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Abstract: In this paper CA CFAR, excision CFAR, CA CFAR BI, excision CFAR BI and
API CFAR processors in strong pulse jamming (PJ) are discussed . We investigate the
influence of the scale factor over probability of false alarm and detection probability in
strong PJ for one-dimensional CFAR processors. The efficiency of one- and two-
dimensional CFAR processors by using the average decision threshold (ADT) approach
is evaluated. The results for the ADT are received analytically using the Monte-Carlo
method and the probability functions (SNR). The researches are performed in MATLAB
environment.

The experimental results show that API CFAR processors are most efficient for
probability of appearance of pulse jamming (from O up to 0.5). For ¢, >0.5 we

recommend binary integration after the CFAR processor.

Keywords: Radar Detector, CFAR Processors, Pulse Jamming, Average Decision
Threshold (ADT), Probability of detection, Probability of false alarm.
1. Introduction

Cell-Averaging Constant False Alarm Rate (CA CFAR) signal processing proposed by
Finn andJohnson[1] is often used for radar signal detection. The detection
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threshold is determined as a product of the noise level estimate in the reference window
and a scale factor to achieve the design probability of false alarm. The presence of strong
pulse jamming (PJ) in both, the test resolution cell and the reference cells can cause
drastic degradation in the performance of a CA CFAR processor as shown in [12].

In such situations it would be desirable to know the CFAR losses, depending on the
parameters of PJ, for rating the behavior of radar. There are two approaches for the
calculation of CFAR losses offeredby Rolling [2landbyGandhiandKassam
[3]. The conventional method, used in [5, 7, 12], is to compute the additional SNR
needed for the CFAR processing scheme beyond that for the optimum processor, to
achieve a fixed detection probability (e.g. 0.5). For a particular CFAR scheme the losses
obviously vary with the detection probability. Alternatively, the authors in [2, 3] use
another criterion based on the average decision threshold (ADT), since the threshold and
the detection probability are closely related to each other. Then the difference between
two CFAR systems is expressed by the ratio between the two ADTs measured in dB, as
shown in [2, 3].

The false alarm rate of the postdetection integrator (PI) is extremely sensitive to
pulse jamming, and the binary integrator (BI) which uses a K-out-of-M decision rule is
insensitive to at most K-1 interfering pulses [7]. For keeping constant false alarm rate in
PJ, the CA CFAR processor presented in [9, 12] is used. But this method is not as
effective as the conventional method for the calculation of CFAR losses. For the
minimization of CFAR losses in case of pulse jamming postdetection integration (PI) or
binary integration (BI) is implemented in CFAR processors as shown in [5, 8, 10]. The
use of excision CFAR detectors, supplemented by a postdetection integrator or a binary
integrator as shown in [6, 7, 10], increases the CFAR losses. Minimum CFAR losses in
PJ are obtained in [5, 11] with a CFAR adaptive postdetection integrator (API) processor
with adaptive selection on PJ in reference windows and apriori selection in test windows
as shown in [5] and adaptive censoring in reference and test windows as presented in
[11].

We assume in this paper that the noise in the test cell is Rayleigh envelope
distributed and target returns are fluctuating according to Swerling Il model as in [3, 5].
Differing from the authors in [5], we assume that the samples of PJ are distributed
according to the compound exponential law, where weighting coefficients are the
probabilities of corrupting and non-corrupting of the samples. Differently from [7-11],
we consider the entire range (from O up to 1) of the probability for the appearance of
pulse jamming in range cells. For values of the weighting coefficients higher than 0.3,
the Poisson process model is used, but it is rough [16]. The binomial distribution is
correct in this case.

In this paper we research the influence of a scale factor over probability of false
alarm, detection probability and average decision threshold in strong PJ for CA CFAR
and excision CFAR processors. In [12] the losses of CA CFAR detector in conditions of
PJ are calculated, but for fixed scale factor. In this case the probability of false alarm is
not maintained constant.

In our work we study CA CFAR, excision CFAR, CFAR BI, excision CFAR BI
and APl CFAR processors in strong pulse jamming. We use the average decision
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threshold (ADT) approach for comparison of the processors. As a difference from the
authors in [7-11], we study the influence of probability for appearance of pulse jamming
over ADT in strong PJ. The analytical expressions for the probability functions of CA
CFAR, excicion CFAR, CFAR BI, excision CFAR Bl and APl CFAR detectors are
achieved in [7-11]. We achieve in this paper new results for the ADT of all studied by us
CFAR processors using Rohling approach, presented in [2]. The SNR of the minimum
detectable signal ( Py =0.5) is approximately the same as the ADT of each CFAR system.
We use for comparison also the approach with Monte-Carlo simulation for estimation of
the ADT of the studied CFAR detectors. Finally, we estimate the efficiency of the CFAR
processors by using the results for the ADT.

The experimental results show that the API CFAR processors are most effective for
probability of appearance of pulse jamming (from 0 up to 0.5). For ¢, >05 we

recommend binary integration after the CFAR processor.

2. Performance of one-dimensional CA CFAR and excision CFAR
processors in the presence of pulse jamming

2.1. Probability of detection and false alarm of CA CFAR detectors

Consider a radar detector in which the received signal is sampled in a range by the N +1
resolution cells resulting in a vector of N +1 observations. The sampling rate is such
that the samples are statistically independent. After filtration the signal is applied to a
square-law detector and then processed in the CA CFAR decision element. In conditions
of pulse jamming the background environment includes random interfering pulses and
the receiver noise. Therefore the samples surrounding the cell under test (a reference
window) may be drawn from two classes. One class represents the interference-plus-
noise situation, which may appear at the output of the receiver with a probability &, .

This probability can be expressed as ¢, =t F;, where F; is the average repetition
frequency of PJ and t, is the length of pulse transmission. The other class represents the
noise only situation, which may appear at the outputs of the receiver with a probability
1+ 80]- The probability density function (pdf) of the test resolution cell is assumed to
be distributed according to Swerling 1l case [9]:

@ 0= 0(1 O (%Elj.s)]+zo(1forj+S)exp[lo(l;:+3)]'

where 1, is the average power of the receiver noise, r; is the average interference-to-

noise ratio (INR) of pulse jamming, s is the per pulse average signal-to-noise ratio
(SNR). The probability density function (pdf) of the reference window outputs can be
defined as (1), setting s =0.
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The probability of pulse detection P, is obtained in [9] as:

o T T
@ Po=(t 80)MV{10(1+S)J+80MV(10(1+ r, +s)} '

where M, (.] is the moment generating function (mgf) of the noise level estimate V . In
a conventional CA CFAR detector the noise level estimate is formed as a sum of all the

N
outputs of the reference window: Vv = in . In this case the mgf of the estimate V is
i=1

defined to be M, (U)= M) (U), where M, (U) is the mgf of the random variable
X. .The mgf of the estimate V is obtained in [9]:
Clelll—g))""
3 M 0 0
© Lo ) & ok eryT) I

The probability of target detection in [9] is computed by the following expression:

(4) Ché o 1-4
Z ( s (1+rj)'|' |(1+ T ] (1+I’J)T ( )
1+q+s 1+q+s 1+s 1l+s

The probability of false alarm is evaluated by (4), setting s=0.

2.2. Probability of detection and false alarm of excision CFAR detectors

In an excision CFAR processor the noise level estimate V is formed as an average mean
K

of nonzero samples at the output of the excisor {yi }N , that is: V Z%Z y; . According

i=1
to [6] the operation of the excisor is defined as follows:

5) X% if % <Bg,
o otherwise,

where B is the excision threshold.
Therefore the pdf of the random variable Yy, can be expressed as
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zo(l— eXp(_ﬂiE n Aol {1— exp(io_ B+Er,- n

The probability that a sample X; survives at the output of the excisor, is given as

@) P. =1-(-¢, )exp[_lBE J— &, epr—_(l%)} .
0 0 i

The probability that k out of N samples of the reference window survive at the output
of the excisor is given as: v(k] =Cp P& (1- PE]Mk . The mgf of the random variable vy,
at the output of the excisor can be obtained using the following expression:

&o(L-exp(R, —BgU) (L+¢)(L—exp(R, —BgU )

® MU)= (- exp(R, )L+ UAo (1+ rj))+ (-exp(R)(1+U4,)
where R, = — ¢ Be ; z=_BE :
Ao@+r;) Ao

Since the random variables x; (1<i < k] are independent, the mgf of the estimate V can
be obtained as a product: M, (U,k)= My (U /k). In this article we use the moment
generating function on the excision CFAR processor from [7]

N

9) M, (U)=>"CYPE(AL-P)V M, (U,K),
k=1

where

(10)m, U k) = Zk‘,ci{ £ Q- epR, ~B:U k) )}i{(l—so)(l—eXp(R2 ~B.U /k))}ki

@—exp(R+UA,Q+r, Ik A-exp(R,)A+UA, /k)

The probability of target detection for excision CFAR in [7] is computed by the
expression:

_ - K pk _ N-k B T T
al)PD_kZ:;'CNPE(l ) {(1 EO)MV(%(HS)’kJ+80Mv(lo(1+rj+s)'kJ}

The probability of false alarm is evaluated by (11), setting s=0.

i=0
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2.3. Average decision threshold of CA CFAR and excision CFAR detectors
The average decision threshold ADT is defined as a normalized quantity [2]:

(12) ADT,, ., =E(TV )/ 4,

where the random variable V is the result of the estimation method used in the CFAR
system, T is the scaling factor for threshold adjustment adapted to the estimation method
and required Pg,; E stands for the expectation:

__4
(13) EV)/ 4 = = MV(T/AO*_:O.

Deviating from the methods usually described in radar literature, we use the average
decision threshold (ADT) for comparison of various CFAR processors. This provides the
advantage that the difference existing between various CFAR systems is then expressed
by a single-valued measure. The difference between two CFAR systems can be
expressed by the ratio of the two ADT’s measured in dB [2]:

_ADT 1010 E(MVv)
ADT, ET,V,)

(14) A fOI’ Pfal = Pfaz, PDl = PD2 = 0.5 .

In this paper comparative analysis by ADT for one dimension processors is made with
respect to an optimal detector, as it is in [3]. The ATD optimal is

(15) ADT o = — In(Pra).

2.3.1. ADT for a CA CFAR processor in PJ. Using (3) and (13), we substitute
U=T/4, and for T =0, we have the ADT expression as it is in [12]:

(16) ADTepcear =T E(V) ZT{ in (l)

2y AT VA,

|- TEeata) i)

where T is computed by expression (4), setting s=0.

For &,=0 or without pulse jamming ADT.,;ar =TN as in [3], where

T= (Pfa]’“N _1.

2.3.2. ADT for excision CFAR processor in PJ . Using (9) and (13), we substitute
U=T/4, andfor T =0, we have the ADT expression as it is in [13]:
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S~k ok Nk | A & i () -
ADTeycoran = —T;CN Pe@—P:) {;C{(l—eXp(Rl))} {(1—exp(Rz>)} ’
{(1— exp(R,))™ [eXp(Rl)(BE + 200+ T D2+ T )11_ exp(R,)) " +
+(k—i)i-exp(R, ))k_i_1 [exp(R. XBe +20)~ 2 - eXp(Rl))i } '

where T is computed by expression (11) setting s=0.

17y  x L
AoK

3. Performance of two-dimensional CFAR BI, excision CFAR Bl and API
CFAR processors in the presence of pulse jamming.

Let us assume that L pulses hit the target, which is modeled according to Swerling case
1. The received signal is sampled in range by using M +1 resolution cells resulting in a
matrix with M +1 rows and L columns. Each column of the data matrix consists of the
values of the signal obtained for L pulse intervals in one range resolution cell. Let us
also assume that the first M /2 and the last M /2 rows of the data matrix are used as a
reference window in order to estimate the “noise-plus-interference” level in the test
resolution cell of the radar. In this case the samples of the reference cells result in a
matrix X of the size M xL. The test cell or the radar target image includes the
elements of the (M /2+l) row of the data matrix and is a vector Z of length L. The
elements of the reference window are independent random variables with compound
exponential distribution law (1), setting s = 0. In the presence of a desired signal from a
target the elements of the test resolution cell are independent random variables with
distribution law (1).

3.1. Probability of detection and false alarm of CA CFAR Bl detectors

The probability of target detection for CA CFAR BI processor in [10] is computed by the
expression

LI
(18) Pol = EL:C:_PDI(]-_ PD) |
=M
where Po is probability of detection from (4). The probability of false alarm is evaluated
by (18), setting s=0.

3.2. Probability of detection and false alarm of excision CFAR Bl detectors

The probability of target detection for EXC CFAR BI processor in [10] is computed by
the expression
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Ll
(19) PDz = EL:C:_PDI(]-_ PD) 1
I1=M

where P, is probability of detection from (11). The probability of false alarm is
evaluated by (19), setting s=0.

3.3. Probability of detection and false alarm of API CFAR detectors

We use the adaptive censoring algorithm, proposed by Himonas and Barkatin
[4], before pulse-to-pulse integration for censoring the elements of pulse jamming in the
reference window and the test resolution cells, in order to form the detection algorithm.

The expression for the probability of target detection for an API CFAR processor is
achieved in [11, 15]. The authors in [11, 15] study the probability of target detection only
for ,<0.5 and calculate only the first member of the expression (20). We calculate the
probability of target detection for g,e(0;1) and calculate the value of Pp by using the
following expression:

L

i )@ +1+s)"

k+i-1
( J(l & ) el et ( JT (l+r +s)(r +1+1; +s)("“)
aN+i-1) (1 1 S
-1 R
(1 PR Py _ AR N SRR +
1 I 1+rj 1+rj
v e N+i=1) (141, +5 " 141 +s R
+& & 2 . T+
i-0 i 1+rj 1+rj

4. Numerical results
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N

(20)
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+

4.1. Scale factor analysis of CA CFAR and excision CFAR detectors in pulse jamming

In this paper we investigate the influence of scale factor over probability of false alarm
and detection probability in strong PJ for CA CFAR and excision CFAR processors. We

use the scale factor T, = f (P, N:=1.3713 for the case of homogeneous interference
and T, = f(P,,N,r,,¢&, ) for the case when the false alarm probability is maintained

constant in pulse jamming. The experimental results are obtained for the following
parameters: average power of the receiver noise A, =1, average interference-to-noise ratio
(INR) r;=5 and 30 dB, probability for appearance of pulse jamming with average length
in the range cells ¢, from 0 to 1, number of reference cells N=16, probability of false

alarm P, =107° and excision threshold Bg=2.
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Fig. 1. CA CFAR processor. Fig. 2. EXC CFAR processor.
False alarm probability for T False alarm probability for T

The experimental results from Fig.1 and 2 show that when CA CFAR and excision
CFAR processors operate with fixed scale factor T, in strong pulse jamming the false
alarm probability is not maintained constant. In this case the detection probability
decrease with increase of the average interference-to-noise ratio and the probability for
the appearance of pulse jamming with average length in the range cells for fixed SNR
(Figs. 3-6). For case with adaptive scale factor T, threshold ratio SNR is bigger for fixed

the detection probability P, =05.
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Fig. 3. CA CFAR processor. Fig. 4. EXC CFAR processor.
Detection probability for r;=5 dB and &, =0.1, Detection probability for r;=5 dB and &,=0.1, 0.3,

0.3,05,0.9., where &, is 1, 2, 3, 4 for Tcand 5, 0.5,0.9, where &, is1,2,3,4forTcand5, 6,7, 8
6,7,8forT, for T,
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Fig. 5. CA CFAR processor. Fig. 6. EXC CFAR processor.
Detection probability for r;=30 dB and &, =0.1, Detection probability for r;=30 dB and &, =0.1,
0.3,0.5,0.9, where &, is1,2,3,4for Tcand 5, 6, 0.3,0.5, where g is1,2,3for Tcand 4,5, 6
7,8 for T, for T,

4.2. Average decision threshold analysis of one-dimensional CFAR processors in PJ

In a CA CFAR processor, the noise level estimate in the reference window increases
with the increasing of the average interference-to-noise ratio and the probability for the
appearance of pulse jamming with average length in the range cells (Fig.7). In order to
keep the false alarm probability constant, the scale factor must be decreased when the PJ
frequency increases. The average decision threshold (ADT) increases when the
probability for the appearance of pulse jamming takes values g from 0 to 0.5, and then
decreases for value ¢, >05 (Fig. 7).
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Fig. 7. CA CFAR processor. Fig. 8. EXC CFAR processor.
ADT1, T1, V1and ADT2, T2, V2 ADT1, T1, V1and ADT2, T2, V2
are for r; =5and 30 dB are for rj=5and 30dB

In the excision CFAR processor, the jamming pulses are censored and the noise
level estimate in the reference window is kept constant (Fig.8). In order to keep the false
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alarm probability constant, the scale factor must be increased with the increasing of PJ
frequency. The average decision threshold (ADT) is constant when the probability for

the appearance of pulse jamming takes values &, between 0 and 0.5, and then increases
for a value &, > 0.5 (Fig.8).

In (Figs. 9 and 10) we present plots of the losses of CA CFAR and excision CFAR
processors with relation to an optimal detector and losses in conditions of strong pulse
jamming for average interference-to-noise ratio 5 and 30 dB. The difference between two
CFAR systems is expressed by their losses, which are calculated with the help of
expression (12). From (Figs.9 and 10) we show that excision CFAR processor is
effective for probability of appearance of pulse jamming ¢, <0.5, for ¢, >0.5CA
CFAR processor operates better.
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Fig. 10. r;=5dB.
Fig. 9. r;=5dB. 1 and 2 are losses of CA CFAR and EXC CFAR
1 and 2 are losses of CA CFAR and EXC CFAR processors towards optimal detector 3 losses of
processors towards optimal detector 3 losses of EXC CFAR toward CA CFAR processor

EXC CFAR toward CA CFAR processor

In this paper we study average decision threshold in PJ for CA CFAR and excision
CFAR processors with different methods. The results for ADT are analytically received
using Monte-Carlo method and the probability functions (SNR). They are marked as
follows: analytical (- —), Monte-Carlo () and SNR (continuous line). The experimental
results are obtained for interference-to-noise ratio (INR) r;=30 dB.
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Fig. 11. CA CFAR processor Fig. 12. EXC CFAR processor
68



It can be seen in Fig.11 and Fig.12 that the results achieved for ADT analytically
and by using the probability functions (SNR) are identical, which proves the hypothesis
of Rohling in [2]. All the above-mentioned allows us to determine the ADT of two-
dimensional detectors by using the probability functions (SNR).

4.3. Average decision threshold analysis of two-dimensional CFAR processors in PJ

The experimental results are obtained for the following parameters: average power of the
receiver noise A, =1, average interference-to-noise ratio (INR) r;=30 dB, probability for

the appearance of pulse jamming with average length in the range cells &, from 0 to 1,
probability of false alarm P, =10° and excision threshold Be=2. For two-dimensional

detectors the size of the testing sample is 16 and the reference window is of the size
16x16. The results for the ADT are received using Monte-Carlo method and the
probability functions (SNR). They are marked as follows: Monte-Carlo () and SNR
(continuous line).

CA CFAR BI Pracessor CA CFAR BI Pracessor
B0 T T T T T T T T T a0 T T T T
. . L
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Jri

ADT, T,V in dB
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0.1 02 03 04 05 0B 07 08 08 1 1} 0.1 02 03 04 05 0B 07 08 08 1
eo eo

Fig. 13. CA CFAR BI processor, M=16, L=16 Fig. 14. CA CFAR BI processor, M=10, L=16
The ADT, T and V of CA CFAR BI processors with a binary rule M-out-of-L
(16/16 and 10/16) are shown in Fig.13 and Fig.14. It can be seen that CFAR BI
processors with the binary rule M-out-of-L=16/16 are better in cases of lower values
£,<0.5 of the probability for appearance of pulse jamming. For higher values of the
probability for appearance of pulse jamming ¢,>0.5 the using of the binary rule M-out-
of-L=10/16 results in lower losses.
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T T T T T T
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Fig. 15. EXC CFAR BI processor, M=16, L=16 Fig. 16. EXC CFAR Bl processor, M=10, L=16 69
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Fig. 17. API CFAR processor Fig. 18. ADT from Fig.11 up to Fig.17

The ADT, T and V of an APl CFAR processor are shown in Fig.17. In this case the
results for the ADT achieved by using the probability functions (SNR) are identical with
the results achieved by using Monte-Carlo simulation for values of &, up to 0.4. The

suggested algorithm is not working for higher values of &, due to the fact, that the

hypothesis for censoring in the test cell is disturbed. In such case the big difference in
power between the background and the pulse jamming is disturbed and the automatic
censoring of pulse jamming is impossible.

The ADTs of all processors studied are shown in Fig.18. The numbers from 1 up
to 7 correspond to the detectors from Fig.11 up to Fig.17. The APl CFAR processor is
the most suitable one to use for values of the probability for the appearance of pulse
jamming &,<0.5. When the probability for the appearance of pulse jamming &, takes a
value between 0.5 and 1, both CA CFAR Bl and EXC CFAR BI processors with M-out-
of-L=10/16 rule can be successfully used.

5. Conclusions

We investigate in this paper the technical qualities of different CFAR techniques in the
presence of strong pulse jamming by using the ADT approach suggested by Rohling. We
consider the whole range (from 0 up to 1) of the probability for appearance of pulse
jamming in range cells. The ADTs are determined using analytical expressions,
probability functions and Monte-Carlo simulation.

In this paper we investigate the influence of the scale factor over probability of false
alarm, detection probability and average decision threshold in strong PJ for CA CFAR
and excision CFAR processors. When CA CFAR and excision CFAR detectors operate
with a fixed scale factor, the detection probability is decreased in strong PJ, but the false
alarm probability is not maintained constant. When the scale factor is adjusted to PJ so
that the false alarm probability is maintained constant, as it in our case, the ADT for CA
CFAR processor increases with the increasing of the average interference-to-noise ratio
rj and the probability for the appearance of pulse jamming with average length in the
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range cells from g, up to 0.5. The results obtained for the ADT of a CA CFAR processor

without pulse jamming are equal to those presented in [3]. It can be seen from the
experimental results that excision CFAR processor is effective for probability for

appearance of pulse jamming ¢, <05, for &, >05 CA CFAR processor operates better.

For pulse jamming with probability for appearance of pulse jamming from 0.2 up to 0.3
and average interference-to-noise ratio r; =30 dB, the profit from the excision is about 20
dB, and for r;=5 dB the profit is about 2 dB.

The experimental results from the study on two-dimensional CFAR processors,
show that APl CFAR processors are most suitable for use when the probability for
appearance of pulse jamming takes values in the interval from O up to 0.5. In cases when
the probability for appearance of pulse jamming takes values in the interval from 0.5 up
to 1, we recommend binary integration after the CFAR processor.

The problem, concerning the improvement of the work of excision CFAR and API
CFAR processors when the probability for appearance of pulse jamming takes values in
the interval ¢,>0.5, can be solved using H i m o n a s [5] approach. In such cases the

threshold estimation is achieved using cells with pulse jamming.
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EnHomepHn M nByMEpHM IPOLECOPH, MOATBPKAIMM ITOCTOSTHHA YE€CTOTA
Ha JIBKJINBA TPEBOTA B YCIOBUATA HA XaOTUYHHU UMITYJICHU CMYILICHUS

Usan I'apsarnos, Xpucmo Kabaxuues

Hucmumym no ungpopmayuonnu mexronoeuu, 1113 Cogus

(PezwmMme)

B nacrosimara cratus ce uscneasat CA CFAR, excision CFAR, CA CFAR B, excision
CFAR Bl u APl CFAR mpouecopu B yCIOBHs Ha MMIYJICHU cMmylleHus. M3ciensa ce
BIHMSHUAETO Ha CcKajapHUs (akTop BbPXY BEpPOSTHOCTTAa 3a JBXKIMBA TpPEBOra H
BEPOSTHOCTTA Ha MPAaBWIHO OTKPHBaHE 3a E€IHOMEPHH IPOLECOPH, MOAIbPKAIIH
MOCTOSIHHA YEeCTOTa Ha JThXkINBa TpeBora. OueHsiBa ce eeKTUBHOCTTAa Ha €IHOMEPHHUTE
W JIByMEpPHUTE OTKPHUBATENIM, HM3MON3BallkKl METOAa ChC CpElleH Mpar Ha OTKPUBaHE.
PegynTatuTe 3a TO3M mpar ca TMOJYyYeHH MOCPEACTBOM aHAIUTUYHO H3BEXKIAHE, 4pe3
cumynays Monte - Kapio u mocpeacTBoM H3MOJI3BaHETO Ha BEPOSTHOCTHUTE (DYHKIIUU
Ha oTKpuBaTenute. M3cnenBanusra ca HarpaBeHu B cpenata Ha MATLAB.

Ot monywenute pesynrati ce Bmxkaa, dye APl CFAR mpomecopute ca Haii-
e(eKTUBHU B YCIIOBHATA HA XaOTUYHH UMITYJICHM CMYIICHHUS TIPH BEPOSTHOCT 32 TSIXHATa
nosiea or 0 mo 0,5. 3a BeposTHOCT 3a mosBa, mo-romsma ot 0,5, ce mpemnara
W3IION3BAHETO Ha OMHAPHO MHTErPHpaHe Cie]] MPOLEeCOPUTE, MOMIbPIKAIIM MOCTOSHHA
4YeCcTOoTa Ha JILKJIMBA TPEBOTa.
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