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Abstract: The current paper presents a brief overview of Inductive Logic Program-
ming (ILP) systems. ILP algorithms are of special interest for machine learning, be-
cause most of them offer practical methods for extending the presentations used in
algorithms that solve supervised learning tasks. The paper presents major approaches
for solving supervised learning task, summarizes their features and classifies systems
according different dimensions.
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1. Introduction

ILP algorithms are of special interest for machine learning, because most of them offer
practical methods for extending the presentations used in algorithms that solve super-
vised learning tasks. According to the languages used for presentation of examples,
hypotheses and background knowledge (BK) we can separate these machine learning
algorithms to two major classes: propositional (attribute-value) and relational. Rela-
tional languages are based on first-order logic and they are more expressive than propo-
sitional languages, because they allow more compact presentation of hypotheses, con-
struction of recursive hypotheses, background knowledge usage. Thus relational repre-
sentation is more convenient than attribute-value representation for many task domains,
including: geography, mutogenesis, natural language processing, proteins’ structure
analyses, information extraction, mesh analyses, robotics, drugs and etc. The paper
surveys ILP algorithms, focusing on major approaches for solving supervised learning
task, summarizes their features and classifies systems according different dimensions.
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2. Language bias

ILP algorithms usually use one of the following relational languages:
general clauses language,
Horn clauses language.
Construction of the hypothesis in the language frameworks is not always possible,

because of the following reasons:
hypotheses space is huge and/or complex,
the language used is not expressive enough.
To solve this problem two types of bias are used  a mechanism employed by a

learner to constrain the search for hypotheses:
language bias  determines the search space itself,
search bias  determines how the hypothesis space is searched.
There are two categories of language bias:
the syntactic restrictions of the selected logic formalism,
the vocabulary of predicate, function, variables and constant symbols: function-

free clauses, ground clauses (e.g. without variables), non-recursive clauses, mode dec-
larations (input/output) of the predicates’ arguments.

To represent examples, hypotheses and BK in the learning task examples’ lan-
guage (LE), hypotheses language (LH) and BK language (LB)  have been used.

Each of language restrictions above mentioned could be applied to each of these
languages independently, or to all of them together (Table 1).

Table 1

All ILP systems use some language bias. Mode declarations and learning of non-
recursive clauses are necessary for narrowing search in the hypotheses space, but other
language restrictions are imposed from the theory. For example, such a hypothesis does
not exist in general case when both set of examples and BK set consist of Horn clauses.

3. Shift of Bias

To construct a hypothesis, two types of bias shift are used:
 switch to a more expressive language (higher-order rules):

second-order schema: CIA [5], WiM [26] learns higher-order rule schemas
by simply variablizing both the terms and the predicates of previously generated Horn
clauses;

Language bias 

System 

mode declarations 
(input/output) 
types of the 
predicates' 
arguments 

function-
free 
clauses 

ground 
clauses 

ground 
literals 

non-
recursive 
clauses 

Horn 
clauses 

LINUS    LE LH LH 
FOIL LE , LH LE  LB  LH 
MARKUS LE , LB, LH     LH 
FOIDL LE , LH  LE   LH 
GOLEM    LE , LB  LH 
LFP2    LE , LB  LH 
RICH  LE , LB   LB LE , LB , LH 
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higher-order rule schemas: MODELER [36] keeps to each rule a set of its
exceptions and this set increases enough generates a new predicate;

lambda-calculus: LILP (Lambda Inductive Logic Programming) [16].
 extend the given vocabulary by new predicates – predicate invention: MODELER

[36], RINCON[35], CHILLIN[38], CIGOL[19], RICH[39].
Bias shift is used to construct more compact hypothesis, but usually the hypoth-

eses space increases.

4. Characteristics of ILP systems

Incremental/ Non-incremental: This dimension describes the way the evidence (ex-
amples) is obtained. In non-incremental or empirical ILP, the evidence is given at the
start and not changed afterwards, in incremental ILP, the examples are input one by one
by the user, in a piecewise fashion. Non-incremental systems search typically either
specific-to-general or general-to-specific. Incremental systems usually employ a mix-
ture of these strategies as they may need to correct earlier induced hypotheses. Incre-
mental ILP systems include: FORTE [29], LFP2 [34], MARVIN [32], RINCON [35]
& CIGOL [19]. Empirical ILP systems include: GOLEM [20], FOIL [27], FOCL
[22], IFOIL [6], ILP-R [25], RICH [39] and LINUS [7].

Interactive/Non-interactive: In interactive ILP, the learner is allowed to pose
questions to an oracle (i.e. the user) about the intended interpretation.. Usually these
questions query the user for the intended interpretation of an example or a clause. The
answers to the queries allow to prune large parts of the search space (in the generic
algorithm queries would normally be generated in the procedure Prune). Obviously,
interactiveness implies incrementality. Most systems are non- interactive.. For example,
interactive systems are: CIGOL [19], MARVIN [32], IRES [31] & ITOU [30].

Single/Multiple Predicate Learning: Single predicate learning systems are most
popular ILP systems, but multiple predicate learning algorithms are more powerful.
Although they are non efficient and hard, recently interest to such systems is growing:
FORTE [29].

Theory Revision: Usually most of the systems have prestored BK, and the sys-
tems keep it unchanged during the learning process, but there are some systems that
allow theory revision. Although modifications of BK are possible, these systems ob-
serve the principle to stay most closely to the initial BK and to do minimum changes.
Usually systems with theory revision are incremental multiple predicate learning sys-
tems. For example, MARVIN [32], CIGOL [19], M-ACL [11]. Theory revision sys-
tems often use many deductive and inductive rules, e.g. abduction combined with spe-
cialization and generalization M-ACL [11], ACL[12].

5. ILP Learning approaches

5.1. Algorithms using multiple representation

In these algorithms the examples have inially relational representation and then they are
transformed to new representation (usually propositional language). Thus, using these
new examples’ description, the algorithms can take advantages of some propositional
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learning algorithms. Finally the result hypotheses are transformed back to the initial
representation. Thereby they avoid searching in the complex Horn clauses hypotheses
space and construct compact hypothesis represented on the relational language. Algo-
rithms WYL [8] and LINUS [7] use this approach.

In WYL the examples are represented first by relational language and then they
are transformed to propositional language and hypothesis is created using decision
trees. Finally the result hypothesis is transformed back to the relational language.

The current version of LINUS supports interfaces for working with propositional
algorithms ASSISTANT [3], NEWGEM [17], and CN2[4]. LINUS has two modes:

CLASS – corresponds to the propositional algorithm employed;
 RELATION – in this mode LINUS works as ILP system.
The basic principle of the transformation from first-order into propositional form

is that all body literals which may possibly appear in a hypothesis clause (in the first-
order formalism) are determined, thereby taking into account variable types. Each of
these body literals corresponds to a boolean attribute in the propositional formalism.

One of the major defects of this approach is that these algorithms can not use BK,
because they use propositional language for learning.

5.2. Searching in the hypothesis space

A lot of ILP algorithms belong to this group and use the following search bias:
Uniformed search (depth-first, breadth-first, iterative deepening): This is a rarely

used approach, because of the huge hypothesis space. One of algorithms from this class
is HYPER [2]. It learns logic programs by searching the space of complete hypotheses
(i.e., sets of programs clauses), rather than performing repeated search for individual
clauses.

Heuristic search (best-first, hill-climbing, beam search),
for directing search,
for stopping search (quality criterion).

FOIL [27] is one of the first successful empirical relational learning algorithms
used in this approach and on its base many other algorithms have been developed.
Positive as well as negative examples are required for learning. FOIL induces concept
definitions represented as function-free Horn clauses, optionally containing negated
body literals. The background knowledge predicates are represented extensionally as
sets of ground tuples. FOIL employs a heuristic search strategy (hill-climbing accord-
ing to the information gain heuristics), which prunes vast parts of the hypothesis space.
As its general search strategy, FOIL adopts a covering approach. For further control of
the language bias, FOIL provides parameters limiting the total number and maximum
depth of variables in a single clause. In addition, FOIL incorporates mechanisms for
excluding literals which might lead to endless loops in recursive hypothesis clauses.
FOIL stops adding literals to the hypothesis clause if the clause reaches a predefined
minimum accuracy or if the encoding length of the clause exceeds the number of bits
needed for explicitly encoding of the positive examples it covers. This stop criterion
prevents the induction of over-long and specific clauses in noisy domains.

Although search strategies of FOIL and its family algorithms makes them very
efficient, they have a considerable disadvantage these algorithms in the search pro-
cess sometimes can prune searched hypotheses. To solve this problem  different modi-
fications of FOIL are developed:



3 1

Language bias: FOCL [22] allows user-defined constraints which realize a
declarative language bias (e.g. number of body literals in clauses) that allow the re-
striction of the search space.

Imperfect data handling: HYDRA [1], MFOIL [6] The concept descriptions
compete to classify test examples based on the likelihood ratios that are assigned to
clauses of that concept description. This makes the algorithm more robust against noise.

Heuristics modification:
CHAM [14] extends FOIL’s information-gain heuristic with a syntactic mea-

sure of the “closeness” between a clause’s input and existentially quantified variables
with its output variables. This extension helps it to learn relations not learnable by
FOIL.

MFOIL [6] uses beam-search with  m-estimate heuristics function that  takes
into account the prior probabilities of examples, leading to a more reliable criterion for
small example sets. The user-settable parameter m allows the control of the influence
of the prior probabilities.

CLOG [15]  the currently used gain function is user-defined.
ILP-R [25]. It uses a non-myopic heuristic function called RELIEF. At the

outer level, this learner uses a covering approach similar to the one used by FOIL. At
the inner level, its top-down search for a consistent clause uses the RELIEF based
heuristic for literal quality estimation.

Decision-trees:
STRUCT [33] learns decision trees, where the root is the head of the target

relation, each interior node is a literal, and paths through the tree encode Horn clauses.
FFOIL [28] the clauses found by FFOIL make up a decision list
FOIDL [18] is a descendant of FOIL Unlike FFOIL, FOIDL generates the

clauses in the decision list in reverse order.
Heuristic search algorithm:

MARKUS [10] employs a covering strategy as FOIL, but it uses iterative
deepening search.

MFOIL [6] uses beam-search.
Other features:

theory revision: FORTE (First Order Revision of Theories from Examples)
[29].

Inverse resolution operators: FORTE [29].
Functional relations: FFOIL [28] is specialized on learning functional rela-

tions. A functional relation is a relation where one or more arguments are distinguished
as output arguments, and in any tuple of constants belonging to the relation the values
of the output arguments are uniquely determined by the values of the other arguments.

Numerical arguments: Handling numerical constraints in the normal ILP set-
ting takes the form of induction of classification or regression rules that involve the use
of real numbers, predicting a discrete or a real-valued class in the presence of back-
ground knowledge. FORS (First order regression system) [13] is an implementation of
this idea, where numerical regression is focused on a distinguished continuous argu-
ment of the target predicate. This can be viewed as a generalization of the usual ILP
problem.
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5.3. Inverse resolution

ILP systems use the following varieties of inverse resolution V- and W-operators
(Table 2): absorbtion, identification, intra-construction, inter-construction, trunca-
tion, G1,G2.

Table 2. Inverse resolution operators

MARVIN [32] was the first relational algorithm to incorporate this approach.
MARVIN is an oracle-guided incremental algorithm. However, its concept description
language is limited: it cannot learn clauses with existentially quantified variables and
cannot invent new predicate descriptors.

RINCON [35] also is an incremental algorithm, but not oracle-guided. It uses
intra-construction operator for inducing new predicate and after that apply absorbtion
to replace some of literals with the head of newly generated predicate.

CIGOL [19] is an oracle-guided incremental algorithm This is the first algorithm
combining the three major inverse resolution operators. CIGOL’s truncation operator
is restricted to processing unit Horn clauses and the implementation of its other opera-
tors assume that one of the parent clauses is a unit clause. LFP2 [34] replaces
CIGOL ‘s three operators with two more general operators that have no unit clause
restrictions.

IRES [31] uses IRES system uses a flattening technique to simplify CIGOL‘s
operators and allow them to work with non-unit Horn clauses. ITOU [30] is descendant
of IRES, and it uses the same operators like IRES, but extended with saturation.

5.4. Iinverse entailment

Inverse entailment approach was introduced by S. M u g g l e t o n and W. B u n t i n e
[21]. The main difference between inverse entailment and inverse resolution is that
while the first approach treats the problem of finding clauses from model-theoretical
point of view, the second approach treats this problem from a proof-theoretical point of
view. Only a few systems use inverse entailment approach: P-Progol [21] and its de-
scendent Aleph.

5.5. Constructing RLGG (Relative least general generalization)

One of the characteristics of these systems is that instead of searching in the hypothesis
space, they try to construct a clause that generalizes the set of examples. The first
algorithm from this class was developed by Plotkin [23, 24], but unfortunately it was
more theoretical than practical, because the number of literals in the constructed hy-
pothesis increases exponentially and in some cases infinitely.

System Absorbtion Inter-
construction 

Intra-
construction 

Truncation G1 G2 

MARVIN  X      
RINCON X X     
CIGOL X  X X   
IRES X  X X   
ITOU X  X X   
LFP2     X X 
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GOLEM [20] is one of the “classical” algorithms using this approach. GOLEM is
empirical algorithm and uses covering methods. It chooses random subset of the set of
positive examples and constructs their RLGG. Between all RLGG constructed in such
way, GOLEM chooses this one that covers the greatest number of positive examples
and does not cover negative examples. On the next step GOLEM generalizes the best
RLGG. This process continues until increasing the set of cover positive examples from
the constructed RLGG stop. As a final step GOLEM reduces constructed RLGG by
dropping irrelevant literals. Both the BK and examples consist of ground facts only.
There are also some restrictions to the hypothesis variables depth. GOLEM can not
generate automatically new predicates.

RICH (Relative Implication of Horn clauses) [39] is also empirical algorithm, but
in contracts of GOLEM both BK and examples consist of function-free non recursive
Horn clauses. To construct hypothesis RICH uses unification, anti-unification algo-
rithms and some resolution steps. RICH can generate automatically new predicates.

6. Accuracy and time characteristics
The following characteristics are measured in the classical chess and endgame domain
“White King and Rook versus Black King”, described in [40]. The results of the ex-
periment are presented in the following table: The classification accuracy is given  by
the percentage of correctly classified testing instances and by the standard deviation
(sd), averaged over 5 experiments.

Table 3

Although LINUS is better than other algorithms in small and large training sets, it
has one major disadvantage does not provide features for handling BK. From the rest
algorithms RICH has better accuracy, but it is slower.

7. Summary

Although search strategies of FOIL and its family algorithms make them very efficient,
they have a considerable disadvantage these algorithms in the search process some-
times can prune searched hypotheses.

Many inverse resolution algorithms increase the concept description language by
constructing predictor descriptors (i.e., predicates), but are either limited to deduction
or require an oracle to maintain reasonable efficiency.

Constructing RLGG methods employ additional constraints on the concept repre-
sentation language (i.e., on existentially quantified variables). This trade off increases
efficiency. However, efficient RLGG methods for automatically constructing descriptors
have not yet been developed.

100 training examples 1000 training examples System Accuracy Time Accuracy Time 
CIGOL 77.2% 21.5 h N/A N/A 
FOIL 90.8% 31.6 s 99.4% 4.0 min 
LINUS-
ASSISTANT 

98.1% 55.0 s 99.7% 9.6 min 

RICH 95.3% 53.9 s 99.6% 8.3 min 
 

3
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All these algorithms are limited. For example, algorithms that use multiple repre-
sentations cannot yet learn recursive relations. Information-gain directed algorithms
cannot yet learn relations with function symbols. Efficient methods automatically gen-
erating higher-order schemas without oracle guidance do not yet exist, except when
learning is restricted to deductive inferencing. Most RLGG methods cannot generate
new descriptors.
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Обзор на системите, базирани на  ИЛП (индуктивно логическо
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(Р е з ю м е)

Настоящата статия е кратък обзор на системите, базирани на  ИЛП (индуктивно
логическо програмиране). Алгоритмите в ИЛП са от особен интерес за МС
(машинното самообучение), защото повечето от тях предлагат практически методи
за разширяване на представянето, използвано при решаването на тези задачи.
Статията представя основните подходи, които се използват в системите за
решаването на задачите за МС, прави сравнение на техните основни харак-
теристики и представя класификации според различни критерии.


