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Abstract: An indirect adaptive neural control with Integral-Plus-State (IPS) action, is
proposed. The control scheme contain one identification and state estimation Recur-
rent Trainable Neural Network. The identified plant parameters and the estimated
state vector are used to compute an adaptive IPS control. Two control schemes are
proposed, containing one or two integrals in the control law. The good tracking abili-
ties of this adaptive IPS control are confirmed by simulation results, obtained with a
mechanical plant with friction model. Copyright © 2002 IFAC.
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1. Introduction

Intelligent control using neural networks (NN) has been applied to various control
problems, O m a t u   et al. [8]. It is known to be effective in many situations, especially
when the controlled plant exhibits non-linearity, and the plant parameters are unknown
and time varying, especially for mechanical systems. On the other hand, the unavoid-
able effects of identification and control errors, due to model uncertainties, together
with slow load variations, cause a steady-state offset that needs to be removed. In this
case, an integral action, added to the control, compensates the plant uncertainties and
load effects, and help the system to track the reference signal. Within the context of the
servomechanism problem, integral action is a fundamental technique in the control
repertoire and the I-PD (or PID) controllers have been the most utilised controllers in
the industry, because of their simple structure and robust performance in wide range of
operating conditions, C e r v a n t e s  and  A l v a r e z-R a m i r e z [4]. Here the PD
mode is used to speed up response, whereas the PI mode is applied to eliminate the
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steady state offset. During the last years, the classical PID scheme has been completed
by auto-tuning devices like Neural Networks, H e n s e n  et al. [5]; L i m a  et al. [7],
(Multi-Layer Perceptron, learned by Genetic Algorithms; Radial Basis Functions NN),
and Fuzzy Systems, A l m u t a r i  and  C h o w [1], to adjust on-line its parameters. To
resolve some specific control problems in mechanical systems, some extensions to the
classical PID scheme, have been added. So, for regulator tasks on mechanical systems
that exhibit friction, the PID-controller is combined with mass and friction feedforward,
A l m u t a r i  and  C h o w [1]. The state PD-controller plus gravity compensation
terms is widely used in robot manipulators control. However, these linear state feed-
back controllers could not compensate inertial and corriolis forces and cannot render
asymptotic stability for path tracking tasks. To overcome this, in [9] P a r r a  and
A r  i m o t o, a nonlinear PID controller, is proposed. The major disadvantage of these
controllers is that they could be applied only for SISO and not for MIMO systems.
Also, in a case of high order plants, the PD control term is not sufficient to assure
systems stability. The use of RNN for systems control could overcome these problems.
B a r u c h  et  al. [3] have proposed a new RNN and a dynamic Bachpropagation (BP)-
like algorithm of its learning, which could resolve identification and control problems
in an universal way. The applied indirect adaptive neural control contains one identifi-
cation and state estimation RNN, which offers a good learning performance.

The aim of the proposed paper is to extend this control scheme with one or two
I-control terms, so to obtain an Integral-Plus-State (IPS) indirect, adaptive, trajectory
tracking, offset compensation control.

The aim of this paper is to apply the RTNN model in two real-time identification
and indirect adaptive IPS control schemes of nonlinear mechanical system with un-
known variable parameters and dynamic effects.

2. Recurrent neural network topology and learning
In B a r u c h  and  F l o r e s [2] ; B a r u c h  et al.[3], a discrete-time model of Recurrent
Trainable Neural Network (RTNN), and the dynamic Backpropagation (BP) weight
updating rule, applied for identification and control purposes, are given. The RTNN
model is described by the following equations:
(1)                             X(k + 1) = JX(k) + BU(k),
(2)                                           X1(k) = S[X(k)],
(3)                                       Y(k) = S[CX1(k)],
(4)                        J = block – diag (Ji); Ji0,
where: X(.) is a N-state vector of the system; U(.) is a M-input vector; Y(.) is a L-output
vector; X1 (.) is a N-output vector of the hidden layer; S(.) is a vector-valued activation
function with appropriate dimension; J is a weight-state diagonal matrix with elements
Ji; B and C are weight input and output matrices with appropriate dimensions. As it can
be seen, the given RTNN model is a completely parallel parametric one, so it is useful
for identification and control purposes. The controllability and observability of this
model is proven in by  S o n t a g  and  S u s s m a n n  [11];  S o n t a g  and  A l b e r-
t i n e [10]. Parameters of that model are the weight matrices J, B, C and the state vector
X(k). The equation (4) is a stability preserving condition. The general BP learning
algorithm is given as
(5)                Wij(k + 1) = Wij(k) + Wij(k) + Wij(k - 1)
where: Wij (Cij, Jij, Bij) is the ij-th weight element of each weight matrix (given in
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parenthesis) of the RTNN model to be updated; Wij (Cij, Jij, Bij) is the weight
correction of each corresponding weight matrix; ,  are learning rate parameters.
The updates of RTNN model weights are given by:
(6) Cij(k) = [Tj(k) – Yj(k)] Sj'(Yj(k))Zi(k),
(7)                                    Jij(k) = R1 Xi(k – 1),
(8) R1 = Ci(k) [T(k) – Y(k)] Sj'(X1j(k)),
(9) Bij(k)R1Ui(k),
where T is a target vector with dimension L and  [T – Y] is an output error vector, also
with the same dimension; R1 is an auxiliary variable; S'(.) is the derivative of the acti-
vation function, which for the hyperbolic tangent is, e.g. Sj'(x) = 1 – x2.

3. An indirect adaptive trajectory tracking neural control with IPS-action

Let us suppose that the studied nonlinear plant possesses the following structure:
(10)          Xp(k + 1) = F(Xp(k),U(k)),
(11)                                               Yp(k) = (Xp(k)),
where Xp(k), Yp(k) are plant state and output vector variables; F and  are smooth, odd,
bounded nonlinear functions.

Two control schemes should be considered – with one and with two integrals in
the control part.

The block diagram of the first control scheme, containing one integral block is
shown on Fig.1. It contains one RTNN, which generates states and parameters, to the
control block. The discrete integral term equation of the integral block is written as:
(12)                                 V(k + 1) = V(k) + T0U(k),
where V(k) is a M-vector integral action variable and T0 is period of discretization.
From Fig.1 it is seen that the plant input is the variable V(k). Let us define the measure-
ment vector of the extended system as
(13)            Y*(k) = Yp(k) + V(k) + O(k),
where O(k) is a L-vector offset. Linearizing the activation functions of the learned
identification RTNN model (eqns. (1) to (3)), the following linear local plant model
approximation, could be obtained:
(14) X(k + 1) = JX(k) + BU(k),
(15)                                                     Y(k) = CX(k).
Based on this local linear plant model (whose parameters are identified by RTNN learn-
ing), the extended system model equation, with discrete-time integral term, could be
derived:
(16)            Xe(k + 1) = JeXe(k) + BeU(k),
(17)                                                     Y(k)= CeXe(k),
where Xe(k) is a (N + M)-state vector; Je, Be, Ce are weight matrices with dimensions
(N + M) x (N + M), (N + M) x M, Lx(N + M), respectively, given by:

(18)   
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Applying on the extended system, the same design procedure, given by B a r u c h
and F l o r e s [2], the following indirect adaptive control law, is obtained:
(20)              U(k) = [CB + T0]-1[–CJX(k) – V(k) + R(k + 1) + iEi(k)],
                                                                                             

i

(21)                                    E(k) = R(k) – Y*(k),
where E(k) is a L-error vector; R(k) – is a L-systems reference vector.

The block-diagram of second control system, containing two integral blocks, is
shown on Fig.2. It contains one RTNN, which generates states and parameters to the
control block and two successive integral blocks. The output of the second integral
block is input of the plant. The discrete integral term equation of the second integral
block is written as
(22)        Z(k + 1) = Z(k) + T0V(k),
where Z(k) is a M-vector variable of the second integral action. Let us define the meas-
urement vector of the extended system as:
(23)  Y*(k) = Yp(k) + V(k) + Z(k) + O(k).
So, in a similar manner, we could write the equations of the extended system with two
integral actions as:
(24)                                 Xee(k + 1) = JeeXee(k) + BeeU(k),
(25)                                           Yee(k) = CeeXee(k),
where  Xee(k) is a (N + 2M)-state vector; Jee, Bee, Cee are weight matrices with dimen-
sions (N + 2M) x (N + 2M), (N + 2M) x M, L x (N + 2M), respectively, given by:
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The control law is given by the following equation:
(28)        U(k) = T0

–1[–CX(k) – (CB + I)Z(k) – (T0 + I)V(k) + R(k + 1) + iEi(k)].
                                                                                                          

   i

The following part of the paper gives simulation results with a mechanical plant
model with friction.

4. Simulation results

Let us consider a 1-DOF mechanical system with friction, whose general model (L e e
and K i m [6]), is given by the equation
(29)      ),()(),( 0 tuktvtqfrqm 



where m is the mass, q(t) is the relative displacement; (t) = dq(t)/dt is the velocity,
fr(, t) is the friction force, u(t) is the control force, k0 is the system gain, and (t) is a
bounded external load disturbance, with unknown upper bound d, as it is:
(30)                                       0 d  ;  tν .

The equations, describing the behaviour of the friction force, (L e e  and  K i m
[6]), are given as:
(31) )](1)[()()(),( stickslip   uFFtfr ,
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The friction model have the following friction parameters  [6]:  = 0.001 m/s;
Fs

+ = 4.2 N ; Fs
– = – 4.0 N; F+ = 1.8 N; F- = –1.7 N; cr = 0.1 m/s;  = 0.5 N.s/m.

Let us also consider that the measurements are taken with period of discretization
T0 = 0.1 s, the system gain is k0 = 8, the mass is m = 1 kg, and the load disturbance
depends on the position and the velocity ((t) = d1q(t) + d2v(t); d1 = 0.25; d2 = – 0.7). So
the discrete-time model of the 1-DOF mass mechanical system with friction, is ob-
tained in the form:
(38)                                               X1(k + 1) = X2(k),
(39)              X2(k + 1) = –0.025X1(k) – 0.3X2(k) + 0.8U(k) – 0.1Fr(k),
(40)                                           (k) = X2(k) – X1(k),
(41)                                                 Y(k) = 0.1X1(k),
where: X1(k), X2(k) are system states; (k) is system velocity and Y(k) is system posi-
tion; k is a discrete time variable and the friction force Fr(k) is governed by the equa-
tions (31) to (37) with given values of friction parameters. A second order reference
model, introduced in the control laws (20) and (28), has the form:
(42)                        R(k + 2) = –0.9R(k + 1) – 0.2R(k + 1) + r(k),
(43)                                )(2.0)1(9.0)2( kEkEkE  ,
where E(k) is the systems error, defined by (21) and r(k) is a reference model input
signal, given by:
(44)        r(k) = sat(3sin(2k)).

The graphical simulation results with length of 12 s, are given in the Appendix.
The results, obtained using the first control scheme (Fig.1), are given on Fig. A1, A2 of
the Appendix and that – by the second scheme (Fig.2) – are given on Fig. A4, A5,
respectively. Results, obtained by control scheme without integral terms, are given on
Fig. A3 and Fig. A6. The graphics, shown on Fig. A1, a  f, give simulation results,
using the first scheme of control system with one integral block and constant offset
signal with magnitude of 40%, corrupting the systems output signal. The first graphics
(Fig. A1, a) compare the reference signal with the plant output. The second graphics
compare the plant output with the output of the identification RTNN (Fig. A1, b). The
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third graphics represents the control signal (Fig. A1, c). The fourth graphics represents
the mean squared error of control (MSE%) which rapidly decreases to small value
(Fig. A1, d). The fifth graphics represents the MSE% of identification, which rapidly
decreases to small value (Fig. A1, e). The last graphics represents the three states of the
system issued by the identification RTNN (architecture 1, 3, 1, 0.01,   = 0.001)
and used to compute the IPS control action (Fig. A1, f). Similar results, obtained with
the second control scheme (Fig. 2) where the plant output is corrupted by 40% linear
(triangular) load disturbance, are given on Fig. A4, a  f. For sake of comparison, on
Fig. A2 a, b, c, are shown the graphical results, corresponding to that  given in Fig.
A1, a, b, d, but for an offset of 100%. Also the same comparative results, obtained with
the second control scheme (Fig. 2), where the plant output is corrupted by 100% linear
(triangular) load disturbance, are shown on Fig. A5, a, b, c .Some significant differ-
ences are seen only in the first half-period of the systems identification, which show
that both systems are practically insensitive of correspondent change of the magnitude
of the load disturbance. Results, obtained with a control system without integral blocks
and 10% of constant offset, are shown on Fig. A3, a, b, c and results obtained with the
same system, but corrupted by 10% linear offset are shown on Fig. A5, a, b, c. As it
could be seen, the system without integral action is sensitive to constant and linear load
disturbances, especially in the first two periods of change of the reference signal. It is
seen also that both schemes of indirect adaptive control with IPS action eliminate the
effect of the friction on the output signal (see Fig. A1, a., Fig. A2, a. and Fig. A4, a,
Fig. A5, a., respectively). This is due to the good performance of the identification
RTNN, which identifies successfully the friction (Fig. A1, b and Fig. A2, b). Some-
thing more, both schemes of adaptive IPS control are able to overcome some imperfec-
tions in systems identification, as it could be seen from the graphics (see Fig. A1, a, b;
Fig. A2, a, b and Fig. A4, a, b; Fig. A5, a, b, respectively). The on-line simulation
results, for both control schemes, show an overshoot of the MSE% due to improper
identification in the beginning (see Fig. A1, e; Fig. A4, e, respectively) but this MSE%
rapidly decreased.

5. Conclusions

A comparative study of various control systems with I-action, is done. The paper pro-
pose to use two indirect adaptive feedback control schemes with Integral-Plus-State
action, applied for 1-DOF mechanical system with friction. The control scheme con-
tains one RTNN model, one or two integral blocks and a computation block of the IPS
control law. The RTNN is plant parameters identificator and state estimator. The good
tracking abilities of this adaptive IPS control, for both control schemes, is confirmed
by comparative simulation results. The results show that the first control scheme could
compensate constant offsets, the friction force and some identification errors. The sec-
ond control scheme could do more, compensating linear offsets.
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Fig. A1. A single integral indirect adaptive trajectory tracking control with 40% constant offset:
a) comparison between the plant output and the reference signal;  b) comparison between the output of
the plant and the output of the RTNN; c) control signal; d) mean squared error of control (MSE%);
e) mean squared error of identification (MSE%); f) systems state variable estimated by RTNN

Appendix
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Fig.A2. A single integral indirect adaptive trajectory tracking control with 100% constant offset:
a) comparison between the plant output and the reference signal; b) comparison between the output of
the plant and the output of the RTNN; c) mean squared error of control (MSE%)

Fig. A3 . An indirect adaptive trajectory tracking control without integral and 10% constant offset:  a)
comparison between the plant output and the reference signal;  b) comparison between the output of the
plant and the output of the RTNN; c) mean squared error of control (MSE%)



4 6

0 2 4 6 8 10 12-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

--- Y*
 R__

0 2 4 6 8 10 12-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

Y*__

--- Yi

  b)

0 2 4 6 8 10 12-15

-10

-5

0

5

10

15

 c)

0 2 4 6 8 10 120
1
2
3
4
5
6
7
8
9 x 10 -7

d)

0 2 4 6 8 10 120
0.5

1
1.5

2
2.5

3
3.5 x 10 -4

e)

0 2 4 6 8 10 12-0.015

-0.01

-0.005

0

0.005

0.01

0.015

f)

 a)

Fig. A4. A double integral indirect adaptive trajectory tracking control with 40% linear(triangular)
offset: a) comparison between the plant output and the reference signal; b) comparison between the
output of the plant and the output of the RTNN; c) control signal; d) mean squared error of control
(MSE%); e) mean squared error of identification (MSE%); f) systems state variable estimated by RTNN



4 7

0 2 4 6 8 10 12-0.1

-0.05

0

0.05

0.1

0.15
0 2 4 6 8 10 12-0.08

-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0 2 4 6 8 10 120
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 x 10 -4

--- Y*
 R__

Y*__

--- Yi

a)

b)

c)

--- Y*
 R

__

0 2 4 6 8 10 12-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2 4 6 8 10 120
0.5

1
1.5

2
2.5

3
3.5 x 10 -4

0 2 4 6 8 10 12-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
0.15

Y*__

--- Yi

 a)

 b)

 c)

Fig. A6. An indirect adaptive trajectory tracking control without integral and 10% linear (triangular)
offset: a) comparison between the plant output and the reference signal; b) comparison between the
output of the plant and the output of the RTNN; c) mean squared error of control (MSE%)

Fig. A5. A double integral indirect adaptive trajectory tracking control with 100% linear (triangular)
offset: a) comparison between the plant output and the reference signal; b) comparison between the
output of the plant and the output of the RTNN; c) mean squared error of control (MSE%)
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Адаптивно невронно управление от типа
„интеграл – състояние“ (IPS)
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* CINVESTAV-IPN, Ave. IPN No 2508, A.P. 14-470 Mexico D.F., C.P. 07360
** Институт по информационни технологии, 1113 София

(Р е з ю м е)

Предлага се индиректно адаптивно невронно управление чрез въздействие  от
вида интеграл – състояние (IPS). Схемата на управление съдържа рекурентна
невронна мрежа за идентификация и определяне на състоянието. Иденти-
фицираните параметри на обекта и полученият вектор на състоянието се
използват при изчисляване на адаптивното управление IPS. Предложени са две
управляващи схеми, съдържащи един или два интеграла в закона за управление.
Добрите възможности на следене на  това адаптивно IPS управление се
потвърждават от симулационните резултати, получени върху механичен обект с
фрикционен модел.


