
3

Processor Control-Flow Error-Detection Techniques
Model and Evaluation Tool

Edita Djambazova, Krassimir Djambazov
Institute of Computer and Communication Systems, 1113 Sofia

Abstract: A model of computer system's behavior is presented with embedded tools for con-
trol flow error detection. The model is aimed at determining of the coverage factor of these
tools and/or the techniques for their construction and of combinations of the techniques. The
actual parametersof the evaluated system and the specific implementation characteristics of
the error detection techniques/tools are considered in the model. The system behavior is
presented as a probabilistic graph, where absorbing states are defined for which the specific
coverage factors of the different techniques could be analytically determined. The time-
dependent model allows for simulation of the coverage factor as a function of time from the
point of error occurence. On the basis of this model and evaluation tool is developed for
coverage assessment at different design stages. To illustrate the abilities of the evaluation
tool experimental results are presented obtained on a generalized system and the influence
of some significant implementation characteristics of the different techniques is analized.

Keywords: error detection techniques, coverage factor, simulation model.

1. Introduction
The fault tolerance of computer systems can be achieved through error masking, error detec-
tion or combination of these approaches. Many fault-tolerant applications in computer sys-
tems are based on error recovery techniques rather than on error masking ones. The essential
function in error recovery is the error detection. In fault-tolerant distributed control systems,
fail-stop components (controllers) are often used. The fail-stop approach requires implemen-
tation of self-checking tools in controllers to stop the operation in case of error detection.

The notion of coverage factor defines the ability of a computer configuration to detect
errors in case of their occurrence. A good part of the error detection techniques are applica-
tion specific that makes the coverage factor estimation strongly dependent on the actual sys-
tem parameters.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ. BULGARIAN ACADEMY OF SCIENCES

КИБЕРНЕТИКА И ИНФОРМАЦИОННИ ТЕХНОЛОГИИ, 2
CYBERNETICS AND INFORMATION TECHNOLOGIES, 2

София . 2001 . Sofia

4

Error detection techniques could be classified in two groups: functional and application
oriented. The first group is aimed at checking the correct system operation. Two classes of
functional methods could be distinguished: on-line checking and periodic functional tests.
Application-oriented methods are used for error detection in control flow (program execu-
tion), mostly for application programs. The four main classes of application oriented meth-
ods are: time checking, control flow checking, results assessment, and exception handling.
Time and control-flow checking are methods (and techniques) for concurrent error detection.

Concurrent error detection techniques [9, 2] use program segmentation and points in
each segment where some conditions are checked. The patterns for comparison are issued
concurrently from an independent monitor on the basis of the history of computational pro-
cess. Concurrent error detection techniques are: time checking of program execution[3, 10],
checking of number of fetched instructions [6], checking of segments’ sequencing (assigned-
signatures techniques) [5, 10, 7, 4], and checking of sum of instructions’ operational codes in
the executed segment (derived-signatures techniques) [9, 11].

There are two directions in coverage assessment: modeling and measurement after fault
injection. The second direction has the drawback to be a physical approach, i.e., a system
prototype has to be available, the application software has to be programmed before the check
whether the system meets its error detection requirements. The data for error detection tech-
niques’ properties are strongly dependent on the setup of the experiment, on the error defini-
tions and error models accepted, on the technical abilities of the setup, etc. The experimental
results give only a basis for comparison of the implemented techniques and some insight for
their operation in different environment.

The design process implies the choice of a technique/method for error detection to be
made at earlier design stages. To ease the preliminary assessment of the coverage factor,
analytical and simulation models are applied. Unfortunately, most of the existing models are
developed for assessment of a single method which makes the comparative analysis of the
different techniques difficult. These models do not allow for estimation of the integral effect
in case of combination of methods. Most of the known modeling approaches do not consider
the influence of the application specifics on the coverage, thus ignoring the effect of the
design solutions.

Fault injection methods can give the time function of the coverage, while none of the
known models could assess it. In Section 2 of the paper considerations about the importance
of the time properties of the coverage are presented.

2. Goals of the study

The definition of coverage factor concerns the probability an error occurrence to be detected
within unlimited time interval. This definition is useful when the application does not pose
time restrictions, i.e., if the definition of system failure is time-independent. We shall call the
above definition static coverage factor. The dynamic coverage factor is presented as a time
function of the probability for system failure detection.

The coverage assessment model is purposed at considering some system properties,
estimation of the integral effect of the implementation of different error detection techniques,
and determining the dynamic coverage factor.

In the concurrent error detection techniques, there is a dependence of the coverage upon
factors specific to the application: processor’s instruction set, instruction coding, segment
size, signature size, precision of the checking time intervals, program code size, data memory
size, etc. Control flow errors are due to wrong interpretation of an instruction. There is a
dependence between the instruction codes and the probability for erroneous instruction inter-
pretation. The number of erroneous bits in an instruction should also be taken into account.
System’s behavior after control flow violation depends on the size of the program code, the

5

data, and the free address space. Therefore, the memory distribution should also be included
in the model. Parameters, specific to the application, such as signature size, segment size,
precision of the checking time interval, are closely related to the coverage of the error detec-
tion techniques and should be included in the model.

The implementation of combined techniques for error detection implies coverage as-
sessment in case of intersection of detected error types. A clear distinction among the types of
detected errors and definition of specific coverage factors for the different methods are needed.

In the real-time systems, the control system’s failure is usually defined in terms of the
error sojourn time referred to the time parameters of the object under control. In control
systems, there is a time redundancy due to time delays of the object under control. The redun-
dancy reflects the compensation property of the control system after some limited period of
control loss. Therefore, the same error with the same duration could be a system failure in one
application and no failure, in another. Following this consideration, in many cases the static
definition of the coverage factor is insufficient for reliability estimation.

The presented study includes:
 Definition of error model.
 Development of generalized model of erroneous behavior of computer system,

according to the error model.
 Functional extension of the erroneous behavior model with the influence of

error detection techniques.
 Definition of coverage function of error detection techniques.
 Analysis of time-dependent parameters in the erroneous behavior model of com-

puter system. Transformation of the model for presentation of coverage function.
 Modeling program for determination of coverage function.
 Experiments with the models for coverage function and analysis of the results.

3. Generalized model of erroneous behavior of computer system

3.1. Introduction

The model considers a system where error detection tools are implemented to check the
correctness of control flow execution. It is assumed that after error occurrence the processor
operation stops upon signal from the checking tools. The stop is either fail-stop or is followed
by some recovery actions.

The analytical determination of the coverage of the software/hardware error detection
tools requires development of a system behavior model in case of error. The presented model
differs from the known models in its orientation towards parameters that could be analyti-
cally derived from system’s characteristics. The effect of the applied checking tools is also
considered.

The model follows some assumptions:
 The program code is divided in program segments. The segments’ size and the

criterion for its determination depend on the applied technique(s).
 Each fault causes an error in the data and may be error in operands, in code of

operation or in instruction extension. The last error type could be in address (of operand or of
instruction) or direct operand.

 The analysis considers errors that affect directly program’s control flow. Such
transformations of the control flow are called unspecified transitions.

 The address space of the processor is divided in three parts: code, data, and free
address space. Program code is placed in the code address space. Data address space does not
contain any code. The rest address space is free.

6

 Program
Instruction

Changed
Instruction

Detectable
Error

Effect on Control Flow

 Branch Yes
Unspecified transition

 Non-branch,

same length

Yes* -

 Non-branch Non-branch, Joining

 different length Yes Next segment transition

Instruction Unspecified transition

Code Branch Yes* -

 Non-branch,
same length

Yes* -

 Branch Non-branch, Joining

 different length Yes Next segment transition

 Unspecified transition

Operand
Non-branch

-
Yes*

-

 Branch - Yes
Unspecified transition

3.2. Error model

Errors are caused by faults that could be permanent or transient (self-recovering). Transient
faults are classified as faults that cause dynamic and static errors. Dynamic errors pass after
some time and cause a single change of information at the moment of its transmission or
handling. Static errors are related to permanent change of the information stored in the sys-
tem memory. The two classes of errors have equivalent effect and cause failures of the same
type. Their differentiation is necessary to determine the probabilistic characteristics of un-
specified transitions when we determine the total coverage factor.

The probability of occurrence of unspecified transition is determined by two compo-
nents: probability of dynamic error and probability of static error.

For the dynamic component it is necessary to analyze the frequency of execution of each
instruction and to determine the probability of its transformation during the execution of
branch instruction, to analyze the frequency of execution of branch instructions and to deter-
mine the probability the address part of each branch instruction to be changed, as well as to
determine the probability each instruction to be transformed into instruction with different
length.

The static component is related to change of data in the system memory that are code. In
this case, the important factor is not the frequency of execution but the number of instructions
and their distribution by types which could be changed causing an unspecified transition.

Errors could be distinguished also by their observability by a monitor, operating con-
currently with the processor. In this sense, all static errors are observable, while the part of
the dynamic errors, caused by faults inside the processor, are unobservable. For some meth-
ods the inside/outside separation of dynamic errors is important when estimating the cover-
age of the techniques for different error types.

The possible effects of erroneous interpretation of the original program code are pre-
sented in Table 1. The first column contains description of the affected part of instruction.

* Detectable if the error is observable by an external monitor.

Table 1

Affected part

7

code of operation or operand. The second column describes the instruction in the original
program. Branch and non-branch instructions are considered since their wrong interpreta-
tion could change the control flow. In the third column the changes in the original instruction
are presented. The column “Detectable Error” determines whether the error is detected by
some of the applied methods. The effect of the erroneous interpretation on the control flow is
shown in the last column of the table. When a program instruction is incorrectly interpreted
as instruction with different length, the next fetched byte will not be an original instruction
code and therefore an arbitrary data will be misinterpreted as code of operation. During such
wrong program execution till the end of the current segment three events are possible. If the
arbitrary data is interpreted as a branch instruction, an unspecified transition is performed.
When the program execution passes through real instruction code, it joins the original con-
trol flow and the checkpoint of the segment is reached. If neither unspecified transition, nor
joining of the original code happens, the wrong program execution linearly continues to the
next segment. In this case, the checkpoint of the segment is skipped. In the model this tran-
sition is treated as unspecified transition into the physically next segment.

3.3. Generalized model of error detection
The model is constructed in a way that allows for tracing the trajectory of the executed pro-
gram to one of the absorbing states upon error. A probability corresponds to each path.

The end states upon error could be of three classes: fully detectable, partially detectable,
and undetectable. All classes are assigned to absorbing system states correspondingly. The
state transition probabilities are defined on the basis of known system parameters and, thus,
are calculable. The paths in the model represent error propagation from its occurrence to an
absorbing state. The absorbing states are defined as states where errors are detected by the
corresponding technique with known probability. States where the control flow passes a check-
point are absorbing states with specific probability of error detection. These specific coverage
factors depend on the detection technique(s) applied.

Two models are developed: steady-state model and time-dependent model for coverage
assessment.

3.3.1. States and transitions in the model
In Fig. 1 the state diagram of the steady-state model is presented, comprising a set of states
and transitions among them. The states and probabilities specific for the steady-state model
are described in §3.3.3. The differences for the time-dependent model are shown in Fig. 2
and are discussed in §3.3.4.

The diagram shows the system behavior when an error occurs during the execution of a
program segment. The states represent: (i) cases of control flow’s erroneous redirection
(unspecified transition, transition to the next segment or joining) and (ii) the specific further
execution with regard to passing the checkpoints.

The description of system’s behavior includes a set of states and transitions among
them that are executed with respective probabilities pmn (from state Sm to state Sn).

State S0 corresponds to error occurrence during execution of the i-th segment. The
probability of occurrence of this event is pi.

States S1, S2, and S3 are entered after execution of an unspecified transition (branch).
The probability an error that has occurred during the execution of segment i to cause an
unspecified transition is pi

0.
An unspecified transition could transfer the program execution in another program

segment state S3 with probability pp, in the data space of the memory state S2 with
probability pd, and in the free address spacestate S1 with probability pf. We assume that the
transition in the free address space ends up with stopping of the processor in state S9. The
transition in the data space of the memory ends up either with stopping of the processor in

8

state S9, or with transition towards a program segment (state S3 with probability pr).

p01 = pi
0pf, p02 = pi

0pd, p03 = pi
0pp.

States S4 and S5 reflect the cases when after an error the program execution continues in
program segment j either directly, or through intermediate transitions. The program execu-
tion can remain in the same segment – transitions from state S0 to states S4, S5, and S8. The
probability for transition in segment j is pj. The transition into segment j could be on a code
of operation state S4 with probability pj

0 or on a byte with arbitrary contents state S5 with
probability (1 pj

0).

p34 = pj pj
0, p35 = pj (1 pj

0).

When the transition is on a byte which is not a code of operation, transitions to two
absorbing states are possible: stop state S7 with probability p57 and absorbing checking state S6
after joining the code of segment j with probability p56=pcop.

The other transitions are to the next program segment with probability pn and to the
states of unspecified transition S1, S2, and S3 with probability p51 , p52 , p53 , correspondingly.

Upon error that transforms an instruction into instruction with different length, the
program execution remains in segment i. The probability for direct transition between state
S0 and states S4 and S5, when i=j, is pdl.

p04 = pdlpj
0, p05 = pdl(1 - pj

0) for i = j.

When the error causes a transformation into instruction with the same length, a direct
transition is made between state S0 and state S8 which corresponds to transition on the check-
point of segment i with probability p08 = psl .

When the program execution reaches the physically last segment a transition is possible
into free address space that lies directly after the segment’s code. The probability for such
transition is pn.

 Probability of error during execution of segment i

pi = si psi + di pdi, si + di = 1,

where si is a weight coefficient of static errors, di is a weight coefficient of dynamic errors. psi
is the probability of static error in segment i. It is a function of li, the length of the code of
segment i, and l, the total code length; pdi is the probability of dynamic error in segment i and
is a function of ti, the execution time of segment i.

 Probability of unspecified transition pi
0

pi
0 = pcop pnb pnbr-br + (1 pcop) (1 pnb),

pcop probability of error in code of operation,
pcop = 1/linstr ,
linstr average instruction length in the program code,
pnb probability for non-branch instruction,

pnb=Inb/I ,

Inb number of non-branch instructions in the instruction set,
pnbr-br probability for transformation of code of operation into code of branch opera-

tion.
The probability for branch outside program segment i is determined as probability for

change of an instruction into branch instruction, pch:
 8 Nnb(k)

pch = pk ––––– ,
 k=1 C8

k

9

where
pk – probability for change of k bits in a byte,
Nnb(k) number of branch instructions produced from all combinations of k bit errors

in the original instruction code,
C8

k total number of combinations.
 Inb

pnbr-br = pch,i ,
 i=1

pnbr-br – probability for transformation of a non-branch instruction into branch instruc-
tion.

 Probability of transition into program code pp = lp/l.
 Probability of transition into data pd = ld/l.
 Probability of transition into free space pf=lf/l.
 Probability of transition into segment j pj = lj/l.
 Probability of transition onto exact code in segment j pj

0=1/linstr(j), linstr(j) – average
length of instruction in segment j.

 Probability of transformation of an instruction into instruction with the same length
 q

psl = px pl(m),
 m=1

q is the number of bytes in an instruction, px is the probability upon transformation of x
bits an instruction to be transformed into instruction with the same length, pl is the probabil-
ity the instruction to be of q bytes.

 Probability of transformation of an instruction into instruction with different length

pdl = 1– pbr – psl

Some of the probabilities are different for the steady-state and the time-dependent mod-
els. In the steady-state model, are used average values to assess the probabilities for multiple
unspecified transitions. Using step-wise simulation in the time-dependent model allows for
estimation of transition probability only for one step.

3.3.2. Absorbing states and their coverage factors

Stop states S7 and S9 correspond to stopping of the processor because of execution of instruc-
tion that causes a direct stop or because of entering into infinite loop. The infinite loop could
be caused by execution of a branch instruction that directly keeps the program in endless
loop, as well as a loop whose condition depends on the state of an incorrectly interpreted
variable. Since in stop state the program does not pass any checkpoint, the coverage of the
different techniques is 0, except for the watchdog timer technique that has coverage 1.

The program goes to checking state S6 when after executing an unspecified transition
it joins a segment. In this case the coverage of the watchdog timer technique is Cij

WDT. The
assigned-signatures technique does not detect this type of errors (Cij

AS=0), the derived-signa-
tures approach does it with probability Cij

DS, the technique with fetch count checking has
coverage Cij

FC.
The program goes to checking state S8 in case of transformation of instruction into

instruction with the same length. The coverage of the checking techniques in this case is
zero, the derived-signatures technique excluded (its coverage is Cij

DS).
The checking state S4 is reached in case of unspecified transition to exact code of

operation. The coverage of watchdog timers in this case is Cij
WDT. The assigned signatures’

coverage is zero, the derived signatures’ coverage is Cij
DS and that of the fetch counter tech-

nique is Cij
FC.

1 0

3.3.3. Steady-State Model

Probabilities and States:
 Probability of transition from data into code pr = pbrpp
 Probability of unspecified transition after a stay in the segment

 1 n–1 n–k

pbr = –– [(1 – p)(1 – pb – pstop)]
i–1(1 – p)pb,

 n k=1 i=1

p = f(linstr); pb = f(Ibranch, I, linstr); pstop = f(Ih, Ibranch, I, linstr).
Ibranch is the number of branch instructions in the processor’s instruction set, Ih is the

number of instructions causing halt of the processor, I is the total number of instructions in
the processor’s instruction set.

 Probability of joining
 1 n–1 n–k

p0 = –– [(1 – p)(1 – pb – pstop)]
i–1p.

 n k=1 i=1

 Probability of transition to stop state
 1 n–1 n–k

ps = –– [(1 – p)(1 – pb – pstop)]
i–1(1 – p)pstop .

 n k=1 i=1

 Probability of transition into the next segment

pn=1 – p0 – pbr – ps

Fig. 1. Steady-state model for error detection

 S0

buffer to (j+1)

S1 S2 S3

S4

S7 S6

S8

B

B2’’

S9

S5

 Legend:

 - normal state; - absorbing state;

 - stop state; - buffer state

1 1

3.3.4. Time-Dependent Error Detection Model
To introduce time in the described model we use a step-wise simulation approach. The progress
of time is presented as a chain of steps each corresponding to the average instruction execu-
tion time. Such choice is supported by two reasons:

 The average instruction execution time is known,
 The changes in the graph are performed with the transition from one instruction

execution to another.

Probabilities and states:
 Probability of transition from data into code pr=pbpp .
 Probability of unspecified transition after a stay in the segment

pb = pbranch(1 – pj pcycle(i)), pbranch = Ibranch/I ,

ipcycle(i)= –– pcop .

n

 Probability of joining

p=1/linstr .

 Probability of transition to stop state
pstop = ph + pbranchpcycle(i),

ph = Ih/I.
 Probability of transition into the next segment

pn = 1 – pcop – pb – pstop .

 S0

 buffer to
next round

buffer to (j+1)
same k

buffer from
(j-1); same k

S1 S2 S3

B1 S4

S7 S6

S8

B2’

B2’’

DS5

S9

DS8

DS4

 Legend:

 - normal state; - absorbing state; - stop state;

 - delay state; - buffer state

Fig. 2. Time-dependent model for error detection

1 2

3.4. Simulation program for coverage function determination
The modeling program is a realization of a simulation model that is aimed at determining the
average probability for error detection for all couples (i, j) with the progress of time. It is
organized in cycles for i and j to exhaust all combinations of segments. A cycle k for the steps
in the program execution is added to find the average coverage for each couple of segments in
each step. There is another cycle r introduced for multiple unspecified transitions from seg-
ment j to any other segment.

The simulation model is performed in steps, each step corresponding to an instruction
execution. The program is in one of the states from the diagram in Fig. 2 with a correspond-
ing probability. The probability the program to be in state Si in step k is denoted with pi(k). It
is the probability that the program has been in state Si in the previous step or that the program
has been in state Sx from which it entered state Si:

pi (k) = pi(k – 1)pii + px(k – 1)pxi .
 xi

In the first step
p0(0) = 1, pi(0) = 0 for i 0.
The delay states reflect the delays between the time point of entering a segment and the

point of occurrence of some event: passing the checkpoint of segment j, stopping, jump out-
side segment j, transition to the linearly following segment.

State DS5 is realized in the simulation model as a delay state. Thus, the finite sojourn
time in this state is spread over the steps.

Delay state DS5 corresponds to transition onto a byte which is not a code of operation in
segment j. The possible branches from state DS5 are:

 after some stay in segment j the program execution joins its normal instruction flow
and reaches the checkpoint of segment j-absorbing state S6;

 the program execution encounters a byte which it interprets as stop instruction
stop state S7;

 the program execution encounters a byte which it interprets as branch instruction
buffer state B1;

 the program execution reaches the next segment skipping the checkpoint of segment
j buffer states B2' and B2''.

There are two buffer states (depicted as blocks in Fig. 2) that represent transitions
specific to the model. Block B1 (“to next round”) is entered when the execution leaves seg-
ment j after a false branch instruction. Block B2''(“to (j + 1) same k”) and block B2'' (“from (j
– 1) same k”) represent the linear transition from segment j to the physically next segment
j+1.

Buffer states B2' and B2'' are identical. They represent the different views of each seg-
ment in step k. When the program execution leaves segment j without jump, it enters segment
j+1, i.e., it is in block B2'. From the point of view of segment j+1, however, the execution is
transferred from segment j but since the diagram depicts the possible transitions from seg-
ment i to segment j block B2'' is called “from j –1 same k”. The block represents the linear
program execution from segment j to segment j + 1 following a wrong interpretation of the
bytes in segment j.

To determine the influence of multiple unspecified transitions the simulation model
uses rounds. They reflect the possible branches out of segment j after execution of an arbi-
trary byte interpreted as a branch instruction. The rounds are introduced in the model as
cycle r.

The next round starts with different probabilities of states S1, S2, and S3 determined by
the probability of transition from state DS5. New cycle j over the number of segments is
executed to represent the possible situation of further unspecified transitions.

1 3

The steps are cycled for all combinations of segments to enlist the possible unspecified
transitions. Cycle k of steps is the inner most one. The coverage factor is obtained as a func-
tion of steps. Its value in each step is a sum for all combinations of segments for the corre-
sponding step.

The probabilities of being in the absorbing states determine the coverage factor. The
absorbing states are depicted in gray and black in Fig. 2. They are states with known prob-
ability for error detection – 0, 1, or Cij (the probability an unspecified transition between
segments i and j to be detected). The specific coverage factors for stop states S7 and S9 are
equal to 1 when watchdog timer is used. The coverage factors Cij for states S4, S6, and S8 are
specific for the error detection technique applied and can be calculated. It is assumed that
these states are absorbing, since the program execution reaches a checkpoint where the error
is either detected with the specific coverage, or goes undetected.

The coverage factor in step k, C(k), is a sum of the probabilities of the absorbing states
pa(k) multiplied by the corresponding specific coverage factors cija.

C(k) = cija pa(k).
 a

The specific coverage factors are discussed in details in [2]. They represent the prob-
ability an error to be detected at the checkpoint at the end of a segment. The time interval
between the time point of entering the segment and of passing the checkpoint is a probabilis-
tic variable with uniform distribution and values in the range of 0 and Ij (Ij is the number of
instructions in segment j).

The probability of the system being in absorbing state Sa in step k, pa(k), is determined
on the basis of the input probabilities of state Sa, pa0.

 k

pa(k) = pa0 (i – x),
 i=1

pa0(i – x) = pa0(x)(1/Ij) for 0 < i – x Ij,
pa0(i – x) = 0 otherwise.

pa0(i – x) is the probability for transition into absorbing state Sa in step i; pa0(x) is the
input probability of Sa in step x; x is the step in which the execution gets into segment j with
probability pa0(x),

pa0(x) = cya (x),
 y

where pya(x) is the probability for transition from state Sy to state Sa in step x.
The probability pa0(k) is introduced to trace the progress of the coverage factor as a

function of steps. It represents the probability the illegal execution of segment j to pass the
checkpoint in step k; pa0(k) is determined by the random distribution of the points at which
the program execution is transferred to.

The presented expressions are implemented in the simulation model via introducing a
delay state for each absorbing state that serves as a delay line for its input probabilities. The
delay is applied to the input probability specific for each step and is equal to Ij steps. At each
step of the delay the transition probability to the absorbing state is formed as 1/Ij of the
corresponding input probability as follows from the corresponding input probability.

4. Experiments
The two presented models are examined for system with different distribution of the address
space, 10 groups of program segments, three error detection techniques (assigned-signatures
technique, derived-signatures technique, and watchdog timer) and combinations of techniques.
Techniques are denoted as follows: assigned-signatures technique AS, derived-signatures

1 4

technique DS, watchdog timer with fixed period for all segments WDT(1), watchdog timer
with fixed period for each segment WDT(2), watchdog timer with window check WDT(3),
watchdog timer with adjustable window WDT(4) [DA96]. Signature monitoring techniques
are combined with watchdog timer.

Results from the experiments with the steady-state model are presented in Table 2.

 Table 2

Figs. 318 show the results from the time-dependent model. The influence of the memory
distribution is studied through extreme cases: only program code, code and data, and all
memory parts not zero.

Fig. 3. Watchdog timer data = 1k, free = 0 Fig. 4. Watchdog timer data = 1k, free = 8k

Fig. 5. Combination of watchdog timer and Fig. 6. Combination of watchdog timer and
 assigned-signatures technique, data=1k, free=0 assigned-signatures technique, data=1k, free=8k

 WDT(1) WDT(2) WDT(3) WDT(4) AS DS
WDT(1) 0.188 - - - 0.376 0.997
WDT(2) - 0.324 0.461 0.998
WDT(3) - - 0.214 - 0.393 0.997
WDT(4) - - - 0.618 0.658 0.999

AS 0.376 0.461 0.393 0.658 0.257 -
DS 0.997 0.998 0.997 0.999 - 0.989

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91 101

WDT(4)

WDT(1), WDT(3)

WDT(2)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91 101

WDT(4)

WDT(1), WDT(3)

WDT(2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91 101

AS+WDT(4)

AS+WDT(1,3)

AS+WDT(2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91 101

AS+WDT(4)

AS+WDT(1,3)

AS+WDT(2)

W DT

1 5

Fig. 7. Combination of watchdog timer and Fig. 8. Watchdog timer with fixed period for
 derived-signatures technique, data=1k, free=0 all segments and different memory distributions

 Fig. 9. Watchdog timer with fixed period for Fig. 10. Watchdog timer with window
 each segment and different memory distributions check for different memory distributions

 Fig. 11. Watchdog timer with adjustable Fig. 12. Derived-signatures technique
 window for different memory distributions for different memory distributions

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

DS+WDT

0

0.05

0.1

0.15

0.2

0.25

0.3

1 11 21 31 41 51 61 71 81 91 101

data=1k, free=8k
data=1k, free=0
data=0, free=0

WDT(1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 11 21 31 41 51 61 71 81 91 101

data=0, free=0
data=1k, free=0
data=1k, free=8k

WDT(2)

0

0.05

0.1

0.15

0.2

0.25

0.3

1 11 21 31 41 51 61 71 81 91 101

data=1k, free=8k
data=1k, free=0
data=0, free=0

WDT(3)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91 101

WDT(4)

data=0, free=0
data=1k, free=0
data=1k, free=8k

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

data=0, free=0
data=1k, free=0
data=1k, free=8k

1 6

Fig. 13. Assigned-signatures technique, watchdog Fig. 14. Assigned-signatures technique, watchdog
 timer, and combination for data=1k, free=0 timer, and combination for data=0, free=0

Fig. 15. Assigned-signatures technique, watchdog Fig. 16. Derived-signatures technique, watchdog
 timer, and combination for data=1k, free=8k timer, and combination for data=0, free=0

Fig. 17. Derived-signatures technique, watchdog Fig. 18. Derived-signatures technique, watchdog
 timer, and combination for data=1k, free=8k timer, and combination for data=1k, free=0

Watchdog timer variants are almost not influenced by the memory distribution (Figs. 3
and 4). The maximum values of the coverage are close for the steady-state and the time-
dependent models. The assigned-signatures technique shows better coverage when the free
address space is zero (Fig. 5), since the watchdog timer has little contribution to the coverage
in the combination. This is due to the fact that AS technique does not detect transitions to the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91 101

AS+WDT(4)

WDT(4)
AS+WDT(2)

WDT(2)

AS+WDT(1,3)
WDT(1,3)

AS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91 101

AS+WDT(4)

WDT(4)
AS+WDT(2)

WDT(2)

AS+WDT(1,3)
WDT(1,3)

AS

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91 101

AS+WDT(4)

WDT(4)
AS+WDT(2)

WDT(2)

AS+WDT(1, 3)
WDT(1,3)

AS

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

DS+WDT
DS

WDT(4)

WDT(2)

WDT(1), WDT(3)

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

DS+WDT

DS WDT(4)

WDT(2)

WDT(1), WDT(3)

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

DS+WDT

DS
WDT(4)

WDT(2)

WDT(1), WDT(3)

1 7

free address space. The coverage of derived-signatures technique also increases when the free
address space is zero (Fig. 12) for the same reasons as in AS technique. The combination
with WDT does not improve the coverage (Fig. 7). The watchdog timer’s coverage is slightly
improved with the increase of free address space (Figs. 8, 10, and 11), excluding the variant
with fixed period of the timer for each segment (Fig. 9). The coverage of assigned-signatures
technique improves in combination with WDT despite of memory distribution (Figs. 13, 14,
and 15). The two techniques detect different error types. The same is valid for the combina-
tion of DS technique and WDT (Figs. 16, 17, and 18) but the improvement of the coverage is
less significant, since the DS technique has high coverage.

5. Conclusion
The known models for reliability assessment work with generalized average probabilities of
error occurrence. There are models that calculate the coverage factor of different techniques
under specific conditions. In the presented model, the missing link between error occurrence
and the coverage of error detection techniques is proposed. On one hand, this is achieved by
introducing end states corresponding to known coverage factors. On the other hand, a proba-
bilistic model is proposed to describe the paths to these end absorbing states. The probabili-
ties are calculated on the basis of actual system parameters, thus providing more precise and
realistic assessment of the coverage factor.

The developed model is experimented with application software that includes module
for analysis of the processor instruction set, module for calculation of specific coverage fac-
tor, and module for determination of the total coverage. Experiments are performed for deter-
mination of the influence of different processor characteristics on the coverage of watchdog
timer, assigned signatures, derived signatures and their combination. The results are close to
those published in the literature and obtained through fault injection in real systems with
checking techniques.

The presented time-dependent model of the coverage determines the coverage of error
detection techniques as a function of time. Such presentation of the coverage is useful in
process control systems where the time period with error determines the damages on system
resources and therefore system recoverability.

The proposed approach works with average probabilities and, thus, cannot provide high
precision of modeling. The aim however is applying simple means to achieve comparable
results which can be used during fault-tolerant mechanisms’ design.

The developed model analyzes fault-tolerant mechanisms’ behavior upon control flow
change for all combinations of unspecified transitions among the program segments and
transitions to free address space or data. The model presents situations with multiple unspeci-
fied transitions.

The introduced delay states model with enough precision the delay of the program
execution through checkpoints specific for the error detection techniques.

The experiments with different techniques and combinations of techniques show the
adequacy of the model and comparability of the results obtained with the steady-state and
time-dependent models.

R e f e r e n c e s
1. D j a m b a z o v, K., E. D j a m b a z o v a. Time-dependent coverage factor model. In: International

conference Automation and Informatics‘2000, 24-26 October 2000, 40-43.
2. D j a m b a z o v, K., E. D j a m b a z o v a. Modeling of methods for error detection in microprocessor

systems. In: National conference Automation and Informatics '99, 19-22 October, 1999, 64-
67.

3. D j a m b a z o v, K., E. D j a m b a z o v a. Analytical assessment of the coverage factor of watchdog
timers. In: National conference with international participation Automation and Informatics
'96, 9-11 October 1996, 42-45.

2

1 8

4. H o h l, W., E. M i c h e l, A. P a t a r i c z a. Hardware support for error detection in multiprocessor
systems a case study. Microprocessors and Microsystems, 17, 1993, No 4, 201-206.

5. D. J. L u. Watchdog processors and structural integrity checking. In: IEEE Trans. on Comput., Vol.
C-31, No. 7, July 1982, 681-685.

6. M a d e i r a, H. et a l. Time behavior monitoring as an error detection mechanism. In: Third IFIP
Working Conf. On Dependable Computing for Critical Applications (DCCA-3), Palermo, Italy,
September 1992, 121-132.

7. M a j z i k, H. et a l. Hierarchical checking of multiprocessors using watchdog processors. In:
Proc. First European Dependable Computing Conf., October 1994, 386-403.

8. M i r e m a d i, G. et a l. Use of time and address signatures for control flow checking. In: Fifth IFIP
Working Conference on Dependable Computing for Critical Applications (DCCA-5), Sept.
1995.

9. M a h m o o d, A., E. J. M c C l u s k e y. Concurrent error detection using watchdog processors a
survey. In: IEEE Trans. on Comput., 37, February 1988, No 2, 160-174.

10. S o s n o w s k i, J. Concurrent checking of program flow using single-chip microcomputers. In:
Proc. Euromicro ’88, in Microprocessing and Microprogramming, 24, August 1988, No 1-5,
783-790.

11. W i l k e n, K., J. P. S h e n. Continuous signature monitoring: efficient concurrent-detection of
processor control errors. In: Proc. International Test Conference, 1988, 914-925.

Техники за откриване на грешки в потока от инструкции
на процесора модел и моделираща среда

Едита Джамбазова, Красимир Джамбазов

Институт по компютърни и комуникационни системи, 1113 София

(Р е з ю м е)

Представен е модел на поведението на компютърна система с вградени оперативни
средства за откриване на грешки в потока инструкции. Моделът е предназначен за
определяне на коефициента на покритие на съответните средства и/или на техниките,
върху които те са изградени, както и на комбинациите от тях. В модела се отчитат реалните
параметри на оценяваната система, както и специфичните приложни особености на
съответните техники/средства за откриване на грешки. Поведението на системата се
моделира чрез вероятностен граф, в който са дефинирани поглъщащи състояния, за които
специфичните коефициенти на покритие на отделните техники могат да бъдат аналитично
определени. Времезависимият модел позволява симулиране на коефициента на покритие
като функция на времето от момента на настъпване на грешка. На базата на този модел
е разработена моделираща среда, която позволява оценка на коефициента на покритие в
различните етапи на проектирането. За илюстрация на възможностите на моделиращата
среда са представени експериментални резултати, получени върху обобщена система,
като е анализирано влиянието на някои от съществените приложни характеристики на
различните техники.

