
5 8

Applying Category Utility and Partition Utility Functions
to Semantic-Based Conceptual Clustering Approach1

Ivo Marinchev

Institute of Information Technologies, 1113 Sofia

Abstract. The paper presents an instance of our general semantic-based approach to
creating concept hierarchies [7] particularly tuned for better performance on data
represented with attribute-value and atomic formulae languages. We achieve this goal
by incorporation of category utility and partition utility functions in its distance mea-
sure. Finally, we compare the performance of augmented algorithm to that of the
COBWEB implementation given in the WEKA 3 ML system.

Keywords: lattice theory, distances, category utility, partition utility, hierarchical
clustering, least general generalization (lgg).

1. Introduction

In the context of Machine Learning clustering is an approach to discovering structure
in data. Therefore the clusters are usually represented intensionally (in terms of rela-
tions, properties, features etc.) and hierarchical clustering techniques are of main inter-
est. The term often used for this area is conceptual clustering. Three basic issues are
important in conceptual clustering: the type of the cluster representation, the control
strategy used to search the space of possible clusterings and the objective function used
to evaluate the quality of clustering. Clusters can be represented by necessary and
sufficient conditions for cluster membership (e.g. rules, decision trees) or probabilistically
– by specifying the probability distribution of attribute values for the members of each
cluster. The control strategy determines the way in which the clustering tree is gener-

1 The work reported in this paper has been partially supported by Project IIT-010051 “Advanced meth-
ods and tools for knowledge representation and processing”.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

КИБЕРНЕТИКА И ИНФОРМАЦИОННИ ТЕХНОЛОГИИ Том 2, № 2
CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 2, No 2

София . 2002 . Sofia

5 9

ated (e.g. top-down, bottom-up, hierarchical sorting). The objective function can be
integrated in the control strategy or used separately. The classical conceptual clustering
system COBWEB [4] uses the former approach – the search in the space of possible
clusterings is based on an objective function that evaluates the candidate clusterings.
The latter approach is taken in another classical system, CLUSTER/2 [8] that gener-
ates an initial clustering and then optimizes it iteratively by using an objective function.
A more recent approach along these lines is proposed in [3].

Recently a semantic-based approach (a form of distance-based approach) to cre-
ating concept hierarchies has been introduced in [7]. It has been described as a general
framework for semantic-based inductive learning. It proposes a consistent way to inte-
grate syntactical lggs with semantic evaluation of the hypotheses. For this purpose two
different relations on the hypothesis space are used – a constructive one (1), used to
generate lggs and a semantic one (2) giving the coveragebased evaluation of them.
These two relations (when they satisfy certain necessary conditions) jointly implement
a semantic distance measure.

In the present paper we represent an instance of our general approach particularly
tuned for better performance on data represented with attribute-value and atomic for-
mulae languages. We achieve this goal by incorporating category utility and partition
utility functions in our distance-based algorithm.

2. Basic algorithm
Given a set of examples the task of a hierarchical clustering system is to create a tree
structure of clusters2 where the children of a cluster partition the examples covered by
their parent. The algorithm proposed in [7] accomplishes this task by using a coverage-
based (semantic) distance measure and employing a bottom-up control strategy. Using
a given set of examples E the algorithm builds a partial lattice structure G, where E is
the set of all maximal elements of G. At each step the algorithm selects pairs of ex-
amples/clusters to be merged in a single clusters. The selection is based on a distance
measure (based on a so-called semantic relation (1)) and applying a least general
generalization operator (lgg) on the selected pair produces the new cluster. The lgg is
based on a (so-called) constructive relation (1) that is used next to remove the ex-
amples/hypothesis covered by the newly generated one. The algorithm works itera-
tively and at each step updates two sets: C – the set of top level clusters in the current
hierarchy where the two examples/clusters to be merged are selected from and G – the
current hierarchy accumulating all examples and hypotheses (clusters) generated by
lgg. Formally the algorithm is as follows:

1. Initialization: G = E, C = E
2. If |C| = 1 then exit
3. T = {h | h = lgg(a, b), (a, b) = argmina,bC

d(a, b)}
4. DC = {a | a C and h T, h 2 a}
5. C = C \ DC
6. G = G T , C = C T
7. Go to step 2.

2 In the current paper clusters are represented intensionally by inductive hypotheses covering their
corresponding examples. Thus the terms cluster and hypothesis are interchangeable.

6 0

This algorithm has a big advantage that it is dependent neither on language used
for knowledge (examples and hypotheses) representation nor on relations involved. In
[7] we present the necessary conditions the two relations (semantic and constructive)
have to satisfy in order to be applicable.

Although in the most common form our approach is language independent in this
paper we limit our discussion to the two most widely used representations for both
examples and hypotheses – the attribute-value language and the language of atomic
formulae. All attributes are considered nominal. In the former case every element (ex-
ample or hypothesis) e = {ai = vi | i = 1, …, n} where ai is the name of the i-th attribute
and vi is its corresponding value. The two relations (1 and 2) are the set inclusion .
The lgg (infimum) of two elements (examples and hypotheses) is defined as their inter-
section, i.e. lgg(x, y) = x y. The distance function is defined as d(x, y) = 2– cov(x) +
2– cov(y) – 2 2– cov(xy), where cov(x) is the number of examples covered by x in respect
to 2, i.e. cov(x) = |{y | y E, x 2 y}|. In the case of atomic formulae all examples and
hypotheses are represented by atomic formulae with the same predicate symbol. The
two relations in this setting are -subsumption. The definition of distance function is
analogous.

Since in most cases the set T created in step 3 is not a single, a restricted
version of the algorithm is usually used. The basic idea is instead of the whole set T to
use just a single element of it (arbitrarily chosen). This reduces the computational
complexity of the algorithm3 and also narrows the created hierarchy.

We illustrate the algorithm by a simple example of hierarchical clustering of a
set of 10 animals represented by 6 attributes: covering, milk, homeothermic, habitat,
eggs and gills. Table 1 shows4 the initial set E and the resulting set G. To display the
examples/hypotheses we use positional encoding, i.e. each element of the hierarchy is a
list of values or underscores (denoting a missing attribute). In this representation the
members of a cluster represented by hypothesis h are all elements of E that h subsumes,
i.e. the examples that have the same values at the same positions as h, where an under-
score in h matches all values. Obviously because of the random choice in step 3, the
clusterings may differ from run to run. Figs. 2a and 2b show two possible hierarchies
generated by the algorithm (Fig. 2b corresponds to the set G, shown in Table 1). We are
further interested in the following questions: how can we evaluate these hierarchies and
can we use this evaluation to improve the quality of clustering? We discuss these ques-
tions in the next section.

3 The complexity of the algorithm in this case is O(n3), where n = |E|. More details on this issue can be
found in [7].
4 In order to minimize the size of tables and figures in the current paper all examples and hypothesis are
denoted by ordered lists of their attribute values (positional encoding).

Fig. 1. Visual representation of the algorithm

C

E

G
C

E

G
C

E

G

6 1

E G
[feather, f , t, land, t, f]
[hair, t, t, air, f, f]
[feather, f , t, air, t, f]
[hair, t, t, land, f, f]
[scales, f, f, land, t, f]
[none, f, f, land, t, f]
[none, t, t, sea, f, f]
[hair, t, t, sea, t, f]
[scales, f, f, sea, t, f]
[scales, f, f, sea, t, t]

[feather, f , t, land, t, f]
[hair, t, t, air, f, f]
[feather, f , t, air, t, f]
[hair, t, t, land, f, f]
[scales, f, f, land, t, f]
[none, f, f, land, t, f]
[none, t, t, sea, f, f]
[hair, t, t, sea, t, f]
[scales, f, f, sea, t, f]
[scales, f, f, sea, t, t]
[scales, f, f, sea, t, _]
[_, f, f, land, t, f]
[_, f, f, _, t, _]
[hair, t, t, _, f, f]
[feather, f, t, _, t, f]
[_, f, _, _, t, _]
[hair, t, t, _ , _, f]
[_, t, t, _, _, f]
[_, _, _, _, _]

a

b

Fig. 2. Concept hierarchies for the “animals” dataset

Table 1. Attribute-value representation of examples and hypotheses for the “animals” dataset
(t and f stand for true and false respectively)

 [scales,f,f,sea,t,t] – F

[scales,f,f,sea,t,f] – R

[hair,f,f,sea,t,f] – M

[none,t,t,sea,f,f] – M

[hair,t,t,air,f,f] – M

[hair,t,t,land,f,f] – M

[scales,f,f,land,t,f] – R

[none,f,f,land,t,f] – A

[feather,f,t,land,t,f] – B

[feather,f,t,air,t,f] – B

[scales,f,f,sea,t,_]

[_,t,t,sea,_,f]

[hair,t,t,_,f,f]

[_,_,_,_,_,f]

[_,f,f,land,t,f]

[_,_,_,sea,_,_]

[_,_,_,_,_,_]

 [scales,f,f,sea,t,f] – R

[scales,f,f,sea,t,t] – F

[scales,f,f,land,t,f] –
R [none,f,f,land,t,f] – A

[hair,t,t,air,f,f] – M

[hair,t,t,land,f,f] – M

[hair,t,t,sea,t,f] – M [none,t,t,sea,f,f] – M

[feather,f,t,land,t,f] – B

[feather,f,t,air,t,f] – B

[scales,f,f,sea,t,_]

[_,f,f,land,t,f]

[hair,t,t,_,f,f]
[_,t,t,_,_,f]

[hair,t,t,_,_,f]

[_,f,f,_,t,_]

[_,_,_,_,_,_]

[_,f,_,_,t,_]

[feather,f,t,_,t,f]

6 2

3. Evaluating clustering quality

A commonly used measure to evaluate clustering quality is the category utility function
proposed in [5]. This is the objective function used in COBWEB [4] and in many
related systems. Category utility attempts to maximize both the probability that two
objects in the same category have attribute values in common and the probability that
objects from different categories have different attribute values. The category utility
function assigns a value CU(Ck) to each cluster Ck as follows:

(1) CU(Ck) =
j

ijikiji
i

VAPCVAP])()|([22 .

The sums are calculated for all attributes Ai and all their values Vij. The probabilities
P(Ai = Vij | Ck) and P(Ai = Vij) are calculated as relative frequencies of the occurrence of
the Vij value for the Ai attribute within the cluster Ck and within the whole set of ex-
amples respectively.

CU(Ck) estimates the quality of individual clusters. To measure the quality of a
clustering we need a function that evaluates the quality of a partition of data. For this
purpose the average category utility of clusters in the partition is used, i.e.

(2) PU({C1, C2, …, Cn}) =
k

kC
n

)(CU1
.

In hierarchical clustering the partition utility function PU can be used at any level of the
concept hierarchy. Applied to the children of the root PU evaluates the overall partition
of the examples. For example the PU scores for the top-level partitions of the two
concept hierarchies in Figures 2a and 2b are as follows:

PU([_,_,_,sea,_,_], [_,_,_,_,_,f]) = 0.191,
PU([_,f,_,_,t,_], [_,t,t,_,_,f]) = 0.612.

These PU scores show that the second clustering is better than the first one. This also
becomes clear if we look at the class memberships of the examples. The classes that the
examples belong to are shown at the leaves of the hierarchies as M, B, R, F and A
(denoting mammal, bird, reptile, fish and amphibian respectively). The algorithm does
not use these labels, however they may be used to evaluate “externally” the created
hierarchy. For the bottom clustering, [_, t, t, _, _, f] represents the cluster of mammals,
and the other cluster – [_, f, _, _, t, _], groups all non-mammals. The structure of [_, f,
_, _, t, _] reflects the natural way of grouping birds, reptiles, fish and amphibians. This
observation is also supported by the PU scores of the lower level partitions. For ex-
ample, the PU scores of the partitions of the mammal clusters in the two hierarchies
are:

PU([_, _, _, _, _, f]) = 0.374,
PU([_, t, t, _, _, t]) = 0.421.

Another reason for these scores is that the mammal and non-mammal clusters in the
first hierarchy overlap (they share 3 examples) while in the second hierarchy they are
completely disjoined.

The above considerations suggest that there is a kind of propagation of “good”
PU scores (i.e. good partitions of data) from the lower to the upper levels of the concept
hierarchy. This in turn suggests a way to integrate the PU scores as an objective func-
tion into the control strategy of our general algorithm. This algorithm uses a bottom-up

6 3

control strategy. At each iteration a new hypothesis (cluster) h is added to the hierarchy.
Since at this stage the whole partition at that level of the hierarchy is still unknown, h
should be evaluated individually with respect to its contribution to the quality of clus-
tering for the partition in which it will be included at a later step. That is, h has to
maximize its CU score. To implement this we modify step 4 of the basic algorithm
accordingly:

4. hmin = argmaxhT CU(h), T = {hmin}
An important issue in bottom-up clustering is how to determine when to stop

merging clusters (generalizing hypotheses). In our algorithm the newly generated hy-
pothesis h replaces the hypotheses/examples that it subsumes. Since the goal is to maxi-
mize the quality of clustering in terms of PU scores, it is expected that CU(h) > PU({h1,
h2, …, hn}), where h1, h2, …, hn are the hypotheses/examples that h subsumes, i.e. h 2
hi , i = 1, 2, …, n. This condition can be used to stop the process of generating new
hypotheses and thus to cut off the hierarchy at a certain level. For a greater cut-off, a
stronger condition can be defined as CU(h) > max{CU(h1), CU(h2), …, CU(hn)}. Com-
bining this two conditions, we introduce a cut-off parameter W [0, 1], that is used to
control this process by gradually switching between them: CU(h) > PU({h1, h2, …,
hn}) + W * (max{CU(h1), CU(h2), …, CU(hn)} – PU({h1, h2, …, hn})).

The cut-off parameter W is used in step 4 of the algorithm in the following
way. If h satisfies the stopping condition, then its successor with maximal CU score is
used as a top-level hypothesis (an immediate successor of the root). This is achieved by
excluding the latter and all its successors from the candidates for further merging.

4. Experiments
To evaluate the performance of the algorithm we conducted experiments with some
well-known datasets. They include the previously discussed “animals” dataset contain-
ing 10 examples with 6 attributes, the “zoo” dataset – 59 examples with 16 attributes
and the small soybean dataset – 47 examples with 35 attributes, all obtained from the
UCI ML repository [1]. The class attributes were removed from all three datasets and
after the concept hierarchies were generated the class information was used as an addi-
tional, “external” criterion to evaluate the quality of clustering. The idea was that the
top-level partition should reflect the class distribution in the set of examples. As a basis
for comparison a version of the COBWEB algorithm provided by the WEKA-3 ML
system [11] was used in the experiments. Table 2 shows the PU scores of the top level
partition produced by two clustering algorithms – the lattice-based clustering with gain
function (denoted as LGG-PU) and COBWEB with the three data sets discussed above.
Table 3 shows the performance of the same algorithms on the same datasets measured
by the entropy of the class attribute in the clusters (hypotheses) from the top-level
partition. The entropy of the class attribute in a cluster Ck is calculated as follows:

(3) H(Ck) = ,
where Vi are the values of the class attribute C, that occur in the examples belonging to
cluster Ck . Then the entropy in a partition {C1, C2, …, Ck}, or the partition entropy PH
is:

(4) PH({C1, C2, …, Cn}) =
k

k
k CH

E
C)(

||
||

,

6 4

where the terms ||
||

E
Ck are weight coefficients that account for the cluster size.

 Algorithm

 Algorithm

In the ideal case each cluster contains examples of a single class and then the
PH function of this partition is 0. In the general case small PH scores mean that the
partition of the data corresponds to the distribution of the class attribute. Of course this
also depends on the representativeness of the set of examples (i.e. whether it contains a
sufficient number of instances from every class).

The above results are also evidence about the fact that high PU scores and low
PH scores do not always mean that the resulting top-level partitioning is “good enough”.
It may be too fragmented though. An example of this “feature” can be seen in the Zoo
and Soybean results where the LGG-PU algorithm builds much more fragmented par-
titioning compared to that of the COBWEB. The main reason for these results is the
fact that the LGG-PU algorithm performs greedy search in the semi-lattice of all pos-
sible clusters, thus like all similar algorithms can fall in the local extremums whereas
the COBWEB can “step back” and go out of some of these pitfalls. Removing this
“feature” of our algorithm is one direction for future work.

Finally, we present a result from experiments conducted with the relational
version of our inductive learning algorithm. Thus we show one advantage of it that
stems from the expressive power of this language for knowledge representation.

As described in [7] this algorithm can handle relational data by using a rela-
tional lgg. For our representation such lgg can be implemented by anti-unification.
This is an operation that replaces same constants with same variables. For example
lgg({a, b, a}, {c, d, c}) = {X, Y, X}, where X and Y are variables. The main advantage
of this representation is the possibility to define explicitly equality of attribute values.
To investigate the behavior of our clustering algorithms we used the training sample of
the MONK1 dataset [9]. This dataset describes a concept with 6 attributes by 61 posi-
tive and 61 negative examples. The propositional description of the target concept is:

{octagon, octagon, _, _, _, _}
{square, square, _, _, _, _}

 LGG-PU COBWEB

Animals (10 examples, 6 attributes) 0.505 0.505

Zoo (59 examples, 16 attributes) 0.745 0.721

Soybean (47 examples, 35 attributes) 0.750 1.460

Table 2. PU scores for the top-level partition of three datasets. The value of the cut-off
parameter for the LGG-PU is W = 0.5

 LGG-PU COBWEB
Animals (10 examples, 6 attributes) 0.27/4 0.27/4
Zoo (59 examples, 16 attributes) 1.03/7 0.99/4
Soybean (47 examples, 35 attributes) 0.00/8 0.49/4

Table 3. PH scores/number of clusters for the top-level partition of three datasets.
The value of the cut-off parameter for the LGG-PU is W = 0.5

6 5

{round, round, _, _, _, _}
{_, _, _, _, red, _}

While the relational one is
{X, X, _, _, _, _}
{_, _, _, _, red, _}

For clustering we used just the positive examples, because the aim of the
MONK1 problem is to build a meaningful description of the target concept and be-
cause distance-based inductive algorithms do not need the negative examples to narrow
the search or to avoid overgeneralizations. The whole set of examples (including the
negatives) was used for “external” evaluation of the top-level clusters. The experi-
ments with the MONK1 data are summarized in Table 4.

 Algorithm

The main findings reflected in the experiments are the following:
 For propositional data the LGG-PU algorithm performs similarly to COBWEB as

long as the PU scores are concerned. In some cases LGG-PU achieves much better
PH scores than COBWEB. A cut-off parameter W close to 0 results in high PU
scores and low PH scores. With W close to 1, the PU scores are low and the PH
scores are high.

 In the relational case both algorithms achieve 0 entropy at the top-level partition.
LGG-PU however built two clusters that match exactly the original definition of
target concept. COBWEB created very fragmented definition obviously because it
does not take into account the relational similarity between examples.

 In the relational example (MONK1) the PU scores are low for both algorithms.
This is because the two top level concepts in the original definition of the target
concept substantially overlap.

5. Related work

Most of the approaches to hierarchical and conceptual clustering are related to two
classical systems – CLUSTER/2 [8] and COBWEB [4]. CLUSTER/2 generates an
initial clustering and then optimizes it iteratively by attempting to minimize the cluster
overlapping. Clusters are represented as necessary and sufficient conditions for cluster
membership (e.g. rules) and are derived by a standard concept learning algorithm. In
COBWEB the clusters are represented probabilistically by the probability distribution
of the attribute values for the members of each cluster. The control strategy used is
based on the PU function. There are many other systems that follow the COBWEB’s
approach. Some of them elaborate the objective function by using information-based
heuristics (e.g. the information gain used in decision tree induction), Bayesian variants

 PU PH Number of clusters
COBWEB 0.14 0 7
LGG-PU 0.16 0 2

Table 4. Results of clustering the MONK1 data. The PU, PH scores, and the number of clusters
refer to the top-level partition. PH is calculated by using the whole set of examples (positive
and negative)

5

6 6

of PU (used in AUTOCLASS [2]), or the Minimal Message Length (MML) principle
(used in SNOB [10]). Others combine the COBWEB and the CLUSTER/2 approaches
– they first generate initial clustering and then optimize it by using various objective
functions. The approach taken in [3] is based on this idea. It uses hierarchical sorting to
induce a clustering and then iteratively simplifies it by applying various techniques as
redistribution, reordering etc.

There is third approach to hierarchical clustering that is based on lattice struc-
tures. The lattices are a useful mathematical formalism that resembles cluster hierar-
chies. The problem with the use of lattices for clustering is that the techniques for
generating clusters should have some formal properties (usually not present in the heu-
ristic algorithms). The computational complexity of the lattice algorithms is also high.
Nevertheless lattice approaches to clustering exist and some of them are successful.
For example [6] use Galois lattices to induce hierarchical clusterings for binary at-
tributes. This approach is based on the so-called maximal rectangles and employs some
standard algorithms from Galois lattice theory.

Our approach is also based on lattices. Its theoretical basis is the semantic
distance measure introduced in [7] that allows evaluating the similarity between ex-
amples/clusters as well as applying consistently a generalization operation (lgg) to
build the lattice structure. The use of a PU-based objective function allows to improve
the quality of clustering and to reduce the complexity of the algorithm. The main fea-
tures of the approach can be summarized as follows:
 LGG-PU represents clusters as propositional or relational rules. Similarly to CLUS-

TER/2 it allows cluster overlapping.
 It uses a PU-based objective function to evaluate the quality of clustering.
 The control strategy of the algorithm is a bottom-up greedy search based on a

consistent integration of a lattice-based distance measure and a PU-based objective
function.

 LGG-PU is able to build relational descriptions of the clusters. Although the PU
function does not work well on relational data, it is still useful in the control strat-
egy of the algorithm.

6. Conclusion

We described an approach to hierarchical clustering based on the use of a least general
generalization (lgg) operator to induce a lattice structure of clusters and a category
utility objective function to evaluate the clustering quality. The objective function is
integrated with a lattice-based distance measure into a bottom-up control strategy for
clustering. The preliminary experiments showed that the approach compares well with
other similar approaches and in some cases outperforms them. The future work will
address the following issues:
 Extending the algorithm to handle numeric attributes. This can be achieved by

extending the partial ordering relation (presently set inclusion) and by defining a
proper lgg that can generalize numeric attributes too. Then we can use the same
distance measure and a PU function that uses probability distributions.

 Although the algorithm evaluates clusters locally, it also maximizes the overall
clustering quality since the local evaluation goes through all levels of the hierarchy
in a bottom-up fashion. Of course, as this is a greedy search, there is no guarantee

6 7

that the global maximum can be found. With this respect other approaches to evalu-
ating the quality of clustering have to be investigated too (e.g. the recursive ones
used in COBWEB).

R e f e r e n c e s

1. B l a k e, C., C. M e r z. UCI Repository of Machine Learning Databases. 1998.
2. C h e e s e m a n, P., J. K e l l y, M. S e l f, J. S t u t z, W. T a y l o r, D. F r e e m a n. AutoClass: a

Bayesian classification system. – In: Proceedings of the 5th International Workshop on Ma-
chine Learning, Ann Arbor, San Mateo, CA. Morgan Kaufmann, 1988, 54-64.

3. F i s h e r, D. Iterative optimization and simplification of hierarchical clusterings. – Journal of
Artificial Intelligence Research, 4, 1996, 147-179.

4. G e n n a r i, J. H., P. L a n g l e y, D. F i s h e r. Models of incremental concept formation. – Artificial
Intelligence, 40, 1989, 11-61.

5. G l u c k, A., J. C o r t e r. Information, uncertainty, and the utility of categories. – In: Proceedings of
the 7th Annual Conference of the Cognitive Science Society, Hillsdale. Lawrence Erlbaum,
1985, 283-287.

6. G u e n o c h e, A., I. V. M e c h e l e n. Galois approach to the induction of concepts. – In: Categories
and Concepts: Theoretical Views and Inductive Data Analysis, I. V. Mechelen, J. Hampton,
R. Michalski, & P. Theuns (Eds.). Academic Press, 1993, 287-308

7. M a r i n c h e v, I. Semantic Height Functions and their Application to the Inductive Machine
Learning. PhD Thesis, Sofia University, 2001.

8. M i c h a l s k i, R., R. S t e p p. Learning from observation: conceptual clustering. – In: Machine
Learning: Artificial Intelligence Approach (R. Michalski, J. Carbonell, T. Mitchell, Eds.).
Vol. 1, Tioga, 1983, 331-363.

9. T h r u n, S. B., et al. The MONK’s Problems – a Performance Comparison of Different Learning
Algorithms. Tech. Rep. CS-CMU-91-197, Carnegie Mellon University, 1991.

10. W a l l a c e, C., D. D o w e. Intrinsic classification by mml { the snob program. – In: Proceedings
of the 7th Australian Joint Conference on Artificial Intelligence, Armidale, Australia. World
Scientific, 1994, 37-44.

11. W i t t e n, I., E. F r a n k. Data Mining: Practical Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 1999.

Приложение на функциите за категориална полезност
и кластеризационна полезност към семантичния подход
за концептуална кластеризация на данни

Иво Маринчев

Институт по информационни технологии , 1113 София, E-mail ivo_m@iinf.bas.bg

(Р е з ю м е)

Настоящата статия представя вариант на нашия семантично базиран подход към
построяването на концептуални йерархии [7], специално пригоден за ефективна
обработка на данни, представени с езика “атрибут–стойност”и езика на
атомарните формули. Ние постигаме този резултат чрез прилагане на фунцкиите
за категориална полезност и кластеризационна полезност. Накрая сравняваме
ефективността на така модифицираната система с тази на реализацията на
COBWEB, налична в системата WEKA 3 ML.

