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Abstract: A survey is done of Pareto optimal solutions of multicriteriaproblems of flows in
a network. An algorithm is proposed that finds solutions when the decision maker (DM)
sets a requirement about the criteria upper limit. Analysis of the approach suggested and
the results obtained is represented.
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1. Introduction

Let the network G={N,U} consists of a set N of n nodes and a finite set U of m
directed arcs (i, j), i, j  N. There are defined  k  “cost”parameters aij

r , rIk, where Ik
is the set of natural numbers from 1 to k, which are associated with each arc (i, j). The
flow on the arc (i, j) is designed with x(i, j)=xij. The multicriteria flow problem (MCF)
may be stated as follows:

MCF:     min* (g1(x), g2(x),... , gk(x))

subject to
  v    if  i=s,

(1)  xij  xji  =   0    if  is, t
jN       jN  v   if i=t;

(2)      0  xij  cij,  (i, j) U,

where s is the source node and t is the terminal node (the sink),

  gr(X) =  aij
 r xij,

(i, j)U

      v  v*,
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and v* is the value of the maximal flow. The set of constraints (1)  (2) determines the
set of feasible solutions X. The functions gi  are called criteria or objectives.

The requirement v  v* adds in fact one more criterion to MCF problem, that is
why it can be avoided introducing the arc (t, s), the first and the last of the constraints
(1) being replaced correspondingly:

  xsj  xts  = 0,
jN

xit  xts   = 0.
iN

At such a configuration of the network and a non-zero flow in it, the basis of the
problem corresponds to spanning tree T, which always contains the arc (t, s). Since T
is a network structure, which does not include cycles, the set of its remaining arcs
defines the cutting set (X,X


) in G. The pivoting of a new arc in the basis causes either

a change in the cut, or a change in the elements of any of the sets X or X

. A flow

x1 = {xij
1
, (i,j)U)}, x

1X, is а Pareto-optimal feasible solution or flow (P.o.), if from
the inequality gi(x)  gi(x

1), iIk , for some xX, it follows that x=x
1.

When k=1 the problem is reduced to the single criterion problem for min-cost
flow (MF). This is a linear programming problem in general and some polynomial
algorithms exist for its solving. The efficiency, the efficient data support of these
algorithms are due to the unimodularity of the constraints matrix. That is why the
flow problems are distinguished in the class of the linear programming problems.

When k=2, methods for solving bicritera flow problem (BCF) are developed in
[2, 3]. The idea of the algorithm in [3] is described in the next section.

The problem MCF is a multicriteria linear programming problem. The methods
for solving this class of problems can be applied to it. In [1] a network specializa-
tions of the primal simplex multicriteria algorithms is developed.

The advantages of the properties of pure network models are used in solving
MCF with preemptive priorities, assigned to the objectives. In this case the criteria
are previously ordered by the decision maker according to their importance. The first
criterion is the most important, the second less than the first, the third  less than the
second and so on. It is proved in this case that there exists a scalar M0 > 0 such that for
any M > M0, a solution x* is a preemptive optimal solution if and only if it solves the
problem

min  MkI gi
      iIk

i.e., it is an P.o. solution. In [4] this problem is worked out solving a sequence of
single criterion flow problems, optimizing the criterion of highest priority over an
appropriately modified network, then minimizing the next in order criterion over a
network modified again and etc.

In many cases the finding of ef.s. is performed by solving single criterion
problems where the set of the constraints of the MCF is enlarged by additional
constraints, which are linear constraints in the case investigated. These methods
destroy the unimodular structure of the original matrix of the constraints. Adapta-
tions of the simplex methods, which  use the properties of the embedded network
structure are designed in [5] and [6].

2. Setting the problem

In a lot of the cases of multicriteria problems solving, the decision maker sets the
condition to obtain a solution, in which the values of the criteria have real practical
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sense  for example path length, value, time, etc., and are within definite limits, i.e.:

   gi(x) bi , iIk ,  s.t. xX.

These constraints are defined as equalities in the following way: the set of the
network arcs is enlarged by the arcs (t, s)i, iIk , i.e.  к in number arcs from the sink
node to the source node:

gi(x) + x (s, t)i = bi , iIk   s.t. xX.

Statement 1

In [3] an algorithm finding basic P.o. solutions of BCF problem is described. The fact
is used that the P.o. basic solutions xi can be ranked according to the increasing value
of g1(x

i), so that:
g1 (x

1) < g1 (x
2) < g1 (x

3 )< ... ,
(3)

g2 (x
1) > g2(x

2) > g2 (x
3) > ....

The solution xp is adjacent basic solution to  xp1  and  xp+1.
The adjacent basic P.o. solution can be determined from a basic P.o. solution

investigating the reduced cost matrix CR associated with this solution. A column
vector CR(i, j) of dimension 2 in CR, associated with a nonbasic arc (i, j) is called
effective if CR(i, j)0 and if there exists a vector of weights  = (1, 2), such that
(4) CR0 and CR(i, j)=0.

Let u1(i) and u2(i) be dual variables (potentials) associated with a node i for the
first and the second objective functions respectively. The potentials of node j, the
ending node of the arc (i, j) in the spanning tree corresponding to the basic P.o.
solutions, are determined by the equations

u1(j) = u1(i)+aij
1,

u2(j) = u2(i)+aij
2.

For each arc (i, j)U, the vector CR(i, j) is determined as follows:
      CR1(i, j)= u1(i)  u1(j)+aij

1 ,
      CR2(i, j)= u2(i) u2(j)+aij

2.
Moving from xp to xp+1, in order to obtain the basic tree associated with xp+1, we

must remove an arc from the tree Tp corresponding to x
p and pivot another arc. The

appropriate arc to enter the basis is that arc which results in minimum increase of
the first objective for a unit decrease in the second objective. To satisfy (3) the
potentials of this arc must satisfy the inequalities

CR1(i, j)>0,
CR2(i, j)<0.

We determine the function d(i,j) on the set of nonbasic arcs as follows:

|CR1(i, j) / CR2(i, j)|  if CR1(i, j)>0 and CR2(i, j)<0,
              d(i, j) = 

    otherwise.

The arc (p,l) to be pivoted into the basis corresponds to the d(p,l) value for
which
(5) d(p,l) = min { d(i,j) / (i,j)U and is a nonbasic arc}.
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The components of vector  corresponding to the basic ef.s. are determined as
follows

1 = d(p,l) / (1+d(p,l)),
(6)

2  = 1/(1+d(p,l).
In order to obtain the new basic solution, on the cyclep(p,l), formed by the arc

(p,l) and Tp, oriented according to the arc (p,l), if xij=0 and in the opposite direction 
if cij=xij, the values 1 = min (cij xij) for forward arcs of the cycle and
2 = min xji for backward arcs and the value= min (1,2) are determined. We change
the flow along the cycle by   T

 
p is changed to T

 
p+1 by determining the leaving arc and

pivoting (p, l). The potentials of the nodes of the network are adapted.
The first basic P.o. solution is defined solving the problem of minimal flow in a

network with an objective function (1 )g1 + g2, where  approximates 0 and is a
positive number.

Statement 2
Another property that will be used by the future considerations is the theorem proved
in [3], which states:

Let for a multicriteria problem with k objectives gi(x), iI k, the numbers ,
iI k1 be arbitrary nonnegative numbers, the sum of which is 1. Then a P.o. solution of
the bicriteria  network  flow   problem with   two objectives   i gi and  gk is  a P.o.

     iI k1
solution of the given k-criteria problem and the reverse.

Statement 3
In [2] the properties of a flow in a network are discussed, when besides the constraints
on the arcs capacity, к in number additional linear constraints are added, their left
sides being linear combinations of the flows on arcs sets and let the matrix A of these
constraints be of rank k. Let f be a flow, which is a basic solution of the problem set
and f(m,) is its decomposition in paths   and cycles  of the network. In the case
when the arc (t,s) is included in the basis, the flow is decomposed only with respect to
the cycles  = {i: i=1,..., m1}. Let A() =(j,i) denotes the constraints matrix
when the flow of this type is formulated in terms paths-cycles. The element a(j,i) is a
sum of the coefficients in function gj of the arcs of this cycle, multiplied by 1 or  1,
depending on the orientation of each one of these arcs with respect to the cycle orien-
tation.

In the case when the arc (t, s) is included in the basis, the flow is decomposed
with respect to cycles only. It is proved that A() has a rank k, i.е. a spanning tree
corresponds to the basic P.o. solution f plus some arcs of the network the number of
which is k, or k cycles formed by those k arcs and the spanning tree.

Statement 4

Let x be a P.o. solution for a BCF problem. Then in the network there is not cycles
with negative cost with respect to the second objective which cost is zero for the first
objective.

Description of the algorithm
Deriving from statements 13, an interactive algorithm  is proposed, with the follow-
ing general description: basis P.o. solution. is determined at the first iteration, for
which the first and the second objective functions satisfy the conditions set by the DM.
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At each following iteration р such basic P.o. solution is determined, for which the
criteria (р+1)  satisfies the constraint on its value solving a bicriteria problem of a
network flow. The first criterion of this problem is a linear combination of the linear
functions of the first p criteria, located within the required bounds, and the second one
 р+1-st criterion.
Algorithm description:
Iteration1. The following BCF problem is solved with the help of the algorithm de-
scribed in the Statement:

     Min (     aij
1xij ,   aij

2 xij),
                                                          (i,j)U          (i,j)U

s.t xX.
As a result of the solution  basic P.o. solutions are obtained, for which the values

of the two objective functions are ranked as above:
g1 (x

1)< g1 (x
2)<... g1 (x

p)< ...,
g2 (x

1)> g2(x
2)>... g2 (x

p)> ...
Let Тi denotes the spanning trees corresponding to the P.o. x

i.
1. If xp is reached, for which the conditions
(7)  g1 (x

p)  b1 and g2 (x
p)  b2,

are satisfied, the numbers 1
1 and 2

1 are defined from (6)  and the objective function
G1, which is minimized by x

pХ is formulated as a linear combination of
g1 + х1(s,t)1 = b1 and g2  + х1(s,t)2= b2  with coefficients 1

1 and 2
1; х1  denotes the flow,

corresponding to the basic solution. Iteration 2 is executed.
2. In case xp is obtained, for which  the conditions  g1 (x

p)> b1 and g2 (x
p)> b2 are

satisfied under the condition that for g1 (x
p1) ) b1 and g2 (x

p1)>b2, a nonbasic arc (i,j),
is searched for the spanning tree Тp, for which

(8) CR2(i, j)<0 и CR1(i, j)=0.

The flow along the cycle formed by the arc (i, j) and spanning tree Тp1 is altered.
The procedure continues till a nonbasic arc satisfying (8) is obtained. The flow corre-
sponding to the basic solution is denoted by х1. If conditions (7) are satisfied for the
current solution, the algorithm goes to step 1.  Otherwise, go to step 2 or if all the
nonbasic arcs are tested the problem of  finding  P.o. solution, for which the objective
functions are within the searched bounds, has no solution. It is necessary the DM to
change his/her requirements.

Iteration q. 1. If q=k, end of the algorithm. Otherwise the bicriteria flow problem
BCF is considered:

     Min (Gq ,gq+1) s.t. xX ,
where Gq =  iq1 gi.

      iI q1
If gq+1(xq1)  bq+1, the next objective function is regarded and so on, until such

one is reached exceeds its upper limit and it becomes the second criterion. Otherwise
the algorithm ends.

The algorithm for solving BCF is applied. When passing from one to another
P.o. solution an approach different from the described in statement 1 is applied to
alter the flow and hence  way of determining the new basis.

Let the arc (i0, j0) be the nonbasic arc for which condition (5) is satisfied. This arc
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is determined to be pivoted into a basis the spanning tree of which is Тp.
2. With the purpose to pass to new basic P.o. solution of the bicriteria problem, not
altering the values of the first q criteria already determined, a system of q in number
linear equations 1,...,q are solved, the left sides of which are defined on cycles cre-
ated by the current basis of the problem. Let the arc (i0, j0) and Тp form the cycle q+1.
Then the system acquires the following form:

a(1,1)y1 +...+ a(1,q)y\ q= a(1,q+1),
...

a(q1)y1 +...+ a(q, sq)yq= a(qq+1).

The solution of the system is unique, because det A(i,) 0.
Each basic arc (i,j) is assigned the value yr(i, j)= yr, if (i,j)r. We define

yk+1(i0, j0)=1 and change the flow along the arcs (i, j) of the cycles 1,...,q+1 –

xij:= xij +  yr(i, j),

where  is determined by the correlations computed on the basic arcs (i, j):

1 =min(ci0,j0 xi0,j0,  min  (cij xij)/yr(i,j),  min  (x/yr(i,j))),
        yr(i,j)>0                    yr(i,j)<0

if the arc (i0, j0) is a forward arc for the cycle q+1 .

2 = min(xi0, j0,  min  (cij xij)/yr(i,j),  min  ( x/yr(i,j))),
yr(i,j)>0                    yr(i,j)<0

if the arc (i0, j0) is a backward arc for the cycle q+1 .
 = min (1,2).

The arc (i*, j*), for which  is reached, leaves the basis, and the arc (i0, j0) is
introduced in it.

If there is a nonbasic arc for which a(q,q+1)<0, whereq+1 is the cycle formed
by this arc denoted by (i0, j0) and the new spanning tree, go to the step 2.

In case xp is reached, for which the conditions

(9) gq+1 (x
p) bq+1,

are satisfied, the numbers  1
q and 2

q are defined from (6) and the objective function
Gq minimized by x

pХ is stated as a linear combination of Gq1 and gq+1  and with
coefficients 1

q and 2
q. The flow corresponding to the basic solution is denoted by хq.

The potentials of the nodes of the network are altered. q:=q+1 is set and the
Iteration q is executed.

3. Conclusion

The paper makes a survey of the approaches that seek for P.o. solutions of multicriteria
problems of flows in a network considered by the author. An algorithm is proposed
to find such solutions when the DM sets the requirement for upper limit on the
criteria. The main idea of the approach suggested is to determine a sequence of
basic P.o. solutions of  bicriteria problems for a network flow. The first one of the
criteria is a linear combination of the criteria that are already within the limits re-
quired, the second one is the next criterion that is to be improved. The P.o. solutions
found are not integer at integer data of the problem studied.
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Подход за намиране на Парето-оптимални решения
при многокритериални задачи за потоци в мрежа

Мариана Николова

Институт по информационни технологии, 1113  София

(Р е з ю м е)

В статията е представен обзор на Парето оптимални решения при много-
критериални задачи за потоци в мрежа. Предложен е алгоритъм, при който
лицето, вземащо решение, поставя изискване  за горната граница на критериите.
Направен е анализ на предложения подход и на получените резултати.


