycle in size. The
correction factor is calculated as in the fault-tolerant algorithms but is applied when it
exceeds one microtick (phase bit) and at least one communication cycle has passed
since the last adjustment.

3.1. Presentation of the approach

The organization of time-triggered system operation is shown in Fig. 2. A communica-
tion cycle, CCi, is formed from the time slots of N nodes, each slot attached to a node
in cyclic order. The access to the communication channel is based on the TDMA stra-
tegy. The figure shows a case where the data transmission (communication) phase is
placed at the end of node calculation interval, when its internal state is just actualized.
Nodes send only one message in their dedicated slots according to a pre-defined sche-
dule. Thus, the time difference between the expected and the observed message arrival
time is a measure of the skew between clock values of the sender and the receiver.

7 6

The physical clock of each node produces a continuous sequence of pulses called
phase bits. The actual time units in the distributed system are named information bits
and consist of x phase bits (e.g. 16). The synchronization is purposed at keeping the
phase difference between information bits of the nodes as small as possible, limited to
±1 phase bit.

The independent clock adjustment is based on three principles:
continuous measurement of the differences between local clock value and clock

values of the nodes;
 continuous calculation of the correction factor;
 independent and almost immediate adjustment if the correction factor is greater

than one phase bit.
The continuous measurement and correction factor calculation do not violate the

real-time constraints. These operations are included in the control cycle of time-trig-
gered systems although they are executed only for resynchronization.

The continuous measurement means that every node compares its current clock
value with the starting point of transmission of the other nodes. It is assumed that the
starting point of transmission corresponds to the beginning of a slot. The difference
between the expected and the actual starting point gives the difference (in phase bits)
between the clock values of the transmitting and the receiving node. These differences
are collected and used for calculation of the correction factor. The function of calcula-
tion could be average value [13] or midpoint [21]. Every time a node receives a mes-
sage, it calculates the correction factor and if it exceeds one phase bit the adjustment is
applied depending on some conditions.

Independent adjustment approach differs from the approach used in [12] by the
following characteristics:

Nodes apply the adjustment independently of each other. The existence of the
necessary conditions is decided on locally.

 The independent adjustment is based on the individual (local) view of the nodes
for the correction of the clocks’ values. The process of measurement, computation and
application of the correction factor is fully distributed.

The resyncronization interval is shorter (the shortest possible for co-operative
adjustment) than that in [11]. This allows the use of crystal oscillators with lower
precision.

Shorter period of adjustment keeps the clocks in tight synchronism.

 CC 1 CC i CC 3 CC 2

Time Slot 1 Time Slot 2 Time Slot N Time Slot 1 Time Slot 2

Calculation Communication
Phase

Sampling
Inputs

Calculation Communication
Phase

Sampling
Inputs

Control
Output

Control
Output

Time-Driven Control Cycle of Controller #2

Communication Cycle

Fig. 2. Organization of system operation

7 7

 The independent adjustment does not require a scheme for continuous
resynchronization and/or a scheme for compensation of the fractional part of the cor-
rection factor [11].

3.1.1. Fault-tolerant independent adjustment
The fault tolerance is achieved via convergence algorithms with co-operative adjust-
ment. In these algorithms, m highest and m lowest values are discarded from the sorted
list of collected differences m faults to be tolerated. The rejection of the end values is
based on the assumption that the faulty nodes deviate greatly from the ensemble and,
thus, their values cannot influence the synchronization.

3.1.2. Implementation of the independent adjustment
Since the independent adjustment uses the collected differences, it could not be applied
before all the differences are actualized, i.e., after one communication cycle. Each node
measures the difference with every other once in a communication cycle. If a node
changes its phase, the next cycle of measurements will be completed after N1 time
slots, with N nodes in the system. During this period the measured data will be referred
to the previous phase or to a mixture of old and new measurements. Following the
technique of independent adjustment, it could happen that the same correction factor is
applied incorrectly more than once. To avoid this effect we propose two schemes for
adjustment application:

 Last correction in node i

(N - 1) slots

Correction not allowed in node i Correction allowed in node i

. . . Slots

 t

a. Checked independent adjustment

. . .

Correction not allowed in node i

Correction point in node i Node i first transmission slot

Slots

 t

b. Fixed-point independent adjustment

Fig. 3. Independent adjustment

The adjustment is allowed when N new differences after the last adjustment are
collected (checked adjustment) (Fig. 3a).

 The adjustment is allowed if the node is the next to transmit and if the transmis-
sion is its first in the communication cycle (fixed-point adjustment) (Fig. 3b). The
second condition concerns cases when a node has more than one transmission in a
system communication cycle.

7 8

3.2. Fault tolerance of the approach

To demonstrate the fault tolerance of the clock synchronization with independent ad-
justment it for one failure type is studied [3, 4]. The average skew between the local
clocks values is examined for transient bad clock failures. Transient bad clock failure
is a single non-linear change of clock value.

3.2.1. Assumptions and conditions
A system of N nodes tolerating m faults is considered. The time difference between two
clocks in phase bits (the skew between their clock values) is The average skew is
determined as a function of N, m, and . The analysis is carried out for the case of a
failure in one node clock.

The algorithms with checked independent adjustment, with fixed-point indepen-
dent adjustment, and with resynchronization [11] are analyzed.

The effect of the transient bad clock failure lasts for maximum two communica-
tion cycles, 2N slots. The average skew is derived under the following conditions:

Clocks drifts are excluded in order to study the pure effect of the failure.
The bad clock failure is observable at system level in the next slot after its

occurrence.
The faulty node measures time difference with all other nodes.
Since only one faulty node is considered, the other nodes are synchronized and

measure 0 only with the faulty node. The faulty node collects non-zero differences
and can adjust its clock not earlier than m slots after the failure because of the fault-
tolerant algorithm adopted.

The correction factor is greater than one phase bit during the time interval of 2N
slots.

The average skew shows how big is the time difference of the failed node clock
from the ensemble.

3.2.2. Average algorithm for clock adjustment
Checked independent adjustment. In the checked adjustment, the correction is made
when N new differences after the last adjustment are collected and the correction factor
is greater than one phase bit. During the first m slots the correction factor is zero
because the highest m and lowest m values are rejected from the sorted list of time
differences. The first non-zero calculation is made in the (m+1)-st slot after the failure
occurrence. If the faulty node is the one to transmit in one of the first m slots, it does not
measure any difference in its attached slot. Thus, it collects m+1 time differences in
m+2 slots. The first two terms of expression (6) reflect this consideration. When the
faulty node applies the adjustment in (m+1)-st slot, it differs from the others with

mN 2
1

1 during the next communication cycle, i.e., for N slots. The average

skew for checked independent adjustment is expressed as follows:

(6)

mN
Nm

N
mm

N
mN

Nav 2
1121

2
1 .

Fixed-point independent adjustment. In the fixed-point adjustment, the correc-
tion is made if the node is the next to transmit and if the transmission is its first in the

7 9

communication cycle. The interval from correction to correction is always N slots de-
spite of the faulty node number. The value of the correction factor, however, depends
on how many slots before the node slot the failure has occurred. The first term in
expression (7) reflects the time difference of the failed node at its first adjustment. The
second term shows the skew at the second adjustment:

(7)

1
2

1
2

1 1

1
2 mN

mN
imNiN

N

mN

mi

N

i
av .

Fault-tolerant average algorithm with resynchronization. The clock synchroni-
zation is made in resynchronization intervals, common for all nodes. The value of the
correction factor depends on the number of the faulty node. This changes only the
second term in expression (7) and the average skew is

(8) .1
2

11
2

1
2

1 1

1
2

mN

mN
imNiN

mN
imNiiN

N
mN

mi

N

i
av .

3.2.3. Midpoint algorithm for clock adjustment
In the midpoint algorithm for clock adjustment, the correction factor does not depend
on the node number, nor on the number of the collected time differences. The expres-
sions for the average skew with midpoint algorithm applied are:

checked independent adjustment

(9)

2
21

2
1 Nm

N
mm

N
mN

Nav ;

fixed-point independent adjustment

(10)

1
2

2
2

1
1

2 mNmNiN
N

N

i
av ;

fault-tolerant average algorithm with resynchronization

(11)

1
2
2

2
1

1
2 mNmNNiN

N

N

i
av .

Results based on expressions (6)(11) are presented in Figs. 4 and 5 for the Fault-
Tolerant Average (FTA) algorithm and in Figs. 6 and 7 for the Midpoint (MP) algo-
rithm for clock adjustment. The average skew is depicted as a fraction of the skew on
the Y axis.

It can be seen from Figs. 4 and 5 that the algorithm with fixed-point independent
adjustment has the smallest average skew of the algorithms under consideration when
FTA algorithm for clock adjustment is applied. The algorithm with checked indepen-
dent adjustment has greater skew than the algorithm with resynchronization. For small
values of the number of tolerated failures (Fig. 4), however, the average skew of the
algorithm with checked independent adjustment is close to that of the algorithm with
resynchronization.

For the MP algorithm for clock adjustment there are cases in which the algorithm
with checked independent adjustment has better average skew than that with
resynchronization (Fig. 6). This is especially true for a small number of tolerated fai-
lures (Fig. 7).

8 0

Fig. 6. Average skew as a function of N, MP, m=1 Fig. 7. Average skew as a function of m, MP, N=31

The algorithm with fixed-point independent adjustment is not influenced by the
number of tolerated failures m (Figs. 5 and 7). The algorithm with checked independent
adjustment, however, shows a skew increasing with m, despite of the algorithm for
clock adjustment (Figs. 5 and 7).

4. Simulation

4.1. Simulator

The simulator program used for the experiments includes a number of built-in algo-
rithms. It comprises several models incorporated in a common environment:

time presentation model models the progress in real and local time units on the
basis of given clock drifts;

events generator generates and orders the events in real time and initializes
their modeling;

error model generates error demonstrations;
synchronization algorithms model models different kinds of synchronization

algorithms.

4.2. Simulated system

A system including six nodes is modeled. It is fully connected through LAN, i.e., all
nodes can read a message sent by one of them. The drift rate of the clocks is in the range

Fig. 4. Average skew as a function of m,FTA,N =1 Fig.5. Average skew as a function of m, FTA, N=31

0

0.1

0.2

0.3

0.4

0.5

0.6

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fixed-point

Checked

N

Resynchronization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Checked

Fixed-point

m

Resynchronization

0

0.1

0.2

0.3

0.4

0.5

0.6

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fixed-point

Resynchronization

Checked

N
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Fixed-point

Checked

m

Resynchronization

8 1

= + 5.105 for permanent failures, = + 5.104 for transient failures. The system
tolerates one failure, i.e., m = 1. The failure model includes full input omission, output
omission, and bad clock failure.

The following algorithm cases are included: direct synchronization, interactive
convergence with average value, and interactive convergence with midpoint value. The
fault tolerance is achieved by highest and lowest values rejection.

The studied failure cases include: no failures, permanent bad clock, transient bad
clock, permanent full input omission, transient full input omission, permanent output
omission, transient output omission.

The clock synchronization algorithms are compared by their skew and validity
properties.

5. Results

5.1. Experimental results for permanent failures

The presented two variants for independent adjustment are combined with the fault-
tolerant algorithms with average value and midpoint value. The results are compared to
the time-triggered system with resynchronization [11].

Figs. 810 present the simulation results of the skew distribution in percentages.
The skew scale is in phase bits. The diagrams shown are only for the Fault-Tolerant
Average (FTA) algorithm. The results are similar when using the Midpoint (MP) algo-
rithm.

Bad clock is modeled as clock whose drift rate is out of the range of normal clocks
drifts.

In the figures, diagram S1 represents the skew of the clock synchronization algo-
rithm with fixed-point independent adjustment. Diagram S3 is for the algorithm with
checked independent adjustment. Diagram S2 demonstrates the case of time-triggered
approach with resynchronization interval equal to the communication cycle. The coor-
dinate system in the figures for skew distribution depicts the number of phase bits on
the X axis and their percentage on the Y axis.

It can be seen from the figures that all algorithms tolerate the examined failure
types.

0 2 4 6 8 10 12 14 16

S1
S2

S3

0

4

8

12

16

20

0 2 4 6 8 10 12 14 16

S1
S2

S3

0

2

4

6

8

10

Fig. 8. Skew distribution upon input omission failure Fig. 9. Skew distribution upon output omission failure

6

8 2

The output omission failure causes bigger deviation of the clocks (Fig. 9) because
the faulty node applies the adjustment but the other nodes do not measure a difference
with it and do not take into account its clock value.

Figs. 1113 show the results for the rate of changing of the local clocks, [4],
during synchronization under bad clock failure. The rate of local clock change repre-
sents the ratio between local and global (real) time.

In Figs. 1113, the diagrams representing the case without failures are plotted
with fat line and those for the case with bad clock failure are plotted with thin line. A
distinction is made between the cases with and without fault tolerance. The results are
for the FTA. When the highest and lowest values are rejected the charts are plotted with
flat lines and they are plotted with dotted lines otherwise.

When there are no failures in the time-triggered system the application of fault
tolerance does not change the local time (fat curves in Fig. 11 are very close). Failures
do not increase the local clock rate of change, they only make the distance from real
time bigger.

The rate of local clock change in the no failure case increases when fault tolerance
is applied through the algorithms with independent adjustment (fat curves in Figs. 12
and 13). In case of a failure, however, the application of fault tolerance not only de-
creases the rate of local clock change but it keeps the values close to those for the case
without failures (thin curves in Figs. 12 and 13).

0 2 4 6 8 10 12 14 16

S1
S2

S3

0

4

8

12

16

20

0

500

1000

1500

2000

2500

3000

0.
99

99
18

0.
99

99
3

0.
99

99
42

0.
99

99
54

0.
99

99
66

0.
99

99
78

0.
99

99
9

1.
00

00
02

1.
00

00
14

1.
00

00
26

1.
00

00
38

1.
00

00
5

1.
00

00
62

1.
00

00
74

Fig. 10. Skew distribution upon bad clock failure Fig. 11. Local-time change rate for time-
triggered system with resynchronization

 Fig. 12. Local-time change rate for Fig. 13. Local-time change rate for fixed-
 checked independent adjustment point independent adjustment

0

500

1000

1500

2000

2500

3000

0.
99

99
18

0.
99

99
3

0.
99

99
42

0.
99

99
54

0.
99

99
66

0.
99

99
78

0.
99

99
9

1.
00

00
02

1.
00

00
14

1.
00

00
26

1.
00

00
38

1.
00

00
5

1.
00

00
62

1.
00

00
74

0

500

1000

1500

2000

2500

0.
99

99
18

0.
99

99
3

0.
99

99
42

0.
99

99
54

0.
99

99
66

0.
99

99
78

0.
99

99
9

1.
00

00
02

1.
00

00
14

1.
00

00
26

1.
00

00
38

1.
00

00
5

1.
00

00
62

1.
00

00
74

8 3

5.2. Experimental results for transient failures

The basic concepts of simulation for transient failures are:
 Transient failures are simulated as a Poison process.
 The duration of a transient failure in slots is defined as one-sided normal distri-

bution with mean and standard deviation equal to the failure length.
 The number of simultaneously active transient failures is limited to m, the num-

ber of tolerated failures.
 It is assumed that a failure does not affect directly the communications among

the non-faulty nodes.
Transient input and output omission failures are studied for duration more than

one slot, since failure with duration one slot does not affect significantly the synchroni-
zation. Transient bad clock failure is defined as a single non-linear change of clock
value.

The presented experimental results are obtained under the following conditions:
 Time slot of 100 bits (1 bit = 16 phase bits);
 Failure rate = 102 s–1;
 Period of simulation 106 slots;
 Simulation in 10 runs with different drift rates.
Transient bad clock failures are examined for failure values 100, 400, and 800

phase bits.
The presented two variants for independent adjustment are combined with the

fault-tolerant algorithms with average value and midpoint value. The results are com-
pared to the FTA algorithm with resynchronization [11] and resynchronization interval
equal to one communication cycle.

Figs. 14 and 15 show the diagrams for skew distribution in case of input and
output omission, respectively, when an average function is applied for correction factor
calculation. The results are very close when a midpoint function is applied to calculate
the adjustment. Figs. 14 and 15 show that input and output omission failures are tole-
rated similarly by the studied algorithms. The two variants of the algorithm with inde-
pendent adjustment show slightly better skew distribution than the FTA algorithm with
resynchronization.

Figs. 16–18 show the skew distribution for the Midpoint (MP) algorithm for clock
adjustment in case of bad clock (BC) failure. Three failure values are examined: 100
phase bits (Fig. 16), 400 phase bits (Fig. 17), and 800 phase bits (Fig. 18).

Fig. 14. Input omission in more than one slot Fig. 15. Output omission in more than one slot

0 2 4 6 8 10 12 14 16

S1
S2

S3

0

4

8

12

16

20

0 2 4 6 8 10 12 14 16

S1
S2
S3

0

4

8

12

16

20

8 4

Transient bad clock failures have slight influence on the skew distribution when
MP algorithm for clock adjustment is applied (Figs. 16–18). Only when the failure
value is big (Fig. 18) the skew distribution shifts to the low values of the skew. The
distribution for the algorithm with independent adjustment is better than that for the
algorithm with resynchronization, except for the value of 800 phase bits.

The results for the Average (FTA) algorithm for clock adjustment are presented in
Figs. 19–21 for the same failure values. As for the MP algorithm, the skew distribution

 Fig. 16. Skew distribution for BC Fig. 17. Skew distribution for BC
 failure value 100, MP failure value 400, MP

0 2 4 6 8 10 12 14 16

0

5

10

15

20

0 2 4 6 8 10 12 14 16

0

5

10

15

20

0 2 4 6 8 10 12 14 16

0

5

10

15

20

0 2 4 6 8 10 12 14 16

0

5

10

15

20

 Fig. 18. Skew distribution for BC Fig. 19. Skew distribution for BC
 failure value 800, MP failure value 100, FTA

0 2 4 6 8 10 12 14 16

0

5

10

15

20

0 2 4 6 8 10 12 14 16

0

5

10

15

20

 Fig. 20. Skew distribution for BC Fig. 21. Skew distribution for BC
 failure value 400, FTA failure value 800, FTA

8 5

is affected only for failure value of 800 phase bits but even in that case it is less influ-
enced than for the MP algorithm.

The slight effect of the transient bad clock failure on the skew distribution is due
to the small value of the ratio of the time for resynchronization of the failed node and
the time between failures.

A generalization of the skew as a measure for clock synchronization algorithms in
the presence of bad clock failures is its mathematical expectation (Table 1).

Table 1

Failure
value

0 100 400 800

 checked fixed-
point

TTP checked fixed-
point

TTP checked fixed-
point

TTP checked fixed-
point

TTP

FTA 3.63 3.18 3.95 5.51 4.68 5.91 11.46 9.39 12.13 19.35 16.78 19.75
MP 3.31 3.09 3.90 5.31 4.59 5.83 11.04 9.32 12.02 18.56 16.63 19.52

The results in the table show that the two algorithms studied with independent
adjustment have better mathematical expectation of the skew than the FTA algorithm
for system with resynchronization for all failure values. It can also be seen that the
average and the midpoint algorithms for clock adjustment show close values of the
expectation, with the MP algorithm demonstrating lower skews.

6. Conclusion

Algorithms for clock synchronization in distributed time-triggered control systems are
studied. They are classified according to their adjustment principles. Two main groups
of algorithms are distinguished: with direct and with interactive synchronization. The
fault tolerance support, referred to as convergent and consistent, is introduced as an
upgrade of the basic algorithms. A validity measure is proposed – local time rate of
change. Along with the skew distribution it is used to study the influence of the failures
and that of the fault tolerance of the clock synchronization algorithms.

The algorithms are studied with a simulation model that includes failure injection
properties.

A clock synchronization algorithm with independent adjustment is presented. It
uses the periodicity of the TDMA strategy for continuous collection of time differences
among the nodes’ clocks and their independent adjustment. Nodes decide locally when
to apply the adjustment. Two variants for algorithm implementation are proposed: fixed-
point and checked adjustment. The presented algorithms are studied formally.

The experimental results with the simulation model showed that the clock syn-
chronization algorithm with independent adjustment tolerates the studied failure types
at least to the same extent as the fault-tolerant average algorithm for time-triggered
systems. The implementation of the new approach implies simpler solutions, preser-
ving the effective fault tolerance.

8 6

R e f e r e n c e s

1. B a b a o g l u, O., R. D r u m m o n d. (Almost) No cost clock synchronization. In: Proc. FTCS-17,
1987, 42-47.

2. C r i s t i a n, F., C. F e t z e r. Probabilistic Internal Clock Synchronization. University of California,
San Diego, Tech. Report CS94-367, June 1996.

3. D j a m b a z o v, K., E. D j a m b a z o v a. Distributed clock adjustment in real-time systems. In:
Proc. of National Conference “Automatics and Informatics ’98”, Sofia, Oct. 1998, 33-36.

4. D j a m b a z o v a, E., K. D j a m b a z o v. Clock synchronization in distributed systems – simulation
results. In: Proc. of National Conference “Automatics and Informatics ’98”, Sofia, Oct.
1998, 29-32.

5. D j a m b a z o v a, E., K. D j a m b a z o v. Clock synchronization with independent adjustment in
distributed time-triggered systems. In: Proc. of National Conference “Automatics and
Informatics ’99”, Sofia, Oct. 1999, 60-64.

6. D j a m b a z o v a, E., K. D j a m b a z o v. Clock synchronization with independent adjustment in
distributed systems: Simulation results. In: Proc. of the International Scientific Conference
“Communication, Electronic, and Computer Systems ’2000”, May 2000, 96-101.

7. D j a m b a z o v, K., E. D j a m b a z o v a. Fault tolerance of clock synchronization algorithms. In:
Proc. of CompSysTech ’2000, June 2000, II.2-1-II.2-5.

8. D o l e v, D., J. H a l p e r n, H. R. S t r o n g. On the possibility and impossibility of achieving clock
synchronization. Journal of Computer and System Sciences, 32, 1986, No 2, 230-250.

9. H a l p e r n, J., B. S i m o n s, R. S t r o n g, D. D o l e v. Fault-tolerant clock synchronization. In:
Proc. 3rd Annual ACM Symp. on Principles of Distributed Computing, August 1984, 89-102.

10. K o p e t z, H. et a l. Distributed fault-tolerant real-time systems: The MARS approach. IEEE
Micro, February 1989, 25-40.

11. K o p e t z, H., A. K r u g e r, D. M i l l i n g e r, A. S c h e d l. A synchronization strategy for a time-
triggered multicluster real-time system. In: Proc. 14th IEEE Symp. on Reliable Distributed
Systems, September 1995.

12. K o p e t z, H., G. G r u n s t e i d l. TTP – A Time-triggered protocol for fault-tolerant real-time
systems. In: Proc. FTCS-23, 1993, 524-533.

13. K o p e t z, H., W. O c h s e n r e i t e r. Clock synchronization in distributed real-time systems.
IEEE Trans. on Computers, C-36, August 1987, No 8, 933-940.

14. L a m p o r t, L. Time, clocks, and the ordering of events in a distributed real-time systems.
Communications of the ACM, 21, July 1978, No 7, 558-565.

15. L a m p o r t, L., P. M. M e l l i a r - S m i t h. Synchronizing clocks in the presence of faults. Journal
of the ACM, 32, January 1985, No 1, 52-78.

16. L o n n, H., R. S n e d s b o l. Synchronization in safety-critical distributed control systems. In:
Proc. IEEE Int. Conf. On Algorithms and Architectures for Parallel Processing, Brisbane,
Australia, 1995.

17. M a h a n e y, S., F. S c h n e i d e r. Inexact agreement: Accuracy, precision and graceful degradation.
In: Proc. 4th Annual ACM Symp. on Principles of Distributed Computing, August 1985,
237-249.

18. R o s t a m z a d e h, B. et a l. DACAPO: A distributed architecture for safety-critical control
applications. In: IEEE Int. Symp. on Intelligent Vehicles, Detroit, USA, 1995.

19. R u s h b y, R. Systematic formal verification for fault-tolerant time-triggered algorithms. Ex-
tended version of a paper from the 6th Working Conf. On Dependable Computing for Critical
Applications, March 1997, 203-222.

20. S i m o n s, B., J. L u n d e l i u s W e l c h, N. L y n c h. An overview of clock synchronization.
In: Fault-Tolerant Distributed Systems (B. Simons and A. Spector, Eds.), LNCS, No 448,
1990, 84-96.

21. L u n d e l i u s W e l c h, J., N. L y n c h. A new fault-tolerant algorithm for clock synchronization.
 Information and Computation, 77, April, No 1, 1988, 1-36.

8 7

Синхронизация на часовници с независима корекция
в разпределени системи

Красимир Джамбазов, Едита Джамбазова

Инститиут по компютърни и комуникационни системи, 1113 София

(Р е з ю м е)

Представен е алгоритъм за синхронизация с независима корекция. Той използва
цикличността на стратегията с времеделене и множествен достъп до магистралата
за непрекъснато събиране на времеви разлики между часовниците на възлите в
системата и прилага независима корекция. Възлите решават локално кога да
приложат корекцията. Коригиращият фактор се изчислява както при отказо-
устойчивите алгоритми, но се прилага, когато стойността му надвиши един фазов
бит. Представени са два варианта за приложение на алгоритъма – фиксирана и
отложена корекция.

Представена е и класификация на алгоритмите за синхронизация.
Разграничени са две основни групи алгоритми: с директна и със съвместна
корекция. Поддържането на отказоустойчивостта, разграничено като
конвергентно и консистентно, е представено като надстройка на базовите
алгоритми. Предложената мярка на валидност (скорост на изменение на
локалното време), се използва заедно с разпределението на отместването за оценка
на влиянието на отказите и на отказоустойчивостта на синхронизационните
алгоритми.

Представеният алгоритъм е сравнен с други алгоритми за синхронизация в
разпределени системи за управление с твърди времеви ограничения. Използван
е симулационен модел на алгоритмите за синхронизация, който включва
възможности за инжектиране на откази.

Показаните резултати от експериментите със симулаторната програма дават
основание да се направи изводът, че представеният алгоритъм за синхронизация
с независима корекция толерира откази от типа пропускане по вход, пропускане
по изход и неизправен часовник поне в същата степен като отказоустойчивия
алгоритъм с осредняване.

