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Abstract: Let K be a compact and convex set of nxn real matrices. The paper presents
an application of the well known Caratheodory’s theorem to the problem of charac-
terizing the spectral set of K. In particular, using this theorem, it is shown that the
entire spectral set can be obtained from the spectra of convex polytopes in K having
dimension no greater than 2n. In general, this result enables us to study the spectral
properties of K by examining lower-dimensional convex subsets of K.
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1. Introduction

R"and M_(R) will denote the vector spaces of n-dimensional vectors and nxn matrices
with real elements, respectively. For any matrix set S < M (R) the spectral set (spec-
trum) of S is defined as

o(S) = {1 e C: det(Al —A) =0, A S}

The notations c,,(S) and o (S) are respectively given by c.(S) = o(S) " R and
0.x(S) = o(S) N C\R where C\R = {\ e C: A # R}. We shall say that a set of matrices
has some property if each matrix in the set has this property.

Let K denote a closed and bounded (compact) convex set in M_(R). This type of
matrix sets arises in a variety of applications, e.g. in modelling and robustness analysis
* This research was supported by the Institute of Information Technologies, Bulgarian Academy of
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of control systems with uncertain physical parameters [5], in linear complementarity
problems [8], in the analysis and determination of the solution set of systems of linear
interval equations [7]. In most cases, it is of essential importance to establish criteria
which guarantee that each element in K has some property such as Hurwitz or Schur
stability, nonsingularity etc. Since these properties are basically determined by o(K)
and its location in the complex plane, this leads to the problem of studying and charac-
terizing the properties of o(K) itself.

The purpose of this paper is to present an application of a standard result from
the finite dimensional convex analysis to the spectral set problem for convex matrix
sets. In particular, using the well known Caratheodory’s theorem, it is shown that
o.(K) and o.(K) can be determined from the spectra of convex polytopes in K having
dimension no greater than n and 2n, respectively. This result is formulated as Theo-
rem 2.1 and in general, it enables us to study the spectral properties of K by examining
lower-dimensional convex subsets of K. In the literature, similar results are available in
some special cases of convex matrix sets. For example, the problem of determining the
spectral set of an interval matrix is considered in [4] and stability characterizations for
a polytope of matrices in terms of the stability of its exposed sets are obtained in [1] and
[2]. Theorems 2.2 and 2.3 in this paper deal with the spectral set problem for two
families of convex matrix sets introduced in [3]. The obtained spectral characteriza-
tions employ the specific structure of these matrix families and enable us to improve the
corresponding stability and nonsingularity criteria formulated in this reference.

The following notions from the convex analysis will be used. Let V denote a finite
dimensional vector space. The dimension of a convex set C in V (dim C) is defined as
the dimension of the affine hull of C. For any set S — V, the convex hull of S is denoted
by conv S. If S consists of a finite number of elements, i.e. S = {x, ..., x } then convS is
a (convex) polytope in V with vertices X, ..., X, If, in addition, X, ..., X, are affine
independent, conv{x, ..., xp} is a p-dimensional simplex. It is well known that any
closed and bounded convex set C — V can be represented as C = conv Swhere S C is
the set of extreme points of C. In this case, the Caratheodory’s theorem [6, Theorem
17.1] simply states that C is a union of all d-dimensional simplexes with vertices in S,
i.e.

1) C= U conv{x,, ..., X, },

where d = dimC. We shall use this result in both cases V= R"and V=M (R).

2. Results

The following theorem provides a spectral set characterization for any compact and
convex setin M _(R).

Theorem 2.1. Let K € M (R) be a compact convex set and £ be the set of its
extreme points. Let also d = dimK, v=min{n, d} and g = min{2n, d}. Then
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@) oK)= U o (convfA, ...A})
A,..., AVES

0

©) oK)= U o

C\R

(conv{A,, ... A }).

Proof. Ifd<nthen v=u= ¢ andboth (2) and (3) follow from (1) with C =
K. Also, (3) is a consequence of (1) in the case d < 2n. Thus, we have to prove (2) for
v=n<dand (3) for u=2n < d. (Note that 2n < d is possible only if n > 2.)

Let v=n and 1 € g,(K), i.e. Ax= Ax for some A € Kand x € R", x # 0. By the
Caratheodory’s theorem A can be written as A= o A, + ... + o)A, and hence

4) a,AX+ ...+ a A X=AX,

where A € & .20,i=0, ..., d, and Z?:Oai = 1. Applying this theorem again with
C =conv{A,x, ...,A,x}c R", it follows that Ax can be represented as a convex combi-
nation of no more than v + 1 affine independent vectors among A, x, ...,A;x. Up to

reindexing these vectors, we can then write
(5) (o, A, + ... + o) A)x=Ax = AX,

where o' 20,i=0, ...,v, and Zivzoai' = 1. This implies that A € g, (conv{A, ..., A }).
Conversely, if A is an element of the union of sets in the right hand side of (2) then the
inclusion conv{A,, ..., A }c Kforany A, ..., A implies that A € o, (K). This proves
equality (2).

Inorder to prove (3) let u=2nand A = a+ip € o, (K)where o, B e R, B#0.
Following the same approach as in the real case, we note that this is equivalent to

{ A 0 } { al - pl }

(6) z= Z,

0o A pl al

where A € K and z € R?", z = 0. Using the same arguments in the vector space R?", it is
now obtained that 2 € o (conv{A,, ..., A }) for some A, ..., A e &. Also, if 1 is an
element of the the right hand side of (3) then the inclusion conv{A,, ..., A } = K implies
that 1 € o.(K). This completes the proof.

Both spectral characterizations (2) and (3) are immediate consequences of (1) and
the only difference between them is the dimension of the convex substes of K in the
right hand side of (2) and (3), respectively. This motivates the separate treatment of the
real and imaginary (nonreal) part o(K). On the other hand, it is easily seen from (2) and

(3) that
@) oK)= U o(conv{A, ... A}).

Thus, the entire spectral set of K can be obtained from the spectra of convex
polytopes with vertices in & and dimension no greater than 2n.
In what follows, we consider the problem of determining the spectra of two fami-
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lies of convex matrix sets studied in [3]. Applying a similar approach, we utilize the
specific structure of these matrix families in order to obtain the corresponding spectral
characterizations. The following notations are used.

Let N={1, ..., n} and N(k) be a partition of N into k, 1 <k <n, pair-wise disjoint
nonvoid subsets N, of cardinality n;, j = 1, ..., k. We shall denote by n_ the maximum
ofn,ien  =max{n: j=1,.. K} Foragiven N(k), DY is defined to be the set of
all diagonal matrices D € M (R) such that D[NJ =dl,d >0,j=1,..., k, where D[N]
is the principal submatrix of D with row and column indices in N..

Forany A, ..., A € M (R)and a partition N(k), let KK(A , ..., A ) and KW(A , ...,
A ) be defined, respectively, by

®) KA, .. A)={AMR)::A=2DA, D, € DY, i=0,..,m 2D, = I},

9) KOA,, ...A)={AeMR):A= mZAiDi, D.eD®,i=0,..,m 2D = I}
i=0 i=0

Obviously, for a fixed N(k), (8) and (9) describe particular compact and convex
matrix sets. We note the two special partitions of N corresponding to the cases k = 1,
Le. N,=N={1,..,n}andk=n,ie. NJ. ={j},j=1, .., n. ltiseasily seen that in the
former case K(A,, ..., A ) = KO(A,, ..., A) is the convex hull of A, ..., A whereas in
the latter case KO(A, ..., A ) and KW(A, ..., A ) represent the sets of all matrices
whose columns (resp. rows) are independent convex combinations of the columns (resp.
rows) of matrices A, ..., A_. Given the sets (8) and (9), let &% < KW(A, ..., A ) and
EY c KW(A,, ..., A ) be defined, respectively, by

(10) &9={E=YDA:D, DV, DIN] € {0, 1},i=0,...m,j=1,...k XD,=1},
i=0

i=0 :
(11) e¥={E=>DA;:D,eD¥ DIN] {0, 1}i=0,..,mj=1, ...k ¥D,=1I}
i=0 i=0

It is easily seen that each of the sets &% and £ includes A, ..., A and that each
of these sets contains at most (m + 1) different matrices. Also, it can be shown that
every matrix in KM(A , ..., A ) (respectively, KF(A,, ..., A )) can be represented as a
convex combination of matrices belonging to &X (respectively, &¥). Thus, Theorem
2.1 can be applied to (8) and (9) with K(A, ..., A ) = conve® and KW(A, ..., A ) =
conve®. However, the following lemma allows to obtain spectral set characterizations
preserving the particular form of (8) and (9).

Lemma 2.1. Let A e M (R), i =0, ..., m, N(k) be a partition of N and
v=min{n__, m}. Forany x € R"and A € KN(A, ..., A))

(12) Ax=(D,E,+ .. +DE )X
for some E, e ¥ and D, e D, i=0, ..., v, X D=1l

i=0 i
Proof.Since A e KN, ..., A ), we have
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(13) Ax= (DA, + ... + D A )X

where D.e D®, i=0, ..., m, X D=1 Ifm<n__ then v=m and the assertion of the
lemma is obvious since A, ..., A € &9. Assume that v=n__ < m. According to the
partition N, 71 ... ¥ N, = N, (13) can be written as a system of equalities

(14) AN )x = 50[Nj]AO(Nj)X +..+ D, INJA (N)X, j=1,...k
where A(N ) (respectively, A, (N ), i= m) is the n,xn submatrix of A (respectively,
A,i=0, .., m)with row mdeces in N j = . K Smce D [N] .D [N] are scalar

matrices satlsfylng Z. - I[N] =1 j=1, k A(N )X IS a convex combmatlon of

AO(Nj)x, Am(Nj)x By the Caratheodory S theorem, each A(Nj)x can be represented as

a convex combination of no more than n, + 1 vectors among Aj(N))x, ..., A (N)x. With
=n,.. this implies that A(N,)x, ..., A(N,)x can be written as

A(N)x = (NDx+ ..+ a A (N)X

10 10
(15) R
A(N)x = akOAkO(Nl)x +.t akVAkV(Nk)x
where o, >0, %o, = land A, € {A,, ..., Am}, i=1,..,ki=0, ., v

Obviously, in the cases <M e j =1, ..., k the corresponding equalities in (15)
contain n__ - n, coefficients oy, = 0, respectively. Let matrices E, ..., E  be given by
E =DA, +. DA, i= 0,.., vwhereD, .., Dk e DY are diagonal matrices such

k™ ki? L
that Di[Ni]=|,I—l . kandDIN]=0, i,j=1,..k i;tj Thus, E,, ..., E e &X.
LetalsoD,, ..., D € D® be determined by D,[N.] = o Lj=1,..,k i=0,.., v.Since
Zivzoa,-i =1,j= kwe haveZ ,D; = . With this notatlon |t is easily seen that (15)

can be written in the form (12) WhICh completes the proof.

Now, we can state the following results.

Theorem2.2. Let A, e M (R),i=0, ..., m, N, be a partition of N, v=min{n
m}, and x = min{2n__, m}. Then

max’

(16) G (KOA, ... A) = U o (KYE,..E),
E,...E c&¥

17) OorKOA, . A)) = T O (KY(E, ..., E)).
E.,.. E gl

The proof of this theorem is essentially based on equality (12) and follows the
same steps as in the proof of Theorem 2.1. By applying Theorem 2.2 to KM(AT, ..., AT)
and noting that o(KO(AT, ..., AT)) = o(K¥((A,, ..., A_)), we obtain an analogous result
for the spectrum of (9).

Theorem 2.3. Let A, e M (R),i=0, ..., m, N, be a partition of N, v=min{n

max’

m}, and g = min{2n__, m}. Then

(18) (KW, ..., A)) = N o (KYE, ... E)),
E0 ..... Eveé(ck)

(19) (KO, ..., A)) = W o o(KYE,, ... E,)).
E..., Eﬂeé‘ck)
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The above theorems provide spectral set characterizations of (8) and (9) in terms
of the spectra of convex sets which are generated by the extreme matrices and are of the
same formas KO(A , ..., A Jand KW (A , ..., A ), respectively. Depending on the parti-
tion N(k) and matrices A, ..., A_, these results enable us to reduce the “dimensionality”
of the spectral set problem under consideration. Equalities (16) — (19) show that such a
reduction is possible with respect to the entire spectral set if 2n < m and with respect
to the real part of the spectrum if n__ < m. We note that in the two special cases of
partitions with k = 1 and k = n, the corresponding values of n_  aren_ =nand
n_=1.

max Theorems 2.2 and 2.3 are particularly relevant to the work presented in [3] where
various properties of (8) and (9) are studied by means of P-matrices and block P-
matrices. For example, it is shown in this reference that the nonsingularity of (8) (re-
spectively, (9)) is equivalent to the block P-property of a specially constructed test
matrix with dimension mn x mn. In view of the above results, however, one can apply
this nonsingularity criterion to the matrix sets in the right hand side of (16) (respec-
tively, (18)) in which case the dimension of the resulting test matrices is reduced to
wn x . Inasimilar way, Theorems 2.2 and 2.3 can be used to improve the criteria for
Hurwitz and Schur stability of (8) and (9) obtained in [3].

X

3. Conclusion

The results in this paper illustrate an application of the classical Caratheodory’s theo-
rem to the problem of determining the spectral set of a general compact and convex set
in M, (R). Inthe cited literature, a special case of this problem is considered in [4] where
it is shown that the spectral set of an interval matrix can be obtained as a union of the
spectra of its n-dimensional exposed sets. This result, however, is no longer valid for
more general convex sets in M _(R) which can be seen from the stability characteriza-
tions for a polytope of matrices obtained in [1] and [2]. In this context, Theorem 2.1
gives a spectral set characterization which is applicable to any compact and convex
matrix set. Theorems 2.2 and 2.3 represent more specialized results related to the spec-
tral properties of matrix sets described in the form (8) and (9). These theorems are
primarily motivated by the work in [3] and can be used to improve some of the results
in this reference.
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[Mpunoxenne Ha TeopeMara Ha Kapareomopu B 3aj1auara 3a ornpesensHe
Ha CIIEKTPAITHOTO MHO)KECTBO Ha M3ITbKHAIM MaTPHUYHU MHOXKECTBA

Braoumup Monos

Huemumym no ungpopmayuonnu mexnonocuu, 1113 Cogus
(PezwmMme)

Heka K npezcraBisiBa KOMIIAKTHO M U3I'BKHAIO MHOXECTBO OT PEaIHH MAaTPHIH C
pa3mepHOCT NxN. OOCHKAA Ce MPUIOKEHUETO Ha J00pe Mo3HaTara TeopemMa Ha
Kapateonopu B 3a1auara 3a onpeensHe Ha CIEKTpaiHoTo MHOKecTBO Ha K. [TokazaHo
€, 4e M3IMOJI3BAaHETO Ha Ta3d TeopeMma JlaBa Bb3MOXKHOCT Ja C€ MOIYYH LSIIOTO
CIIEKTPAITHO MHOXKECTBO OT CIIEKTPUTE Ha U3ITbKHAINTE MHOTOCTEHH B K, KOMTO UMAT
pa3MepHoOCT, He mo-roisiMa oT 2N. To3u pe3ynTar Mmo3BONsABa M3CIEABAHETO HA
CIeKTpaJHUTE CBOMcTBa Ha K, M3y4yaBailku M3M'bKHAIUTE MOAMHOXeCTBa B K C IO-
MaJiKa pa3MepHOCT.
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