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Abstract: The paper discusses the problem of supervised and unsupervised
discretization of continuous attributes — an important pre-processing step for many
machine learning (ML) and data mining (DM) algorithms. Two ML algorithms -
Simple Bayesian Classifier (SBC) and Symbolic Nearest Mean Classifier (SNMC))
essentially using attribute discretization have been selected for empirical comparison
of supervised entropy-based discretization versus unsupervised equal width and equal
frequency binning discretization methods. The results of such evaluation on 13 bench-
mark datasets do not confirm the widespread opinion (at least for SBC) that entropy-
based MDL heuristics outperforms the unsupervised methods. Based on analysis of
these results a modification of the entropy-based method as well as a new supervised
discretization method have been proposed. The empirical evaluation shows that both
methods significantly improve the classification accuracy of both classifiers.

Keywords: supervised and unsupervised discretization, machine learning,
data mining.

1. Introduction

Discretization is a process of dividing the range of continuous attributes into disjoint
regions (intervals) which labels can then be used to replace actual data values. Both in
machine learning (ML) and data mining (DM) the discretization techniques are mainly
used as a data preprocessing step, however they aim at different goals. In ML such
techniques are usually applied in a classification context where the goal is to maximize
the predictive accuracy. For example, it is well known fact that the simple Bayesian
classifier (SBC) can significantly improve accuracy over a normal approximation [1].
Reducing the number of values for an attribute resulted from the discretization leads to
accelerating the decision-tree-based classification methods especially for very large
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datasets [2]. It should also be mentioned that many ML algorithms operates only in
nominal attribute spaces [3] and that is why a preliminary discretizing of continuous
attributes is needed in order to be applied to real databases.

In DM the emphasis is often not on predictive accuracy but rather on finding
previously unknown and insightful patterns in the data. In such a context the goal of
discretization is to find such intervals that do not hide patterns and are semantically
meaningful [4]. Many discretization techniques are used for constructing a concept
hierarchy — a hierarchical or multiresolution partitioning of attributes, which is useful
for mining at multiple levels of abstraction [2].

The existing discretization methods can be described along several dimensions. In
[1] (which is may be the most often cited work on discretization) they are three: super-
vised versus unsupervised, global versus local and static versus dynamic. The super-
vised methods intensively explore the class information while unsupervised ones do not
use it at all. The second dimension highlights the moment when discretization is per-
formed — the global discretization is a preprocessing step carried out prior the process
of constructing a classifier, while local methods perform discretization during such a
process (see, for example C4.5 [5]). The static (or univariate [4]) methods discretize
each attribute independently (or only in conjunction with class attribute) and do not
consider interactions with other attributes (e.g. all methods analyzed in [1] fall in this
category). The dynamic (or multivariate) methods are searching for discretization in-
tervals for all attributes simultaneously thus capturing attribute interdependencies. In
[6] authors report on experiments with dynamic versions of some static discretization
methods using the wrapper approach. In the classification context it has been found no
significant improvement in employing dynamic discretization over its static counter-
part. However, in the DM context [4] proposes a method for the multivariate
discretization and reports that such a method does not destroy hidden patterns (as
univariate methods do) and generates meaningful intervals.

The present paper considers discretization methods only in the classification con-
text, i.e. our primary goal is to improve the generalization accuracy of a classifier on a
discretized dataset. In our research we have been motivated mainly by the following
facts:

1. Discussing such simple unsupervised discretization methods as equal width
(EWB) and equal frequency (EFB) binning, most of authors (see e.g.[6, 7, 8]) note that
not using of class attribute may potentially lead to losing the essential information due
to the formation of inappropriate bin boundaries and consequently such methods will
perform poorly in many situations.

2. Most of experimental evidences for better “behavior” of supervised discretization
methods over unsupervised ones (e.g. [1, 8]) are based on the error rate evaluation
methodology in which the discretization has been applied to the entire dataset that then
is split into several folds used for training and testing. However, as even some of these
authors have recognized in their more recent publications (see, e.g. [6]), discretizing all
the data once before creating the folds allows the discretization method to have access
to the testing data, which results to optimistic error rates.

3. Recognizing such a deficiency in the evaluation methodology the issue that
“the supervised learning methods are slightly better than the unsupervised methods” [1]
has not been revised and still is used as an axiom by other researchers without carrying
out new experiments. However, it may be expected that the supervised methods, as
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more “knowledgeable”, will achieve more advantage from accessing to the testing data
than their “blind” unsupervised counterparts, thus the “degree of optimism” in the error
rate would be different for supervised and unsupervised discretization techniques.

In order to check the “axiom” that supervised methods are better than unsuper-
vised ones for classification purposes, we have decided to compare some representa-
tives of both methods in the correct experimental settings. Due to their simplicity, EFB
and EWB methods have been selected as representatives of unsupervised discretization,
and the entropy-based method (EBD) proposed by Fayyad and Irani [9] — as their
supervised “opponent”. This method is one of the most popular supervised discretization
techniques and has been experimentally proved to outperform some other supervised
methods [6, 1]. In order to illustrate the effectiveness of the mentioned above discretization
algorithms they are used in conjunction with two different in their nature classification
algorithms — Simple Bayesian Classifier (as it is described in [10]) and Symbolic Near-
est Mean (SNMC) classifier (proposed in [11]). We have selected these algorithms
since both classifiers are proved to be significantly more accurate on discretized datasets
[1, 12].

The structure of this paper is as follows: the next section considers the discretization
methods selected for empirical evaluation in more details. It also briefly discusses SBC
and SNMC classifiers and their implementations. The third section describes experi-
mental settings and the results of evaluation of the algorithms. The fourth section is
devoted to the analysis of the results, proposes two new supervised discretization algo-
rithms and presents the results of their empirical evaluation. The last section is reserved
for a discussion and summary of this work.

2. Methods and classifiers

2.1. Discretization methods

The Equal Width Binning is the simplest unsupervised discretization method. It divides
the range of an observed continuous attribute on k equal sized bins (intervals), where k
—is a user-defined parameter. In the Equal Frequency Binning Method the intervals are
created so, that, roughly, the frequency of each interval is constant (that is, each inter-
val contains roughly the same number of continuous attribute values). The number of
intervals k is also specified by the user. In our experiments, described in the next sec-
tion, we selected k = 10 as it is recommended in [13].

The entropy-based supervised discretization (EBD) method proposed by F a y-
yadand Irani[9] may be seen as a divisive hierarchical clustering method used
entropy measure as a criterion for recursively partitioning the values of a continuous
attribute and Minimum Description Length (MDL) principle — as a stopping criterion.
Given a set of examples S, the basic method for EBD of an attribute A is as follows:

1. Each value v of A can be considered as a potential interval boundary T and
thereby can create a binary discretization (e.g. A <vand A > v).

2. Given S, the boundary value selected is the one that maximizes the information
gain resulting from subsequent partitioning. The information gain is:

InfGain (S,T) =Ent(S) - IE(S,T),
where IE(S, T) is the class information entropy determined by the formula:
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S, | S, |

S| Ent(S,) + S| Ent(S,),

where |S, | and |S,| correspond to the examples of S satisfying the conditions A < T and
A >T respectively. The entropy function Ent for a given set S, is calculated based on
the class distribution of the samples in the set, i.e.:

IE(S,T) =

Ent(S,)=-— f;lP(cj )log, P(c)),
=

where P(cj) is the probability of class C, in'S,, determined by the proportion of examples
of class c; in the set S, and k is a number of classes in S;.

3. The process of determining a new interval boundary is recursively applied to
each interval produced in previous steps, until the following stopping criterion based
on MDL principle is satisfied:

InfGain(S,T) <4,
_ log, (n—1) +log, (3 —2) —[KENt(S) — k,Ent(S,) — k,Ent(S,)]
o :

where k; is the number of classes represented in the set S, and n is a number of examples
inS.

Since the described above procedure is applied independently for each interval, it
is possible to achieve the final set of discretization intervals with different size — some
areas in the continuous spaces will be partitioned very finely whereas others (with
relatively low entropy) will be partitioned coarsely.

)

2.2. Classification algorithms

The Naive Bayesian Classifier is built based on a conditional independence model of
each attribute given the class [14]. The probability of an unlabeled example
X=<A, ..., A >to be classified as belonging to class c, is given by Bayes theorem:

_P(X|c,)
~P(X)

Having in mind that P(X) is the same for all classes and after applying the condi-

tion independence assumption we have the following:
m
P(c | X) JHIP(AJ' |c))-P(c).

This probability is computed for each class and the prediction is made for the
class with the largest posterior probability.

For nominal attributes A conditional probabilities P(A |c,) are estimated as counts
from the training set. The continuous attributes are assumed to be normally distributed
and the corresponding conditional probabilities are estimated by the probability density
function for a normal (or Gaussian) distribution [15].

A variant of Naive Bayesian algorithm, in which only nominal or discretized at-
tributes are used, is called Simple Bayesian Classifier [15, 16, 10]. It has been shown

P(c; [ X)
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that the simple Bayesian classifier outperforms his naive “brother” [1]. It has been also
proved that SBC is very robust and performs well even in the face of obvious violation
of the independence assumption [10].

There are several variants of SBC, which are mainly differed by the method of
treating missing values and estimating the probabilities (especially for that with zero
counts) [16]. In order to avoid losing potentially useful information, we treat missing
values as having the value “?” at both training and testing times, and null attribute
probabilities P(A |c,) are replaced by P(Aj|ci)/n, where n is a number of training exam-
ples, as done in [17].

Symbolic Nearest Mean Classifier [11] is a prototype-based learning algorithm,
which classifies an unseen example by calculating its distance to each of stored proto-
types — artificial examples constructed from the training examples by a special learning
method. As in case of the nearest neighbor algorithm, SNMC assigns to an unseen
example the class of its nearest prototype. The classifier can work only with nominal
attributes and, that is why, requires discretizing continuous attributes as a preprocess-
ing step. For calculating distances SNMC explores the modified value difference met-
ric (MVDM) proposed in [18] and applies it both in learning and classification phases.
More exactly, in SNMC the distance d(X,Y) between two examples (or prototypes)
X=<X, .., X, ¢>and Y =<y, ..,y ¢> is defined as:

m
d(X.Y) :\/kzzfl%/NDM (Vi)

Smvom (Xi1yi):%j§::1| P(Cj | A :Xi)_P(Cj A =y)l,

where c. is j-th class and n is @ number of classes in training set.

The MVDM metrics is used for defining a notion of mean value of a set of nomi-
nal values, which allows SNMC to use k-MEANS clustering algorithm to group train-
ing examples of the same class and to create several prototypes per class.

It has been reported [11] that SNMC in average outperforms C4.5 and PEBLS on
20 benchmark databases. It has also been shown [12] how the accuracy of SNMC may
be further improved. It should be mentioned that in our implementation of SNMC all
missing values have been treated as having the value “?” at both training and testing
sets.

3. Equal width and equal frequency binnings versus entropy-based
discretization: emperical evaluation

In order to evaluate the efficiency of the selected discretization algorithms thirteen
benchmark datasets containing at least one continuous attribute have been selected
from the widely used UCI repository [19]. The main characteristics of these bases are
presented in Table 1.

To calculate classification accuracy for application of each discretization and
classification method pair to each database, we used 3-fold stratified cross-validation
repeated 30 times? (i.e.30x3-CV). In performing cross-validation we separately

2 Splitting each database on 2/3 for training and 1/3 for testing was used to allow comparing the results
with the accuracies of other algorithms not used in our experiments but published in various papers.
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Table 1. Datasets used in the empirical study. The columns are, in order: name of the database; 2-letter
code used to refer to it in subsequent tables; number of examples; number of attributes; number of
continuous attributes; number of classes; percentage of missing values; whether or not the dataset
includes inconsistent examples (i.e. identical examples with different classes)

Dataset Code| Examples| Attributes| Continuous| Classes| Missing, % | Inconsistency|
Breast cancer Wisconsin| BW 699 10 10 2 2.2 No
Credit screening CE 690 15 6 2 0.6 No
Pima diabetes DI 768 8 8 2 0 No
Glass GL 214 9 9 6 0 No
Glass2 G2 163 9 9 2 0 No
Heart diseases HD 303 13 6 2 0.2 No
Horse colic HO 300 22 7 2 24.3 Yes
Hepatitis HE 155 19 6 2 0 No
Iris IR 150 4 4 3 0 No
Labor negotiations LA 57 16 8 2 35.7 No
Liver diseases LD 345 6 6 2 0 No
Vehicle VH 846 18 6 4 0 No
Wine WI 178 13 13 3 0 No

discretized each training set and applied the resulted discretization intervals to the cor-
responding testing set. It should be mentioned that the same 90 folds were used for all
discretization and classification algorithms.

The accuracy values on these folds were used for determining the statistical sig-
nificance of the results by calculating p-values according to the one-tailed t-paired test
[20]. The overall behavior of the algorithms was also evaluated by comparing their
average accuracy across all databases and by means of Wilcoxon matched pairs signed
ranks test [20]. All experiments were conducted in the environment of DaMiS — an
experimental data mining system developed by the authors [21].

Table 2. Results of experimants with SBC: average acauracies and standard deviations; pvalues; re-
sults of Willooxon test and nunber of significant wins against losses

Database | Entopy-Based |Equal Frequency (k=10) | Equal Width (k=10)
Discretization Discretization Discretization

Accuracy Accuracy | p-value | Accuracy | p-value

BW 97.3+0.2 97.4+0.1 0.005 |97.3+01| >01
CE 85.7+0.5 85.6 0.5 >0.1 |84.6+0.6| 0.0005

DI 74.7+0.8 74.5+0.6 >0.1 |755+0.6| 0.0005
GL 66.5+2.9 67.6 £2.6 >0.1 |62.1+3.2] 0.0005
G2 78.8+2.4 78.3+23 >0.1 [75.2+3.1] 0.0005

HD 83.0+0.9 83.0+0.9 >01 |833+09]| >01
HE 843+14 849+1.7 0.05 85.7+ 1.4 ] 0.0005
HO 78.8+0.9 79.0+0.7 >01 |786+06]| >0.1
IR 94.0+0.8 93.8+1.2 >0.1 |946+12] 0.05
LA 90.2+4.3 93.9+3.4 0.0005 |93.3+3.2| 0.0005
LD 57.3+1.2 62.7+1.7 0.0005 |63.3+ 2.0 0.0005
VH 59.6£0.7 62.0+1.0 0.0005 |60.8+ 1.1 0.0005

Wi 97.8+0.8 97.0 £ 0.6 0.0005 |97.0+0.6 | 0.0005
Average 80.61 81.51 80.86
Wilcoxon o >0.05 o >0.05
Sign. wins 5-1 6-4
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Table 3. Results of experiments with SNMC: average accuracies and standard deviations; p-values;
results of Wilcoxon test and a number of significant wins against losses

Database | Entropy-Based|Equal Frequency (k=10) | Equal Width (k=10)
Discretization Discretization Discretization
Accuracy Accuracy | p-value | Accuracy | p-value
BW 97.0+0.2 97.2+0.2 0.025 |97.2+0.2| 0.025
CE 85.1+0.5 86.0+0.7 0.0005 [85.6+0.4] 0.005
DI 73.8+1.0 745+ 1.0 0.01 74.9 £ 0.8 | 0.0005
GL 65.6 + 2.8 67.6+3.1 0.01 60.6 + 3.4 | 0.0005
G2 77.3+2.3 775+2.8 >0.1 |756+26| 0.05
HD 82.3+1.4 82.2+1.3 >01 [826+11]| >0.1
HE 81.0+2.2 815+25 >0.1 |818+23| >0.1
HO 83.3+1.1 83.3+1.2 >0.1 [834+09| >0.1
IR 93.8+1.0 948 +1.1 0.001 ]96.2+1.1| 0.0005
LA 83.8+4.9 85.8+4.7 0.025 [89.9+2.7 | 0.0005
LD 57.3+15 61.5+2.3 0.0005 [62.2+2.6| 0.0005
VH 61.6+15 65.2+1.2 0.0005 [64.2+2.0| 0.0005
Wi 96.2+1.2 96.7+1.1 0.01 96.3+1.2| >0.1
Average 79.85 81.06 80.81
Wilcoxon a = 0.005 a >0.05
Sign. wins 9-0 7-2

Table 2 compares three discretization algorithms by measuring the classification
accuracy of simple Bayesian classifier. p-values measure statistical significance of
differences between each unsupervised discretization algorithm and its supervised op-
ponent. Table 3 contains the analogous information concerning experiments with SNMC
algorithm.

The average accuracy of classifiers across all databases is a measure of debatable
significance, but it has often been used for evaluating the ML algorithms (see, e.g. [5,
22]). In both cases using of entropy-based discretization leads to worse results than
applying the unsupervised discretization methods. More over, SNMC in combination
with EFB is a more accurate algorithm that SNMC with EBD with a confidence in
excess of 99.5%. Counting a number of significant wins against a number of signifi-
cant losses also confirms the conclusion that on these 13 databases the selected two
unsupervised discretization methods are more effective than the supervised one.

Since these experimental results contradict (at least for SBC) to the correspond-
ing results reported in [1] and [8], we have decided to repeat the experiments in the
(incorrect) experimental setting similar to that used in the cited works. In other words,
at the beginning we discretized the whole database and then applied to it the 30x3-CV
method. It should be mentioned, that in this case we also used the same 90 folds as used
in the previous experiments. In Table 4 you can see how the accuracy of SBC is changed
when the discretization process is applied before and during the cross-validation.

As one can see, the applying of incorrect error rate evaluation methodology really
distorted the results. However, according to Wilcoxon test there is no significant differ-
ence for unsupervised methods. More over, the results are slightly worse, which may
be considered as “overfitting” effect. In the case of EWB the decreasing of average
accuracy may be explained by more global influence of outliers since the value range of
each attribute is calculated on the entire dataset rather than on the base of 2/3 of pos-
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Table 4. Results of experiments with SBC in different experimental settings: average accuracies and
standard deviations in the cases when the discretization has been done during and before cross-valida-
tion; p-values; results of Wilcoxon test and a number of significant wins against losses

Database Entopy-Based Equal Frequency (k=10) Equal Width (k=10)
Discretization Discretization Discretization
During |Before CV|p-value|During CV Before CV|p-value|During CV|Before CV |p-value
CVvV

BW [97.3+0.2|/97.3+0.1| >0.1 | 97.4+0.1 |97.4+0.1| >01 | 974+0.197.3+0.1| 0.05
CE 85.7+0.5/ 859+ 05| 0.1 |85.6+05|854+05| 0.05 |84.6+0.6[847+0.4] >0.1
DI 74.7+0.8|78.1+0.4|0.0005| 745+0.6 [74.3+0.6| 0.05 | 755+0.6 | 75.2+ 0.5 [ 0.005
GL 66.5+2.9|73.3+1.4|0.0005| 67.6+2.6 |68.5+2.1| 0.025 | 62.1 +3.2 | 58.3 + 2.7 [ 0.0005
G2 78.8+2.4|848+1.2|0.0005]| 78.3+2.3 |783+23| >0.1 | 75.2+3.1|77.3+2.1(0.0005
HD |83.0+0.9/83.3+0.6| 0.025|83.0+0.9 |826+09] 0.025 | 83.3+09|831+10| >0.1
HE 84.3+1.4|852+1.1/0.0005|84.9+1.7 |855+17]| 005 [857+14|857+13[ >0.1
HO 78.8+0.9|79.0+08| >0.1 | 79.0+0.7 [79.4+0.8| 0.005 | 78.6 +0.6 | 78.4 + 0.6 [ 0.025
IR 94.0+0.8/945+0.5| 0.025)93.8+1.2 |91.9+1.4 |0.0005[ 946 +1.2|955+1.1| 0.025
LA 90.2+4.3/96.6 +3.6|0.0005| 93.9+3.4 |93.7+3.0] >0.1 [93.3+3.2|935+32| 0.1
LD 57.3+1.2|63.2+3.3|/0.0005) 62.7+1.7 |61.5+1.8] 0.005 [ 63.3+2.0|63.9+20| 0.1
VH 59.6+0.7/62.4+0.8/0.0005| 62.0+1.0 |62.1+11] 0.1 [608+11]60.1+10[ >0.1
WI 97.84+0.8/99.0+0.3]/0.0005| 97.2+0.9 |97.3+0.8] >0.1 [ 97.0+0.6 | 96.5+0.6 | 0.001

Average | 80.61 83.27 81.53 81.37 80.88 80.86

Wilcoxon a = 0.0005 a >0.05 a >0.05

Sign. wins 11-0 4-5 3-5

sible attribute values. Concerning EFB method, the global application of this method
leads to increase in the number of attribute values used for constructing the equal
frequency intervals. Thus, when these values are not distributed uniformly (that is the
case for most datasets) the result is the set of intervals with bigger variance in fre-
quency amount.

In the case of the supervised discretization changing the evaluation framework
leads to increase of average accuracy at the confidence level of 99.95%, i.e. with this
level of confidence on can state that these results have been produced by absolutely
different classifiers, which is not the case!

Thus our experiments prove the following:

1. Theerror rate evaluation methodology, in which the whole database is discretized
during a preprocessing step, is incorrect and should never be used for evaluating
discretization methods in classification context.

2. In the framework of mentioned above 13 benchmark databases and two classi-
fiers (SBC and SNMC) two simple unsupervised discretization methods (EFB and
EWB) behave better (especially EFB) that the entropy-based supervised discretization
method proposed by Fayyad and Irani.

3. The results of all experiments for comparing the discretization methods, con-
ducted in the framework of mentioned above incorrect evaluation methodology, should
be revised.

4. How to improve the supervised discretization

In this section we introduce two new supervised discretization methods — the first one is
a modification of the mentioned above entropy-based technique, and the second — is an
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attemt to combine the aglomerative hierarchical clustering approach for constructing
the discretization intevals with application of MVDM metrics for mesuaring the *“se-
mantic” quality of such a dicretization.

4.1. Modified entropy-based dicretization

One of the possible reasons for comparatively weak behavior of EBD method is a too
coarse granulation of the discretization intervals for some attributes caused by apply-
ing of MDL principle as a stopping criterion. In order to check this hypothesis we
measured a number of discretization intervals for each continuous attribute produced
by this supervised discretization method and compared it to a number of classes in the
corresponding datasets®.

The results are summarized in Table 5 where the percent of continuous attributes,
for which a number of discretization intervals is less than a number of classes, is
presented. For such an attribute, for example, SBC algorithm would tend to classify
every unseen example to the majority class. In its turn, SNMC algorithm would do the
same or simply ignore all such attributes (for 2 classes of problems).

To empirically evaluate the mentioned above hypothesis we modified the MDL
stopping criterion by adding a constraint on a minimum number of possible discre-
tization intervals, i.e. now the recursive discretization process is stopped only if the
information gain is less than the corresponding threshold and the number of discretization
intervals is greater than or equal to the number classes. If this additional condition is
not satisfied, the new — more detailed discretization minimizing the class information
entropy is accepted even if such a discretization does not maximize the information
gain.

Table 5. Some characteristics of the EBD discretized datasets used in the empirical study: number of
classes, default accuracy and a percent of continuous attributes for which the number of
discretization intervals is less than the number of classes.

Database| Classes|Default Accuracy|Percent of cont. atts with number
(in %) of intervals < number of classes
BW 2 65.5 10
CE 2 55.5 0
DI 2 65.1 25
GL 6 35.5 100
G2 2 53.4 45
HD 2 54.4 40
HO 2 79.4 50
HE 2 63 57
IR 3 33.3 0
LA 2 64.9 25
LD 2 58 86
VH 4 25.5 27.8
Wi 3 39.9 38.5

% The experiment was done on the entire datasets rather than on each of 2/3 part of the datasets used as
training set in cross-validation methodology. However, this does not cause some significant differences
since the stratified cross-validation was used.
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4.2. MVVDM-based discretization

MVDM metrics [18] has been proposed as an attempt to assess more precisely the
similarity between different values of a nominal attribute in the context of supervised
ML. The basic idea is that two nominal values are similar if they have the similar
behaviour among examples from all classes. Since the objective of each supervised
discretization method is to construct such intervals that are more *“semantically” con-
trast to each other, MVVDM metrics is a promising candidate for such purposes. In [23]
a set of discretization methods combining techniques of hierarchical clustering and
application of MVDM metrics have been investigated. One of such method based of
agglomerative hierarchical clustering approach is presented here.

Given a set S of training examples, the basic agglomerative hierarchical
discretization algorithm for an attribute A may be described as follows:

1. Pre-processing step: Sort all distinct values of A in ascending order.

2. Group all values on a set of some basic intervals | = {I, ..., 1.} (in most
algorithms each basic interval consists of a single distinct value (which may occur |
times in S).

3. Select two adjacent intervals I, and I, which are the closest to each other
according to a given distance measure D(I,, Ij), and merge them into a single interval I..

4. Repeat Step 3 until some stopping criterion M(l) is met.

5. Post-processing step (optional): Evaluate an additional discretization quality
criterion Q(I). If it is not satisfied — change | in an appropriate way and repeat the
discretization process beginning with Step 3.

Since the adjacent values of an attribute may occur in examples belonging to
different classes, we define the measure of closeness between two adjacent intervals as

a weighted MVDM distance between them: D(1;,1;,,) =(n; +n;,;)Syyom (1 15.1)

where n; and n,, are the number of values (possibly duplicated) in the corresponding
intervals. Such a distance aims at creating not only as more class-homogeneous but
also more equally condensed intervals as possible*.

A stopping criterion evaluates the quality of the current partitioning by calculat-
ing (for example) a function of distances between discretization intervals (see, e.g.
[24]). In our algorithm the merging of intervals is stopped when the MVVDM distance
between the closest intervals becomes greater than a given threshold a.

To avoid the affect of overfitting, in most discretization algorithms it is desirable
to add an additional post-processing step®. It restricts a minimum number of attribute
values to be contained in a single (final) discretization interval (see e.g. [25, 24]). Such
a restriction allows to process imperfect data by considering a compact but sparse
group of values as noise, which can be removed.

Since such a parameter is very domain dependent, we introduced another param-
eter p (0 < p = 1) describing the quality of the discretization. A discretization
I={l, ..., 1.} containing N (possibly duplicated) attribute values is called p-quality
satisfyable if there does not exist an interval such that n_ = (1 — p)N, where n_ is a

4 The selection of such a distance function has been motivated by an excellent behavior of EFB
discretization method described in the previous section. See [23] for description of several MVDM-
based distance measures and stopping criteria different from the mentioned above.

5 The restriction that the minimum number of discretization intervals should not be less than the num-
ber of classes, that we have added to the entropy-based discretization (see previous subsection) is a
kind of such post-processing step.
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number of attribute values contained in interval | . For example, if we set p = 0.95,
that any discretization, each interval of which contains more than 5% of the whole
amount of attribute values, will be 0.95-quality satisfyable. It can be shown [23], that
a 0.95-quality satisfyable discretization cannot consist of more than 19 intervals (which
corresponds to the case of the unified distribution of values). The corresponding num-
bers of intervals for p = 0.9 and p = 0.75 are 9 and 3.

Introducing the described above parameter p allows us to define noisy intervals as
ones that contain less than 1—p part of attribute values and to organize a cyclic process
for finding a p-quality satisfyable discretization. If a current MVVDM-based discretization,
satisfying the described above stopping criterion for a given threshold &, is not p-qual-
ity satisfyable, then only p part of its “greatest” (in the sense of amount of attribute
values in it) intervals are stored and others are removed as “noisy” (or more precisely,
all values in such intervals are removed). Then a next attempt to find the desired
discretization by merging new adjacent intervals is done until a p-quality satisfyable
discretization is found.

4.3. Experiment results

Tables 6 and 7 compare the effectiveness of the modified entropy-based and the MVDM-
based discretization methods described in the previous two subsection versus the “origi-
nal” entropy-based discretization proposed by Fayyad and Irani (described in details in
Section 2). The fist table contains the results of the experiments with SBC algorithm
and the second — with SNMC. For MVDM discretization the following parameter
values were used: ¢ = 0.2 and p = 0.93.The experimental setting is the same as de-
scribed in Section 3.

Table 6. Results of experiments with SBC algorithm: average accuracies and standard deviations;
p-values; results of Wilcoxon test and a number of significant wins against losses

Database | Entopy-Based|Modified Entropy-Based| MVDM-based
Discretization Discretization Discretization

Accuracy Accuracy p-value |Accuracy|p-value
BW 97.3+0.2 97.3+£0.2 >0.1 [97.3+0.2] >0.1

CE 85.7+0.5 85.6 +0.5 >0.1 [85.7+0.6( >0.1
DI 74.7+0.8 74.3+1.0 0.025 ([74.1+1.2| 0.025
GL 66.5+ 2.9 67.6+2.3 >0.1 [655+2.7] >01
G2 78.8+2.4 80.1+2.1 0.0005 |81.7+2.3] 0.0005

HD 83.0+0.9 83.0+1.1 >0.1 [83.0+£09[ >01
HE 843+1.4 84.8+1.8 0.05 184.1+1.4] >0.1
HO 78.8+0.9 78.7+0.7 >0.1 [789+09( >0.1

IR 94.0+ 0.8 94.1+0.8 >0.1 [942+1.2| >0.1
LA 90.2+4.3 93.4+3.7 0.0005 [93.3+3.3] >0.1
LD 57.3+1.2 63.3+25 0.0005 [63.8+1.9]0.0005
VH 59.6 + 0.7 60.6 + 0.9 0.0005 [60.8+1.1]| 0.0005
Wi 97.8+0.8 98.0+ 0.7 0.05 ]95.9+1.2]0.0005

Average 80.61 81.60 81.41
Wilcoxon a =0.05 a>0.05
Sign. wins 6-1 4-2
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Table 7. Results of experiments with SNMC: average accuracies and standard deviations; p-values;
results of Wilcoxon test and a number of significant wins against losses

Database | Entopy-Based|Modified Entropy-Based| MVDM-based
Discretization Discretization Discretization

Accuracy Accuracy p-value [Accuracy|p-value
BW 97.0+0.2 97.0+0.2 >0.1 [96.9+0.3] >0.1

CE 85.1+0.5 85.1+0.6 >0.1 |85.7+0.5|0.0005
DI 73.8+1.0 73.7+0.9 >01 ([739+12] >0.1
GL 65.6 + 2.8 66.4 + 3.0 >0.1 [67.3+£3.1] 0.05
G2 77.3+23 79.3+23 0.0005 |81.6+2.2|0.0005

HD 823+1.4 82.1+1.6 >0.1 [824+13| >0.1
HE 81.0+2.2 81.3+1.8 >0.1 ([80.8+23] >0.1
HO 833+1.1 83.2+1.2 >0.1 [83.2+14| >0.1

IR 93.8+1.0 93.9+1.0 >0.1 [95.0+1.1]0.0005
LA 83.8+4.9 87.1+3.6 0.0005 [86.0+4.7| 0.005
LD 57.3+15 62.2+ 3.1 0.0005 |62.5+2.4{0.0005
VH 61.6 +1.5 62.3+1.7 0.025 ([64.0+1.7]0.0005
Wi 96.2+1.2 95.7+1.1 0.05 95.3+1.3[ 0.01
Average 79.85 80.71 81.12
Wilcoxon a =0.05 a = 0.025
Sign. wins 4-1 7-1

The results prove that the proposed modification of the entropy-based discretization
has a significantly better behavior than the original discretization algorithm. It should
be noted that this improvement practically does not depend on the classification algo-
rithm used. However, even this improved supervised discretization algorithm statisti-
cally is not better that its unsupervised counterpart — the equal frequency binning
discretization method.

It is not surprising that MVVDM-based discretization is more appropriate for in-
stance-based learning classifier, especially for those exploring MVDM metrics. Apply-
ing this discretization significantly improves the accuracy of SNMC in 7 domains and
decreases it only on 1 dataset. More over, according to Wilcoxon test SNMC combin-
ing with this discretization outperforms combination of SNMC and EBD method at
probability of 97.5% on all 13 datasets. A possible explanation of this fact is that by
removing some “noisy” attribute values such the MVVDM discretization produces a
“refined” MVDM distance for each discretized attribute that is further explored by
SNMC classifier.

However, it should be noted that the MVVDM-based discretization also does not
lead to statistically significant improvement in classification accuracy versus the equal
frequency binning discretization method.

5. Conclusions

After evaluation on 13 benchmark databases and two different classification algorithms
—simple Bayesian classifier and symbolic nearest mean classifier, we have empirically
proved that the error rate evaluation methodology in which the whole database is

54



discretized during the preprocessing step is incorrect and should never be used for
evaluating discretization methods in classification context.

In the mentioned above experimental framework we have also shown that two
simple unsupervised discretization methods (EFB and EWB) behave better (especially
EFB) than the entropy-based supervised discretization method proposed by Fayyad
and Irani.

We have proposed a modification of such entropy-based discretization method in
which the stopping condition based on MDL principle is modified by additional re-
quirement on the final number of discretization intervals, which should not be less than
the number of classes. The empirical evaluation has proved that the proposed modifica-
tion leads to statistically significant improvement in classification accuracy of both
SBC and SNMC algorithms running on 13 discretized benchmark databases.

The MDL principle may be seen as an instance of well-known Occam’s razor
favoring the simpler of two models with the same training-set error because this leads
to lower generalization error. In his article [26] P. Domingos found that such formula-
tion of this principle is provably and empirically false, and our results may be consid-
ered as an additional argument for this.

We have also introduced a new supervised discretization method combining the
agglomerative hierarchical clustering approach with using of MVDM metrics. This
new method has been empirically proved to be significantly better (in combination with
SNMC) than the original entropy-based discretization.

Our experimental evidences have allowed us to conclude that the axiom on “better
behavior of supervised discretization methods over unsupervised ones” should be re-
vised or at least be supported by more convincible experiments conducting in accord-
ance with the correct error rate evaluation methodology.
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Juckperuszanus cbe 1 6e3 kiacuukarnoHHa HHpopMaus

Tennaouii Aepe™ , Cmanumup Ilees™™
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** @axynmem no mamemamura u ungopmamuka — Couiicku ynueepcumem, 1000 Copus

(PeswmMme)

B crarusra ce auckyTHpa npodiIeMbT 3a AUCKPETH3AIHS Ha HETPEKbCHATH aTprOyTH
chc WM Oe3 M3MON3BaHE HAa MHOpPMaNUs 3a Kiaca Ha oOydyaBallUTe MPUMEPH.
Jluckperu3anusiTa e eHa BaKHa PEIBAPUTEITHA CTHITKA IPH MOJIrOTOBKATA HA TAHHU
3a MHOXXECTBO JIFOPUTMH OT 00JI1acTTa Ha MAIIMHHOTO CaMOOOy4YeHHE U U3BINYAHE
Ha 3aKOHOMEPHOCTH OT JaHHH. 3a eMIIUPUYHOTO CpaBHEeHHUe Osixa m30paHu JBa MeTosia
3a IMCKpeTU3allys, Hen3NoM3Baly KiacupukannonHarta nHdopmanus (Merox 3a
JMCKPETU3UpPaHe Ha PaBHHM 110 ABJDKMHA MHTEPBAIM M METO] 32 TUCKPETH3UPaHE Ha
paBHU TI0 YECTOTA MHTEPBAJIM), U SIUH METON 3a TUCKPETHU3AllUsi, M3I0I3Ball
uHdopmanus 3a kiacuuKalMOHHATa SHTponusATa. J[Bara Merona ca TECTBaHH C
MOMOIITA Ha JiBa KIacH(PUKAIIMOHHU alropuThMa — npoct belicoB kiacudukarop n
K1acu(UKaTOp 4pe3 KOHCTPyHpaHEe Ha NMPOTOTUIH. Pe3ynraTure OT IMpPOBENEHOTO
u3cienBaHe BbpXy 13 6a3u OT peayHu JaHHU He MOTBBPIKAABAT IIHPOKO 3aCTHIICHOTO
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MHEHHE 32 MPEBB3XOACTBO Ha SHTPONHTHATA quckpeTn3anus. Cien aHain3a Ha Te3H
pe3yATaTy ca MpeAJIOKEeHH JIBa HOBH METOla 3a MMCKPETH3allds C M3MOJ3BaHE Ha
KiacupukanmonHata uHdopmaius. [IpoBeIeHUTE SKCIEPUMEHTH JOKa3BaT, 4e
MPEIOKEHUTE METO/IU Ca 110-100pH OT SHTPONMIHATA TIUCKPETU3AIUS ¥ 3HAYUTEITHO
nono0opsBaT Kilacu(pHUKAMOHHATA TOYHOCT M Ha JBaTa KiacU(PHUKAIMOHHU
QITOPUTHMA.
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