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Abstract: A robust method for recognition of specific temporal correlations in the
input pattern is presented. The method is based on a modified model of spiking neu-
ron. A supervised single neuron training algorithm is proposed. The training rule
could be used with both types of input patterns  rate-coded spatial pattern and tem-
poral coded pattern. A Cascade-Correlation architecture enables complex temporal
sequence recognition.
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1. Introduction

Spiking neuron is a common class of biologically inspired neuron models. The neural
networks consisting of this type of neurons are known as third generation of neural
networks. It is shown in [6] that the computational power of a single neuron could be
reached at least with several traditional neurons organized in a neural network. We use
the concept of a traditional neuron to refer to McCulloch-Pitts threshold gate neuron
and its successor sigmoidal gate neuron. The traditional neuron is a powerful model for
spatial coded data analysis. It corresponds to simplified spiking neuron using only rate
coded inputs, but is irrelevant when the data is temporally coded. The ability to process
temporal coded data is essential for spiking neuron model. From biological point of
view, it makes the neuron see and analyze events in time. W. M a a s s showed in [5] that
a sigmoidal gate neuron could be simulated successfully with temporal coded inputs by
specific spiking neuron model. In Chapter 3 we define another modification of a spik-
ing neuron model which could be used for analysis of specific temporal correlations
described in Chapter 5. At the same time a neuron of this model could be used for rate
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based spatial analysis of the power of sigmoidal gate neurons (Chapter 4). We will see
that there is no sharp boundary between rate based spatial and temporal data coding. In
Chapter 6 we present a modification of delta-rule based learning for single neuron
training. For the purpose of the temporal pattern recognition, some important features
are discussed in Chapter 7.

2. Spiking neuron model

Let i is a neuron of Spiking Neuron Model that receives input in the form of spike trains
from a set of neurons i. We call  i a set of presynaptic neurons to the neuron i. Every
synaptic conjunction that connects the input of neuron i (dendrite) with the output of
presynaptic neuron (axon) has two parameters assigned:

weight wji corresponding to synaptic efficiency,
 time delay coefficient ij to represent the synaptic delay,

where i is a current neuron and  j is a presynaptic neuron to i.
Definition 2.1. If the value of synaptic weight wij is positive, we call this synapse

excitatory.
Definition 2.2. If the value of synaptic weight wij is negative, we call this synapse

inhibitory.
When a single fire passes through synapse, a postsynaptic potential (PSP) is gen-

erated. The PSP could be excitatory postsynaptic potential (EPSP) or inhibitory postsyn-
aptic potential (IPSP) depending on the sign of synaptic weight (Fig. 2.1). The shape of
PSP  is very significant for the computational power of a neuron [1]. The neuron model
presented further gives a different view over the significance of PSP shape.

Let ui(t) be a current neuron membrane potential. The set of all firing times of
k-th neuron is denoted by Fk. The sum of all postsynaptic potentials forming the mem-
brane potential is
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where tj
(f)  represents firing time of presynaptic neuron j.

An additional i(s) in the sum represents refractory period that limits the higher
possible firing rate. When s is close enough to zero, i(s) assumes strongly negative
value. In any other case i(s) is near to zero and could be ignored. As soon as mem-
brane potential reaches a certain threshold, the neuron fires.

The postsynaptic potential ij(s) is represented as function of time interval s since
the moment tj

(f) when a presynaptic spike is received:
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3. The Temporal Sequence Sensitive Model (TSSM) neuron

The neuron model used further in this paper is a modification of Spiking Neuron Model.
The goal is to achieve an easy to train neuron model, which is capable to recognize
some specific temporal correlations in the input pattern and at the same time can be
trained to recognize rate-based spatial pattern simulating sigmoidal gate neuron. Of
course, this simplification is not mandatory, but it will help the basic idea of the repre-
sentation and for problem understanding. The form of a single excitatory postsynaptic
potential (EPSP) is shown in Fig. 3.1.

As we saw in Chapter 2, every synaptic conjunction has two properties synaptic
weight wij and associated time-delay ij. We assume ij = t(s), where t(s) is some
constant minimal, but not negative value. This way we keep as adjustable neuron prop-
erties through the training time only neuron weights wji and its threshold. The threshold
accepts positive values. We will also simplify the response function Eji(s) defined in
(2.2):
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We can skip t (s) from ij(s) equation and add it to ti
(t)  if neuron fires.

Now we have
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We see that derivative 'ij(s) is strong negative for S > 0.
It is essential for the purpose of temporal sequence recognition that

Fig. 2.1. Typical shapes of response functions of a biological neuron

Fig. 3.1. The form of a single EPSP

e1
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– 'ij(s1) > – 'ij(s2),  0 < s1 < s2.
For the purpose of training we present a N-dimensional vector V–i , called t-Buffer,

where N is the number of all neurons in i  presynaptic to neuron i. Every element Vij
of V–i  keeps the time track to the last firing of presynaptic neuron Vj, where
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Parameter t corresponds to the time of current training cycle.
There are two alternative definitions of our t-Buffer.
Definition 3.1. The following is similar to the already defined:
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Definition 3.2. This definition is a generalization, which allows better results in
some cases depending on the definition of training process.
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Definition 3.3. We call every element Vij of V–i  tiredness of synaptic conjunction j
that connects presynaptic neuron  j  with neuron i. In the following chapters we will

refer to the  t-Buffer with the meaning here
defined. An additional assumption is that at
single synaptic conjunction rate-code will
be based on higher rates than temporal-code.
See examples of rate-code and temporal-
code in Fig. 3.2.

Fig. 3.2 shows examples of output
spikes of three groups of neurons A ,B and
C. Group A demonstrates rate based cod-
ing. Group B demonstrates pure temporal-
code. Group C uses both types of coding
simultaneously.

Let P be a spatial or temporal pattern.
Definition 3.4. We call a pattern   posi-

tive recognized by the neuron if in a small
interval tp triggered from pattern appearance to the input of neuron, at least one out-
put spike is generated.

Definition 3.5. We call a pattern P negative recognized by the neuron if in a
sufficiently enough interval tn triggered from pattern appearance to the input of the
neuron, there is no output spike generated.

Further we will accept that tp = tn .

4. Rate-based coding of spatial pattern

There are two common ways to simulate sigmoidal gate neuron with spiking neuron
dependent on the way potential amplitude is coded  rate based coding and temporal
based coding. Both coding types have their advantages and faults. There is evidence
that the simple rate based coding of analog value is not adequate when complex compu-
tations should be done in a short time interval over 150 ms when typically firing rates
are below 100 Hz. Please, refer to [2, 4, 6].

Fig. 3.2
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There are three definitions for rate based coding. These definitions correspond to
different procedures for estimation of the average rate average over a time interval,
average over several repetitions and average over population of neurons. Fast compu-
tations could be done based on space-rate coding with population of neurons [3].

We have not presented here a novel method for rate-based coding, but have just
tried to show the ability of our model neuron to analyze spatial rate-coded pattern and
to be trained to do this. Furthermore we will see that there is no sharp transition be-
tween rate-code and temporal-code. For temporal based sigmoidal neuron simulation
see [5].

Suppose that a presynaptic neuron j generates regular spikes with time interval
tj.

Let the spikes generated by presynaptic neuron j be the only ones that excite the
neuron membrane.

According to equation (2.1) the potential maximum ui(t) will be as high as the
spike rate is. In this way ui(s) represents spikes count. It could be shown that ui(s)
(disregarding i(s), represents IIR (recursive) low-pass filter. This fact is the key con-
nection of current neuron model to leaky integrate-and-fire neuron model [2]. Potential
fluctuation between its minimal and maximal value for a given interval of time will be
the lower the higher the spike rate in the same interval is. For small synaptic weights the
potential fluctuations are small too. This is due to the exponential decay nature of the
response function ij. The following dependence could be examined  high fluctuations
in membrane potential correspond to temporal coding, small fluctuations correspond to
rate-based coding. It could be important that the neuron can generate the same type of
output as the input it accepts. In this case we talk about rate-based output. If the neuron
has constant excitation in the form of regular spike sequence, its potential sum u should
grow to a value s for a time interval t. For a given t1 we can find such threshold p,
that the sum u grows to value p for time interval t1. A good precondition is the sum-
mary input spike rate to be higher than the output spike rate. This will minimize output
frequency fluctuations.

5. Temporal sequence recognition

The temporal sequence recognition is very important for wide range of tasks. Here we
will examine several types of temporal correlations, which could be successfully recog-
nized by our model neuron.

Theorem 5.1. A single neuron of our model could recognize the following tempo-
ral correlations:

a) temporal closeness of two or more presynaptic potentials.
See “element distinctness function” EDn in [5, 6].

b) temporal order of appearance of two presynaptic potentials.
Proof of a):
Let us consider what properties a certain TSSM neuron i must have in order to

recognize if two intput spikes are accepted in a sufficiently short time interval.
We have to find such weights wij that if both firings are close enough, the accumu-

lated membrane potential represented by ui(t) has to cross an apriori fixed threshold i.
Notice that the value of i is actually determined through the neuron training process,
but for simplicity we consider it fixed.

We will use (2.1) next,  ignoring i(s) in the sum.
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In the definition of TSSM (see Chapter 3) we examine post-synaptic potential
ij(s) as a function of the time interval t – tj

(f) .
In the proof we will base the reasoning only on EPSP, but it can be generalized in

the case of IPSP too.
According to the definition of a response function ij(s) (3.1), it represents unlinear,

but monotone potential decay for s > 0. The decay rate is as high as the potential
amplitude is. This characteristic of the response function ij(s) is not mandatory in case
of firing closeness recognition task.

Due to the symmetry of input spikes sequence requrement, we accept that the
weights of both synaptic inputs are equal (i.e. close enough not to consider this differ-

ence significant). So we search temporal close-
ness only and any sequence of presynaptic po-
tentials appearance is satisfactory.

 Let us have a fixed threshold  and the
corresponding synaptic potential stays above
/2 for a time period t. Then t is the maxi-
mal period of time when both spikes should
appear on the neuron input, so that the sum of
corresponding EPSPs reaches . (Fig. 5.1).

Via setting the threshold height we may
tune the coefficient of simultaneousity, which
characterizes the input temporal pattern so that
it can be recognized by the neuron. We must
note that because of the definition of our train-

ing rule (see 6.1.2), which we will further use for neuron training, we do not need to
normalize the weight vector wi and threshold . This allows us to choose large enough
weights in order to easily satisfy the above requirements.

Proof of b):
Let us denote by e1e2 the temporal sequence of postsynaptic potential of the input

e1, which precedes the one of input e2 and both potentials are in a close enough time
interval t. We want to recognize e1e2 and not to recognize the “wrong” sequence e2e1
at the same time.

We apply the similar approach as in the part a, but in this case we will use differ-
ent suitable weights for the corresponding inputs..

Let us choose such weights w1, w2 and activation threshold p, so that the following
requirements hold:

1. The potential of the input e1 stays above the threshold p1 for time interval
t1 = t.

2. The potential of the input e2 stays above the threshold p1 for some minimal
time interval t2, t2 < t1.

3.  w1 < w2.
The idea is to juxtapose to the first input e1 a slowly decreasing potential, which

can stay above the threshold p1 for time interval t1. It will assure the base potential
level.

To the second input e2 we juxtapose a quickly decreasing potential, which exceeds
the threshold p2 only for a very short time t2.

So, if we choose threshold p =  p1 + p1, then for a short time interval near t2 we
will have the sum of potentials exceeding the threshold p in case the input of  e2 arrives

Fig. 5.1. It could be seen that the higher
threshold we take, the shorter period of time
potential value stays above it
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in time interval t1 after the first one.
What will happen if the input spikes arrive in a reverse order, i.e. e1e2 sequence?
We have two cases:
1. Both spikes arrive in a time interval t2(minimal chosen). We denote t2 as

interval of simultaneousity. The sequence e2e1 will be positive recognized.
2. Let us take time interval t3  t2. The potential on the input e2 decays below

p2 before the arrival of a spike on the input e1, but still it is possible the sum of maxi-
mum of postsynaptic potential on e1 with the postsynaptic potential on e2 to exceed p.
The interval t3 is as smaller as faster is the potential decay of synaptic input e2 com-
pared to this of e1.

If not both potentials are met in t3, the sequence e2e1 is negative recognized. The
interval t3 is an extension of the interval of simultaneousity definition.

We saw that the neuron is sensible to the temporal sequences in a certain interval
t1 or to a simultaneousity in t3  t2. Finding suitable weights w1, w2 and the thresh-
old p we may attain arbitrary minimality of the interval. During the training process
these weights as well as the threshold can be found via appropriate training examples.

 Two types of synaptic potential decay are demonstrated in both firing sequences
(Fig. 5.2). In case of exponential decay, a different maximal potential sum is reached
depending on the input sequence  a) and b). In case of a linear synaptic potential decay
the neuron has poor sensitivity to the firing sequence c) and d).

6. Entropy based Delta rule for supervised training

6.1. Modified Delta rule for spiking neuron training

The Entropy Based Delta Rule (EDR) for supervised training originates from the Delta
rule, which is also known as the least mean squared error rule (LMS). See Adaline and
the Adaptive Linear Combiner in [7].

Fig. 5.2
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Since our goal is to train a single spiking neuron, LMS rule is near to what we
need. We have adapted this algorithm to the specifics of our task. For the purpose of
supervised training, a set of training patterns and corresponding desired outputs are
necessary.

6.1.1. LMS rule

Let {x1, ..., xL}  represents a set of training input vectors. For each xk we have the
desired output value dk.

For each step of training process, the following is performed:
1. An input vector xk is applied to the Adaline inputs. Output y is computed.
2. The value of the error is determined, using the current value of the weight

vector.
3. Then we have wi = 2xk(dk –  y).
4. Update the weight vector

wi
(new) = wi

(current)  + wi.
5. Steps 1 through 4 are repeated with the next input vector, until the error reaches

an acceptable value.

6.1.2. The EDR definition
The output of our model neuron is binary, i.e. the output is {0, 1}. That is why we have
three possibilities for the error ek determined in step 3 of the above process, i.e.
ek {0, –1, 1}:

– ek  = 0  we do not need to perform further weight correction;
– ek  = –1  this corresponds to iteration of negative training;
– ek  = 1  this corresponds to iteration of positive training.
A positive training with EDR of neuron i is called the increasing of the values of

synaptic weights, which is calculated as follows:
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where V–i is the vector of synaptic tiredness of i defined in Chapter 3, which is time
restricted to the moment of neuron firing time (if neuron fires) or to the moment training
stimulus,  is the learning rate, which we will discuss further.

In parallel we decrease the value of the threshold , which in our case is equiva-
lent to the negative value of neuron bias.

 = –
 (new) = + ,

where  is an appropriately chosen constant.
When a negative training iteration is performed, we decrease the synaptic weight

values using
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We decrease the value of threshold   as
 = 

 (new) = + .
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After the synaptic weights are updated performing positive or negative training
cycle we need to initialize vector V– to 0–.

We perform positive training in case of positive stimulus and neuron doesn't fire
in a short interval of time t after the pattern is presented to its input, i.e. the input
pattern is negative recognized by the neuron.

We perform negative training when the input pattern is positive recognized by the
neuron, but negative stimulus is applied.

The stimulus represents the desired output and is applied by the training system
immediately after the t interval ends.

Note that t interval comes from the nature of the training couple input pattern
and desired output. It is believed that the stimulus applied is a result of some event in
the world of training, where the world state is visible to the neuron by the input pattern
presented.

In case of rate-coded input pattern, the time interval t could be dependent on the
desired output rate.

The coefficient  is within the range of (0, 1). We know the value of  could be
tuned in a way to increase the learning ability of the neuron. As long as  is close to 1,
fast changes are made to the weight vector and the opposite if  is close to 0. We need
fast weight changes when the learning process is monotone positive or negative. We
need fine weight tuning in case of rapid changes of learning direction.

We can count the learning direction changes for a limited interval of time in the
current training cycle.

Let  f(m) be the mean learning direction changes rate, i.e.  f(m)  (0, 1). Then we
define  as follows:

 =  0 + ( – 0)(1 – f(m)),
where 0 is the initial learning rate, – 0 < 0 <  < 1.

6.2. Oriented training towards temporal recognition

Let us suppose that two presynaptic potentials are received by the neuron always in a
certain sequance. Then the weight of the late activated synaps grows faster than the
weights of the other according to (6.1). This is very important with respect to temporal
sequence recognition and to the corresponding training.

Let us assume now that the input potentials are met in both possible sequences
with equal probability. Then they will obtain approximately the same weights for suf-
ficiently large number of training iterations. In this way we can train the neuron to
recognize temporal closeness.

Based on the EDR we can make unsupervised training. Now we have to train the
neuron to foresee the appearance of a specific event, which is a result of certain factors.
The factors should be visible to the neuron as temporal sequence input, which precedes
the event appearance. It may be seen as well that in temporal recognition of sequences
the neuron reacts simultaneously or almost so with the arrival of the last potential
needed for the activation. So it is not delayed till the time when “usually” the positive
training stimulus is passed. This forestallment would be very useful for a biological
organism, which has to react before dangerous events appears. Such events previously
give it a training stimulus only.
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6.3. Training with respect to both types of patterns in parallel

We examine two types of patterns – rate based spacial and temporal based code.
As mentioned in Chapter 4, every intensity is represented by a relevant frequency

and higher intensity corresponds to higher frequency.
Statement:
On absence of correlation (temporal or rate based spatial correlation) between the

input vector and the desired output and sufficiently large set of training examples, the
weights of synaptic connections are near to zero.

Note:
To make weights inclining to zero, we use the additional rule based on the coeffi-

cient of surprise.
The idea for this statement is the fact that if there is no correlation and the set of

training examples (positive and negative) are regularly dispersed during the training
process then the neuron returns a wrong result with probability of 50%. Thus for a
sufficiently long period it can be considered that the number of iterations for positive
and negative training is approximately equal.

Let us assume that the values of synaptic weights are shifted to the positive direc-
tion. Then the neuron will return positive results more often than negative. Due to the
condition for absence of correlation in the training set of examples, the error rate in
recognition of a positive example as a negative one, will be higher than the error rate in
recognition of a negative example as positive. Negative training iterations will be more
than the positive training ones. This leads again to weights getting close to zero.

Similar dependence is observed in the case of strong negative synaptic weights.
The coefficient of correlation in the training set of examples may be reviewed

evaluationg  the average rate of the neuron error. We should take into consideration the
rate f of appearance of a positive error after a negative one and its reverse.

As mentioned in training rule definition (see Chapter 6.1.2.) we use this value to
reduce the correction coefficient . This helps to stabilize synaptic weight values near
to zero.

This feature allows smooth switching between rate based pattern analysis and
temporal based pattern analysis depending on the case where the correlation is. Fur-
thermore they may be simultaneously presented.

Let us assume that we consider pure rate based coding. In the cell body we have to
convert every frequency into potential intensity scaled with the corresponding synapse
weight.

Remember that we have defined an integrator in the neuron body as a lowpass IIR
filter. If we use small values for the synaptic weights, then the sum will change rel-
evantly smooth, which will give a more stable result on the integrator output. If synap-
tic weights grow rapidly then the result is a serrated curve. With a certain probability
some of the maximums can cross the threshold boundary and an output spike will be
generated. It is clear that this case is getting close to the temporal coding nature. If the
generated output spike is considered as wrong answer, then the weights will be de-
creased, which brings us back to the rate based coding. In the other case it is possible a
temporal correlation to be presented too.
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7. Characteristics

7.1. Features that helps neuron training. Temporal similarity

Let us examine two cases of training with the same pure temporal coded pattern, but
positive stimulus applied after different time delays t1 and t2. Let denote by t1 and t2
the corresponding times of stimulus arrival.

We want to compare the weigth corrections applied through both training itera-
tions. Note, we assume that a single fire to every synaps is received, what we mean
pure temporal code.

According to definitions 3.2, it is simplified to
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Now for every synaptic input k, which receives spikes, we can calculate the fol-
lowing ratio:

.
)exp(
)exp(

const
2

1
)2(

)1(

C
t
t

w
w

ik

ik 



.

This shows that the neuron “sees” a certain pattern no matter of the time shifting.
We have Cconst = 1 in case of using normalized V–i, which leads to identical training for
both iterations. So we have  an advantage vs. the Time-Delay Neural Network (TDNN).
In TDNN the time shifting is simulated with change of the set of activated inputs. The
TDNN architecture is often used in sequence input processing tasks as speech process-
ing [8, 9].

7.2. Multi layer achitecture training

The EDR algorithm is not suitable enough to be generalized with respect to multi-layer
training.

Although it can be used quite successfully with constructive algorithms based on
single neuron traning at time. For example the Cascade-Correlation Neural Network

Fig. 6.1. A sum of two rate-coded intensities. The potential is
stabilizing, but some maximums could cross the threshold

                        e1             e2
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(CCNN) architecture [10] could be applied, which in many cases outperforms back-
propagation based decision. Complex temporal correlations could be detected using
CCNN.
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Ентропийно Делта правило за обучение с учител на чувствителен
към времеви последователности неврон

Стефан Сърнев

Институт по информационни технологии, 1113 София

(Р е з ю м е)

Представен е мощен метод за разпознаване на специфични времеви корелации
във входните образци. Методът е основан на модифициран модел на spiking
неврон. Предложен е алгоритъм  за обучение с учител на единичен неврон.
Обучаващото правило може да бъде използвано при двата вида входни образци
 пространствени честотно кодирани и времево кодирани. Каскадно-корела-
ционната архитектура позволява разпознаване на сложни времеви после-
дователности.


