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Abstract: In this paper CA CFAR, excision CFAR, CA CFAR BI, excision CFAR BI and 
API CFAR processors in strong pulse jamming (PJ) are discussed . We investigate the  
influence of the scale factor over probability of false alarm and detection probability in 
strong PJ for one-dimensional CFAR processors. The efficiency of one- and two-
dimensional CFAR processors by using the average decision threshold (ADT) approach 
is evaluated. The results for the ADT are received analytically using the Monte-Carlo 
method and the probability functions (SNR). The researches are performed in MATLAB 
environment.  

The experimental results show that API CFAR processors are most efficient for 
probability of appearance of pulse jamming (from 0 up to 0.5). For 5.00   we 
recommend binary integration after the CFAR processor.  
 
Keywords: Radar Detector, CFAR Processors, Pulse Jamming, Average Decision 
Threshold (ADT), Probability of detection, Probability of false alarm.  
 
1. Introduction 
 

Cell-Averaging Constant False Alarm Rate (CA CFAR) signal processing proposed by  
F i n n  and J o h n s o n 1 is often used for radar signal detection. The detection 
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threshold is determined as a product of the noise level estimate in the reference window 
and a scale factor to achieve the design probability of false alarm. The presence of strong 
pulse jamming (PJ) in both, the test resolution cell and the reference cells can cause 
drastic degradation in the performance of a CA CFAR processor as shown in 12. 

In such situations it would be desirable to know the CFAR losses, depending on the 
parameters of PJ, for rating the behavior of radar. There are two approaches for the 
calculation of CFAR losses offered by R o l l i n g  [2] and by G a n d h i and K a s s a m 
3. The conventional method, used in 5, 7, 12, is to compute the additional SNR 
needed for the CFAR processing scheme beyond that for the optimum processor, to 
achieve a fixed detection probability (e.g. 0.5). For a particular CFAR scheme the losses 
obviously vary with the detection probability. Alternatively, the authors in 2, 3 use 
another criterion based on the average decision threshold (ADT), since the threshold and 
the detection probability are closely related to each other. Then the difference between 
two CFAR systems is expressed by the ratio between the two ADTs measured in dB, as 
shown in 2, 3.  

The false alarm rate of the postdetection integrator (PI) is extremely sensitive to 
pulse jamming, and the binary integrator (BI) which uses a K-out-of-M decision rule is 
insensitive to at most K1 interfering pulses [7]. For keeping constant false alarm rate in 
PJ, the CA CFAR processor presented in 9, 12 is used. But this method is not as 
effective as the conventional method for the calculation of CFAR losses. For the 
minimization of CFAR losses in case of pulse jamming postdetection integration (PI) or 
binary integration (BI) is implemented in CFAR processors as shown in 5, 8, 10. The 
use of excision CFAR detectors, supplemented by a postdetection integrator or a binary 
integrator as shown in 6, 7, 10, increases the CFAR losses. Minimum CFAR losses in 
PJ are obtained in 5, 11 with a CFAR adaptive postdetection integrator (API) processor 
with adaptive selection on PJ in reference windows and apriori selection in test windows 
as shown in 5 and adaptive censoring in reference and test windows as presented in 
11. 

We assume in this paper that the noise in the test cell is Rayleigh envelope 
distributed and target returns are fluctuating according to Swerling II model as in 3, 5. 
Differing from the authors in 5, we assume that the samples of PJ are distributed 
according to the compound exponential law, where weighting coefficients are the 
probabilities of corrupting and non-corrupting of the samples. Differently from [7-11], 
we consider the entire range (from 0 up to 1) of the probability for the appearance of 
pulse jamming in range cells. For values of the weighting coefficients higher than 0.3, 
the Poisson process model is used, but it is rough [16]. The binomial distribution is 
correct in this case. 

In this paper we research the influence of a scale factor over probability of false 
alarm, detection probability and average decision threshold in strong PJ for CA CFAR 
and excision CFAR processors. In [12] the losses of CA CFAR detector in conditions of 
PJ are calculated, but for fixed scale factor. In this case the probability of false alarm is 
not maintained constant.  

In our work we study CA CFAR, excision CFAR, CFAR BI, excision CFAR BI 
and API CFAR processors in strong pulse jamming. We use the average decision 
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threshold (ADT) approach for comparison of the processors. As a difference from the 
authors in 7-11, we study the influence of probability for appearance of pulse jamming 
over ADT in strong PJ. The analytical expressions for the probability functions of CA 
CFAR, excicion CFAR, CFAR BI, excision CFAR BI and API CFAR detectors are 
achieved in [7-11]. We achieve in this paper new results for the ADT of all studied by us 
CFAR processors using Rohling approach, presented in [2]. The SNR of the minimum 
detectable signal ( PD =0.5) is approximately the same as the ADT of each CFAR system. 
We use for comparison also the approach with Monte-Carlo simulation for estimation of 
the ADT of the studied CFAR detectors. Finally, we estimate the efficiency of the CFAR 
processors by using the results for the ADT. 

The experimental results show that the API CFAR processors are most effective for 
probability of appearance of pulse jamming  (from 0 up to 0.5). For 5.00   we 
recommend binary integration after the CFAR processor.  

 
2. Performance of one-dimensional CA CFAR and excision CFAR 
processors in the presence of pulse jamming 
 

2.1. Probability of detection and false alarm of CA CFAR detectors 
 

Consider a radar detector in which the received signal is sampled in a range by the 1N  
resolution cells resulting in a vector of 1N  observations. The sampling rate is such 
that the samples are statistically independent. After filtration the signal is applied to a 
square-law detector and then processed in the CA CFAR decision element. In conditions 
of pulse jamming the background environment includes random interfering pulses and 
the receiver noise. Therefore the samples surrounding the cell under test (a reference 
window) may be drawn from two classes. One class represents the interference-plus-
noise situation, which may appear at the output of the receiver with a probability 0 . 
This probability can be expressed as 0  t Fc j , where Fj  is the average repetition 
frequency of PJ and tc  is the length of pulse transmission. The other class represents the 
noise only situation, which may appear at the outputs of the receiver with a probability 
 1 0  . The probability density function (pdf) of the test resolution cell is assumed to 
be distributed according to Swerling II case [9]: 
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where 0  is the average power of the receiver noise, r j  is the average interference-to-
noise ratio (INR) of pulse jamming, s is the per pulse average signal-to-noise ratio 
(SNR). The probability density function (pdf) of the reference window outputs can be 
defined as (1), setting 0s . 
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The probability of pulse detection PD  is obtained in [9] as:  
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where MV .  is the moment generating function (mgf) of the noise level estimate V . In 
a conventional CA CFAR detector the noise level estimate is formed as a sum of all the 

outputs of the reference window: 
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xi .The mgf of the estimate V  is obtained in [9]: 
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The probability of target detection in [9] is computed by the following expression: 
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The probability of false alarm is evaluated by (4), setting s  0 . 
 
2.2. Probability of detection and false alarm of excision CFAR detectors 
 

In an excision CFAR processor the noise level estimate V is formed as an average mean 

of nonzero samples at the output of the excisor  Niy , that is: V
k
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to [6] the operation of the excisor is defined as follows: 
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where EB  is the excision threshold. 

Therefore the pdf of the random variable iy  can be expressed as 
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The probability that a sample ix  survives at the output of the excisor, is given as 
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The probability that k  out of N  samples of the reference window survive at the output 
of the excisor is given as:    v k C P PN

k
E
k

E
N k  1 . The mgf of the random variable yi  

at the output of the excisor can be obtained using the following expression: 
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Since the random variables  x i ki 1   are independent, the mgf of the estimate V  can 

be obtained as a product:    M U k M U kV Y
k, / . In this article we use the moment 

generating function on the excision CFAR processor from [7] 
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The probability of target detection for excision CFAR in [7] is computed by the 
expression: 
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The probability of false alarm is evaluated by (11), setting s  0 . 
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2.3. Average decision threshold of CA CFAR and excision CFAR detectors 
 

The average decision threshold ADT is defined as a normalized quantity [2]:   
 
(12)                                              ,/ADT 0CFAR TVE                                                           
 
where the random variable V  is the result of the estimation method used in the CFAR 
system, T is the scaling factor for threshold adjustment adapted to the estimation method 
and required PFA ; E  stands for the expectation: 
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Deviating from the methods usually described in radar literature, we use the average 
decision threshold (ADT) for comparison of various CFAR processors. This provides the 
advantage that the difference existing between various CFAR systems is then expressed 
by a single-valued measure. The difference between two CFAR systems can be 
expressed by the ratio of the two ADT’s measured in dB [2]:  
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In this paper comparative analysis by ADT for one dimension processors is made with 
respect to an optimal detector, as it is in [3]. The ATD optimal is 

(15)                                                  ADT opt =  ln(Pfa). 
 
2.3.1. ADT for a CA CFAR processor in PJ. Using (3) and (13), we substitute 
U T / 0  and for T  0 , we have the ADT expression as it is in [12]:   
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where T is computed by expression (4), setting s  0 . 
 

For 0 0  or without pulse jamming TNCACFARADT  as in [3], where 
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2.3.2. ADT for excision CFAR processor in PJ . Using (9) and (13), we substitute 
U T / 0  and for T  0 , we have the ADT expression as it is in [13]:   
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where T is computed by expression (11) setting s  0 .  
 
3. Performance of two-dimensional CFAR BI, excision CFAR BI and API 
CFAR processors in the presence of pulse jamming.  
 

Let us assume that L  pulses hit the target, which is modeled according to Swerling case 
II. The received signal is sampled in range by using 1M  resolution cells resulting in a 
matrix with 1M  rows and L  columns. Each column of the data matrix consists of the 
values of the signal obtained for L  pulse intervals in one range resolution cell. Let us 
also assume that the first 2/M  and the last 2/M  rows of the data matrix are used as a 
reference window in order to estimate the “noise-plus-interference” level in the test 
resolution cell of the radar. In this case the samples of the reference cells result in a 
matrix X  of the size LM  . The test cell or the radar target image includes the 
elements of the  12/ M  row of the data matrix and is a vector Z  of length L . The 
elements of the reference window are independent random variables with compound 
exponential distribution law (1), setting 0s . In the presence of a desired signal from a 
target the elements of the test resolution cell are independent random variables with 
distribution law (1). 
 
3.1. Probability of detection and false alarm of CA CFAR BI detectors 
 

The probability of target detection for CA CFAR BI processor in [10] is computed by the 
expression 
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where DP  is probability of detection from (4). The probability of false alarm is evaluated 
by (18), setting s  0 . 
 
3.2. Probability of detection and false alarm of excision CFAR BI detectors 
 

The probability of target detection for EXC CFAR BI processor in [10] is computed by 
the expression 
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where DP  is probability of detection from (11). The probability of false alarm is 
evaluated by (19), setting s  0 . 
 
3.3. Probability of detection and false alarm of API CFAR detectors 
 

We use the adaptive censoring algorithm, proposed by H i m o n a s  and  B a r k a t in 
[4], before pulse-to-pulse integration for censoring the elements of pulse jamming in the 
reference window and the test resolution cells, in order to form the detection algorithm. 

The expression for the probability of target detection for an API CFAR processor is 
achieved in [11, 15]. The authors in [11, 15] study the probability of target detection only 
for 00.5 and calculate only the first member of the expression (20). We calculate the 
probability of target detection for 0(0;1) and calculate the value of PD by using the 
following expression: 
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4. Numerical results  
 

4.1. Scale factor analysis of CA CFAR and excision CFAR detectors in pulse jamming 
 

In this paper we investigate the influence of scale factor over probability of false alarm 
and detection probability in strong PJ for CA CFAR and excision CFAR processors. We 
use the scale factor  T f P Nc fa , .13713  for the case of homogeneous interference 

and  0,,, jfap rNPfT   for the case when the false alarm probability is maintained 
constant in pulse jamming. The experimental results are obtained for the following 
parameters: average power of the receiver noise0 =1, average interference-to-noise ratio 
(INR) rj=5 and 30 dB, probability for appearance of pulse jamming with average length 
in the range cells 0  from 0 to 1, number of reference cells N=16, probability of false 
alarm Pfa 

10 6  and excision threshold BE=2.  
 

5 
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Fig. 1. CA CFAR processor. 
False alarm probability for Tc  

Fig. 2. EXC CFAR processor. 
False alarm probability for Tc  

 
 

The experimental results from Fig.1 and 2 show that when CA CFAR and excision 
CFAR processors operate with fixed scale factor Tc  in strong pulse jamming the false 
alarm probability is not maintained constant. In this case the detection probability 
decrease with increase of the average interference-to-noise ratio and the probability for 
the appearance of pulse jamming with average length in the range cells for fixed SNR 
(Figs. 3-6). For case with adaptive scale factor Tp  threshold ratio SNR is bigger for fixed 
the detection probability PD  0 5. . 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3. CA CFAR processor. 
Detection probability for rj=5 dB and 0 =0.1, 

0.3, 0.5, 0.9., where 0  is 1, 2, 3, 4 for Tc and 5, 
6, 7, 8 for Tp 

Fig. 4. EXC CFAR processor. 
Detection probability for rj=5 dB and 0 =0.1, 0.3, 

0.5, 0.9, where 0  is 1, 2, 3, 4 for Tc and 5, 6, 7, 8 
for Tp 
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Fig. 5. CA CFAR processor. 
Detection probability for rj=30 dB and 0 =0.1, 

0.3, 0.5, 0.9, where 0  is 1, 2, 3, 4 for Tc and 5, 6, 
7, 8 for Tp 

Fig. 6. EXC CFAR processor. 
Detection probability for rj=30 dB and 0 =0.1, 

0.3, 0.5, where 0  is 1, 2, 3 for Tc and 4, 5, 6 
 for Tp 

 
 
4.2. Average decision threshold analysis of one-dimensional CFAR processors in PJ 
 

In a CA CFAR processor, the noise level estimate in the reference window increases 
with the increasing of the average interference-to-noise ratio and the probability for the 
appearance of pulse jamming with average length in the range cells (Fig.7). In order to 
keep the false alarm probability constant, the scale factor must be decreased when the PJ 
frequency increases. The average decision threshold (ADT) increases when the 
probability for the appearance of pulse jamming takes values 0 from 0 to 0.5, and then 
decreases for value  0 0 5 .  (Fig. 7).  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. CA CFAR processor. 
ADT1, T1, V1 and ADT2, T2, V2 

are for  rj =5 and 30 dB 

Fig. 8. EXC CFAR processor. 
ADT1, T1, V1 and ADT2, T2, V2  

are  for  rj =5 and 30 dB 
 

In the excision CFAR processor, the jamming pulses are censored and the noise 
level estimate in the reference window is kept constant (Fig.8). In order to keep the false 
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alarm probability constant, the scale factor must be increased with the increasing of PJ 
frequency. The average decision threshold (ADT) is constant when the probability for 
the appearance of pulse jamming takes values 0  between 0 and 0.5, and then increases 
for a value 5.00   (Fig.8). 

In (Figs. 9 and 10) we present plots of the losses of CA CFAR and excision CFAR 
processors with relation to an optimal detector and losses in conditions of strong pulse 
jamming for average interference-to-noise ratio 5 and 30 dB. The difference between two 
CFAR systems is expressed by their losses, which are calculated with the help of 
expression (12). From (Figs.9 and 10) we show that excision CFAR processor is 
effective for probability of appearance of pulse jamming 5.00  , for 5.00  CA 
CFAR processor operates better.  

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 9.  rj =5 dB. 

1 and 2 are losses of CA CFAR and EXC CFAR 
processors towards optimal detector 3 losses of 
EXC CFAR toward CA CFAR processor 

Fig. 10.   rj =5 dB. 
1 and 2 are losses of CA CFAR and EXC CFAR 
processors towards optimal detector 3 losses of 

EXC CFAR toward CA CFAR processor 

In this paper we study average decision threshold in PJ for CA CFAR and excision 
CFAR processors with different methods. The results for ADT are analytically received 
using Monte-Carlo method and the probability functions (SNR). They are marked as 
follows: analytical (– –), Monte-Carlo (*) and SNR (continuous line). The experimental 
results are obtained for interference-to-noise ratio (INR) rj=30 dB. 
 
 

 
 

 
 
 
 
 
 

 

Fig. 11. CA CFAR processor Fig. 12. EXC CFAR processor 
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It can be seen in Fig.11 and Fig.12 that the results achieved for ADT analytically 
and by using the probability functions (SNR) are identical, which proves the hypothesis 
of Rohling in [2]. All the above-mentioned allows us to determine the ADT of two-
dimensional detectors by using the probability functions (SNR). 
 
4.3. Average decision threshold analysis of two-dimensional CFAR  processors in PJ 
 

The experimental results are obtained for the following parameters: average power of the 
receiver noise0 =1, average interference-to-noise ratio (INR) rj=30 dB, probability for 
the appearance of pulse jamming with average length in the range cells 0  from 0 to 1, 
probability of false alarm Pfa 

10 6  and excision threshold BE=2. For two-dimensional 
detectors the size of the testing sample is 16 and the reference window is of the size  
. The results for the ADT are received using Monte-Carlo method and the 
probability functions (SNR). They are marked as follows: Monte-Carlo (*) and SNR 
(continuous line). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. CA CFAR BI processor, M=16, L=16 Fig. 14. CA CFAR BI processor, M=10, L=16 
The ADT, T and V of CA CFAR BI processors with a binary rule M-out-of-L 

(16/16 and 10/16) are shown in Fig.13 and Fig.14. It can be seen that CFAR BI 
processors with the binary rule M-out-of-L=16/16 are better in cases of lower values 
0 0.5 of the probability for appearance of pulse jamming. For higher values of the 
probability for appearance of pulse jamming 0 >0.5 the using of the binary rule M-out-
of-L=10/16 results in lower losses. 

 
 
 
 
 
 

 
The ADT, T and V of excision CFAR BI processors with a binary rule M-out-of-L 

(16/16 and 10/16) are shown in Fig.15 and Fig.16. It can be seen that excision CFAR BI 
detectors have the same behavior as CFAR BI detectors. 

Fig. 15. EXC CFAR BI processor, M=16, L=16 Fig. 16. EXC CFAR BI processor, M=10, L=16 



 70 

 
 

 
 
 

 
 
 
 
 
 
 
 

Fig. 17.   API CFAR processor Fig. 18. ADT from Fig.11 up to Fig.17 
 

The ADT, T and V of an API CFAR processor are shown in Fig.17. In this case the 
results for the ADT achieved by using the probability functions (SNR) are identical with 
the results achieved by using Monte-Carlo simulation for values of 0  up to 0.4. The 
suggested algorithm is not working for higher values of 0  due to the fact, that the 
hypothesis for censoring in the test cell is disturbed. In such case the big difference in 
power between the background and the pulse jamming is disturbed and the automatic 
censoring of pulse jamming is impossible. 

The ADTs of all processors studied are shown in Fig.18. The numbers from 1 up  
to 7 correspond to the detectors from Fig.11 up to Fig.17. The API CFAR processor is 
the most suitable one to use for values of the probability for the appearance of pulse 
jamming 0 0.5. When the probability for the appearance of pulse jamming 0  takes a 
value between 0.5 and 1, both CA CFAR BI and EXC CFAR BI processors with M-out-
of-L=10/16 rule can be successfully used. 

 
5. Conclusions 
 

We investigate in this paper the technical qualities of different CFAR techniques in the 
presence of strong pulse jamming by using the ADT approach suggested by Rohling. We 
consider the whole range (from 0 up to 1) of the probability for appearance of pulse 
jamming in range cells. The ADTs are determined using analytical expressions, 
probability functions and Monte-Carlo simulation.  

In this paper we investigate the influence of the scale factor over probability of false 
alarm, detection probability and average decision threshold in strong PJ for CA CFAR 
and excision CFAR processors. When CA CFAR and excision CFAR detectors operate 
with a fixed scale factor, the detection probability is decreased in strong PJ, but the false 
alarm probability is not maintained constant. When the scale factor is adjusted to PJ so 
that the false alarm probability is maintained constant, as it in our case, the ADT for CA 
CFAR processor increases with the increasing of the average interference-to-noise ratio 
rj and the probability for the appearance of pulse jamming with average length in the 



 71 

range cells from 0  up to 0.5. The results obtained for the ADT of a CA CFAR processor 
without pulse jamming are equal to those presented in [3]. It can be seen from the 
experimental results that excision CFAR processor is effective for probability for 
appearance of pulse jamming 0 0 5 . , for 0 0 5 .  CA CFAR processor operates better. 
For pulse jamming with probability for appearance of pulse jamming from 0.2 up to 0.3 
and average interference-to-noise ratio rj  =30 dB, the profit from the excision is about 20 
dB, and for rj=5 dB the profit is about 2 dB.  

The experimental results from the study on two-dimensional CFAR processors, 
show that API CFAR processors are most suitable for use when the probability for 
appearance of pulse jamming takes values in the interval from 0 up to 0.5. In cases when 
the probability for appearance of pulse jamming takes values in the interval from 0.5 up 
to 1, we recommend binary integration after the CFAR processor. 

The problem, concerning the improvement of the work of excision CFAR and API 
CFAR processors when the probability for appearance of pulse jamming takes values in 
the interval 0 >0.5, can be solved using H i m o n a s [5] approach. In such cases the 
threshold estimation is achieved using cells with pulse jamming.  
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Едномерни и двумерни процесори, поддържащи постоянна честота  
на лъжлива тревога в условията на хаотични импулсни смущения 
 

Иван Гарванов, Христо Кабакчиев 
 
Институт по информационни технологии, 1113 София 
 
(Р е з ю м е) 
В настоящата статия се изследват CA CFAR, excision CFAR, CA CFAR BI, excision 
CFAR BI и API CFAR процесори в условия на импулсни смущения. Изследва се 
влиянието на скаларния фактор върху вероятността за лъжлива тревога и 
вероятността на правилно откриване за едномерни процесори, поддържащи 
постоянна честота на лъжлива тревога. Оценява се ефективността на едномерните 
и двумерните откриватели, използвайки метода със среден праг на откриване. 
Резултатите за този праг са получени посредством аналитично извеждане, чрез 
симулация Монте - Карло и посредством използването на вероятностните функции 
на откривателите. Изследванията са направени в средата на MATLAB. 

От получените резултати се вижда, че API CFAR процесорите са най-
ефективни в условията на хаотични импулсни смущения при вероятност за тяхната 
поява от 0 до 0,5. За вероятност за поява, по-голяма от 0,5, се предлага 
използването на бинарно интегриране след процесорите, поддържащи постоянна 
честота на лъжлива тревога.  
 
 
 


