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An Application of Caratheodory’s Theorem
to the Spectral Set Problem for Convex Matrix Sets*

Vladimir Monov

Institute of Information Technologies, 1113 Sofia

Abstract: Let K be a compact and convex set of nn real matrices. The paper presents
an application of the well known Caratheodory’s theorem to the problem of charac-
terizing the spectral set of K. In particular, using this theorem, it is shown that the
entire spectral set can be obtained from the spectra of convex polytopes in K having
dimension no greater than 2n. In general, this result enables us to study the spectral
properties of K by examining lower-dimensional convex subsets of K.
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1. Introduction

Rn and Mn(R) will denote the vector spaces of n-dimensional vectors and nn matrices
with real elements, respectively. For any matrix set S Mn(R) the spectral set (spec-
trum) of S is defined as

    (S) = {C: det(I – A) = 0,  A  S}.

The notations R(S) and C\R(S) are respectively given by R(S) = (S) R and
C\R(S) = (S) C\R  where C\R = {C: R}. We shall say that a set of matrices
has some property if each matrix in the set has this property.

Let K denote a closed and bounded (compact) convex set in Mn(R). This type of
matrix sets arises in a variety of applications, e.g. in modelling and robustness analysis
* This research was supported by the Institute of Information Technologies, Bulgarian Academy of
Sciences, under project No 010050 "Modelling of systems with parameter uncertainties and analysis of
multiobjective optimization problems".
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of control systems with uncertain physical parameters [5], in linear complementarity
problems [8], in the analysis and determination of the solution set of systems of linear
interval equations [7]. In most cases, it is of essential importance to establish criteria
which guarantee that each element in K has some property such as Hurwitz or Schur
stability, nonsingularity etc. Since these properties are basically determined by (K)
and its location in the complex plane, this leads to the problem of studying and charac-
terizing the properties of (K) itself.

The purpose of this  paper is to present an application of a standard result from
the finite dimensional convex analysis to the spectral set problem for convex matrix
sets. In particular, using the well known  Caratheodory’s theorem, it is shown that
R(K) and C\R(K) can be determined from the spectra of convex polytopes in K having
dimension no greater than n and 2n, respectively. This result is formulated as Theo-
rem 2.1 and in general, it enables us to study the spectral properties of K by examining
lower-dimensional convex subsets of K. In the literature, similar results are available in
some special cases of convex matrix sets. For example, the problem of determining the
spectral set of an interval matrix is considered in [4] and stability characterizations for
a polytope of matrices in terms of the stability of its exposed sets are obtained in [1] and
[2]. Theorems 2.2 and 2.3 in this paper deal with the spectral set problem for two
families of convex matrix sets introduced in [3]. The obtained spectral characteriza-
tions employ the specific structure of these matrix families and enable us to improve the
corresponding stability and nonsingularity criteria formulated in this reference.

The following notions from the convex analysis will be used. Let V denote a finite
dimensional vector space. The dimension of a convex set C in V (dim C) is defined as
the dimension of the affine hull of C. For any set S  V, the convex hull of S is denoted
by conv S. If S consists of a finite number of elements, i.e. S = {x0, ..., xp} then convS is
a (convex) polytope in V with vertices x0, ..., xp. If, in addition, x0, ..., xp are affine
independent, conv{x0, ..., xp} is a p-dimensional simplex. It is well known that any
closed and bounded convex set C  V can be represented as C = conv S where S  C is
the set of extreme points of C. In this case, the Caratheodory’s theorem [6, Theorem
17.1] simply states that C is a union of all d-dimensional simplexes with vertices in S,
i.e.
(1)         C =   И   conv{x0, ..., xd},

x0,...,xdS

where d = dimC. We shall use this result in both cases V = Rn and V = Mn(R).

2. Results

The following theorem provides a spectral set characterization for any compact and
convex set in  Mn(R).

Theorem 2.1. Let K  Mn(R) be a compact convex set and  be the set of its
extreme points. Let also d = dimK,  = min{n, d} and   = min{2n, d}. Then
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(2) R(K) =   И   R(conv{A0, ..., A})
A0,...,A

(3) C\R(K) =   И   C\R(conv{A0, ..., A}).
          A0,...,A

P r o o f. If d  n then   = =   and both (2) and (3) follow from (1) with C =
K. Also, (3) is a consequence of (1) in the case d  2n. Thus, we have to prove (2) for
 =n < d and (3) for  =2n < d. (Note that 2n < d is possible only if n > 2.)

Let  =n  and  R(K), i.e. Ax = x for some A K and x Rn, x  0. By the
Caratheodory’s theorem A can be written as A = 0A0 + ... + dAd and hence

(4) 0A0x + ... + d Ad x = Ax,

where Ai , i  0, i = 0, ..., d, and d
i=0i = 1. Applying this theorem again with

C = conv{A0 x, ...,Ad x}Rn, it follows that Ax can be represented as a convex combi-
nation of no more than  + 1 affine independent vectors among A0 x, ...,Ad x. Up to
reindexing these vectors, we can then write

(5) (0'A0 + ... + ' A)x = Ax = x,

where i'   0, i = 0, ..., and 

i=0i'  = 1. This implies that R(conv{A0, ..., A}).
Conversely, if  is an element of the union of sets in the right hand side of (2) then the
inclusion conv{A0, ..., A}K for any A0, ..., A implies that R (K). This proves
equality (2).

In order to prove (3) let  = 2n and = + iC\R (K) where , R,  0.
Following the same approach as in the real case, we note that this is equivalent to

  A 0  I – I 
(6)  z =   z,

  0 A  I I 

where A K and z R2n, z  0. Using the same arguments in the vector space R2n, it is
now obtained that  C\R(conv{A0, ..., A}) for some A0, ..., A. Also, if  is an
element of the the right hand side of (3) then the inclusion conv{A0, ..., A} K  implies
that  C\R(K). This completes the proof.

Both spectral characterizations (2) and (3) are immediate consequences of (1) and
the only difference between them is the dimension of the convex substes of K in the
right hand side of (2) and (3), respectively. This motivates the separate treatment of the
real and imaginary (nonreal) part (K). On the other hand, it is easily seen from (2) and
(3) that

(7) (K) =   И   (conv{A0, ..., A}).
             A0,...,A

Thus, the entire spectral set of K can be obtained from the spectra of convex
polytopes with vertices in  and dimension no greater than 2n.

In what follows, we consider the problem of determining the spectra of two fami-
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lies of convex matrix sets studied in [3]. Applying a similar approach, we utilize the
specific structure of these matrix families in order to obtain the corresponding spectral
characterizations. The following notations are used.

Let N = {1, ..., n} and N(k) be a partition of N into k, 1  k  n, pair-wise disjoint
nonvoid subsets Nj of cardinality nj, j = 1, ..., k. We shall denote by nmax the maximum
of nj, i.e. nmax = max{nj:  j = 1, ..., k}. For a given N(k),  D (

n
k) is defined to be the set of

all diagonal matrices D Mn(R) such that D[Nj] = djI, dj  0, j = 1, ..., k, where D[Nj]
is the principal submatrix of D with row and column indices in Nj.

For any A0, ..., Am Mn(R) and a partition N(k), let K(
r
k)(A0, ..., Am) and K(

c
k)(A0, ...,

Am) be defined, respectively, by
   m                     m

(8) K(
r
k)(A0, ..., Am) = {A Mn(R): A = DiAi, Di D (

n
k), i = 0, ..., m, Di = I},

    i=0                    i=0

   m                     m
(9) K(

c
k)(A0, ..., Am) = {A Mn(R): A = AiDi, Di D (

n
k), i = 0, ..., m, Di = I}.

    i=0                    i=0

Obviously, for a fixed N(k), (8) and (9) describe particular compact and convex
matrix sets. We note the two special partitions of  N corresponding to the cases k = 1,
i.e. N1 = N = {1, ..., n} and k = n, i.e. Nj = {j}, j = 1, ..., n. It is easily seen that in the
former case K(

c
1)(A0, ..., Am) = K(

r
1)(A0, ..., Am) is the convex hull of A0, ..., Am whereas in

the latter case K(
c
n)(A0, ..., Am) and K(

r
n)(A0, ..., Am) represent the sets of all matrices

whose columns (resp. rows) are independent convex combinations of the columns (resp.
rows) of matrices A0, ..., Am. Given the sets (8) and (9), let  (

r
k)  K(

r
k)(A0, ..., Am) and

(
c
k)  K(

c
k)(A0, ..., Am) be defined, respectively, by

        m      m
(10) (

r
k) = {E = DiAi: Di D (

n
k), Di[Nj] {0, I}, i = 0, ..., m, j = 1, ..., k,  Di = I},

       i=0     i=0

        m      m
(11) (

c
k) = {E = DiAi: Di D (

n
k), Di[Nj] {0, I}, i = 0, ..., m, j = 1, ..., k,  Di = I},

       i=0     i=0

It is easily seen that each of the sets (
r
k) and (

c
k) includes A0, ..., Am and that each

of these sets contains at most (m + 1)k different matrices. Also, it can be shown that
every matrix in K(

r
k)(A0, ..., Am) (respectively, K(

c
k)(A0, ..., Am)) can be represented as a

convex combination of matrices belonging to (
r
k) (respectively, (

c
k)). Thus, Theorem

2.1 can be applied to (8) and (9) with K(
r
k)(A0, ..., Am) = conv(

r
k) and K(

c
k)(A0, ..., Am) =

conv(
c
k). However, the following lemma allows to obtain spectral set characterizations

preserving the particular form of (8) and (9).
Lemma 2.1. Let Ai Mn(R), i = 0, ..., m, N(k) be a partition of N and

 = min{nmax, m}. For any x Rn and A K(
r
k)(A0, ..., Am)

(12) Ax = (D0E0 + ... + DE) x
for some Ei (

r
k) and Di D (

n
k), i = 0, ..., , 

i=0Di = I.
P r o o f . Since A K(

r
k)(A0, ..., Am), we have
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(13) Ax = (D–0A0 + ... + D–mAm)x

where D–iD (
n
k), i = 0, ..., m, m

i=0D
–

i = I. If m  nmax then  = m and the assertion of the
lemma is obvious since A0, ..., Am (

r
k). Assume that  = nmax < m. According to the

partition N1 И ... И Nk  = N, (13) can be written as a system of equalities

(14)        A(Nj)x = D–0[Nj]A0(Nj)x + ... + D–m[Nj]Am(Nj)x,  j = 1, ..., k,

where A(Nj) (respectively, Ai(Nj),  i = 0, ..., m) is the nj n submatrix of A (respectively,
Ai, i = 0, ..., m) with row indeces in Nj,  j = 1, ..., k. Since D–0[Nj], ..., D

–
m[Nj] are scalar

matrices satisfying m
i=0D

–
i[Nj] = I,  j = 1, ..., k,  A(Nj)x is a convex combination of

A0(Nj)x, ..., Am(Nj)x. By the Caratheodory’s theorem, each A(Nj)x can be represented as
a convex combination of no  more than nj + 1 vectors among A0(Nj)x, ..., Am(Nj)x. With
= nmax this implies that A(N1)x, ..., A(Nk)x can be written as

A(N1)x = 10A10(N1)x + ... + 1A1(N1)x
(15) ...        ...                      ...

A(Nk)x = k0Ak0(N1)x  + ... + kAk(Nk)x

where ji  0, 

i=0ji = 1 and Aji  {A0, ..., Am}, j = 1, ..., k, i = 0, ..., .
Obviously, in the cases nj < nmax, j = 1, ..., k the corresponding equalities in (15)

contain nmax – nj coefficients ji = 0, respectively. Let matrices E0, ..., E be given by
Ei = D~1A1i + ... + D~kAki, i = 0, ...,   where D~1, ..., D

~
k D (

n
k) are diagonal matrices such

that D~i[Ni] = I, i = 1, ..., k and D~i[Ni] = 0,  i, j = 1, ..., k,  i  j. Thus, E0, ..., E(
r
k).

Let also D0, ..., DD (
n
k) be determined by Di[Ni] = jiI, j = 1, ..., k, i = 0, ..., . Since




i=0ji = 1, j = 1, ..., k we have 

i=0Di = I. With this notation, it is easily seen that (15)
can be written in the form (12) which completes the proof.

Now, we can state the following results.
Theorem 2.2. Let Ai Mn(R), i = 0, ..., m,  Nk be a partition of N, = min{nmax,

m}, and = min{2nmax, m}. Then

(16) R(K(
r
k)(A0, ..., Am))  =    И     R(K(

r
k)(E0, ..., E)),

                          E0,...,E(
r
k)

(17) C\R(K(
r
k)(A0, ..., Am))  =    И     C\R(K(

r
k)(E0, ..., E)).

                           E0,...,E(
r
k)

The proof of this theorem is essentially based on equality (12) and follows the
same steps as in the proof of Theorem 2.1. By applying Theorem 2.2 to K(

r
k)(AT

0, ..., AT
m)

and noting that (K(
r
k)(AT

0, ..., AT
m)) = (K(

c
k)((A0, ..., Am)), we obtain an analogous result

for the spectrum of (9).
Theorem 2.3. Let Ai Mn(R), i = 0, ..., m,  Nk be a partition of N, = min{nmax,

m}, and = min{2nmax, m}. Then

(18) R(K(
c
k)(A0, ..., Am))  =    И     R(K(

c
k)(E0, ..., E)),

                            E0,...,E((
c
k)

(19) C\R(K(
c
k)(A0, ..., Am))  =    И     C\R(K(

c
k)(E0, ..., E)).

                            E0,...,E(
c
k)
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 The above theorems provide spectral set characterizations of (8) and (9) in terms
of the spectra of convex sets which are generated by the extreme matrices and are of the
same form as K(

r
k)(A0, ..., Am) and K(

c
k) (A0, ..., Am), respectively. Depending on the parti-

tion N(k) and matrices A0, ..., Am, these results enable us to reduce the “dimensionality”
of the spectral set problem under consideration. Equalities (16) (19) show that such a
reduction is possible with respect to the entire spectral set if 2nmax < m and with respect
to the real part of the spectrum if nmax < m. We note that in the two special cases of
partitions with k = 1 and k = n, the corresponding values of  nmax  are nmax = n and
nmax = 1.

Theorems 2.2 and 2.3 are particularly relevant to the work presented in [3] where
various properties of (8) and (9) are studied by means of P-matrices and block P-
matrices. For example, it is shown in this reference that the nonsingularity of (8) (re-
spectively, (9)) is equivalent to the block P-property of a specially constructed test
matrix with dimension  mn  mn. In view of the above results, however, one can apply
this nonsingularity criterion to the matrix sets in the right hand side of (16) (respec-
tively, (18)) in which case the dimension of the resulting test matrices is reduced to
n  n. In a similar way, Theorems 2.2 and 2.3 can be used to improve the criteria for
Hurwitz and Schur stability of (8) and (9) obtained in [3].

3. Conclusion

The results in this paper illustrate an application of the classical Caratheodory’s theo-
rem to the problem of determining the spectral set of a general compact and convex set
in Mn(R). In the cited literature, a special case of this problem is considered in [4] where
it is shown that the spectral set of an interval matrix can be obtained as a union of the
spectra of its n-dimensional exposed sets. This result, however, is no longer valid for
more general convex sets in Mn(R) which can be seen from the stability characteriza-
tions for a polytope of matrices obtained in [1] and [2]. In this context, Theorem 2.1
gives a spectral set characterization which is applicable to any compact and convex
matrix set. Theorems 2.2 and 2.3 represent more specialized results related to the spec-
tral properties of matrix sets described in the form (8) and (9). These theorems are
primarily motivated by the work in [3] and can be used to improve some of the results
in this reference.
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Приложение на теоремата на Каратеодори в задачата за  определяне
на спектралното множество на изпъкнали матрични множества

Владимир Монов

Институт по информационни технологии, 1113 София

(Р е з ю м е)

Нека К представлява компактно и изпъкнало множество от реални матрици с
размерност  nn. Обсъжда се приложението на добре познатата теорема на
Каратеодори в задачата за определяне на   спектралното множество на К. Показано
е, че използването на тази теорема дава възможност да се получи цялото
спектрално множество от спектрите на изпъкналите многостени в К, които имат
размерност, не по-голяма от 2n. Този резултат позволява изследването на
спектралните свойства на К, изучавайки изпъкналите подмножества в К с по-
малка размерност.


