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Abstract: A new modification of the LPC cepstrum of speech signal called clipped
LPC (CLPC) cepstrum is proposed. In the CLPC cepstrum is reduced the influence of
the low level LPC spectrum’s regions. Three LPC cepstrums as features in a text-
independent speaker identification task were evaluated using reading text in Bulgar-
ian language collected over noisy telephone lines. These cepstrums are: standard
LPC cepstrum, CLPC cepstrum and OSALPC cepstrum. As experimental results shown
the proposed cepstrum achieves better results than both LPC and OSALPC cepstrums
in this task.
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1. Introduction

The performance of the existing speaker recognition systems degrades rapidly when
training and testing cannot be done in the same ambient conditions. Ones of the most
common representations in these systems are Linear Predictive Coding (LPC) cepstral-
based parameters. It is well known that LPC cepstral parameters might lead to a poor
recognition rate in the noisy environment. One of the solution to cope the noise problem
is to find cepstral representations which are resistant to the noise corruption [8].
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In [10] it is shown that the influence of the noise on the logarithmic power spec-
trum of the speech signal is essential in the low level domain. This influence leads,
during the recognition process, to instability of the values of the used spectral distance
and this is detrimental for speech recognition. Therefore, it is reasonable to propose
that if the influence of these domains is suppressed in the LPC cepstrum, it would bring
to lower variance of cepstral coefficients of noisy speech. This could be made by using
the properties of group delay spectrum (GDS) [1, 2, 3, 4].

It is known that the positive regions of the smoothed GDS approximate the formants
and the negative regions - the spectral valleys. To reduce the influence of spectral
valleys in LPC cepstrum it is need to remove (or to decrease) the GDS in selected
negative regions [2, 3, 4].

In this paper we are proposing a new modification of the LPC cepstrum analyti-
cally obtained by use of a polynomial approximation of the GDS’s negative values’
reduction function. We named the obtained cepstrum a clipped LPC cepstrum and
suggested simplified formula for its calculation. Some preliminary experimental results
for the clipped real cepstrum are presented in an earlier work of the author [9].

We evaluate three LPC cepstrums as features in a text-independent speaker iden-
tification task with phrases in Bulgarian language collected over noisy telephone chan-
nels. These cepstrums are: standard LPC cepstrum, CLPC cepstrum and OSALPC
(One-Sided Autocorrelation Linear Predictive Coding) cepstrum [7]. As a classifica-
tion scheme we use an algebraic approach with arithmetic-geometric sphericity meas-
ure [5, 6].

2. Group delay spectrum

If X(Q) is the Fourier transform (FT) of the minimum phase signal x(i), c(n) are

the cepstral coefficients of X(i) and X (Q) =|X (Q)|exp(j6,(2)), then INX() can
be represented as [3]
1) In X (@) = 0.5¢(0) + i c(n)exp(-jQan),

The unwrapped phase function is

0

(2) 0(Q) = 0,(Q) +27A(Q) = Y c(n)sin(Qn)

n=1

where 6, (€2) is wrapped phase function and A(C) is an integer such that 6(Q) is a

continuous function of Q [3].
The group delay spectrum 7(€) is defined as negative derivative of the un-

wrapped phase function with respect to Q [3]. For minimum phase signal, 7(€2) is
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do(Q) i nc(n)cos(Qn) .

3) (@)= "

For mixed phase signal we will define two GDSs — ,,(©2) and7,(€2) :

(4) 7,(Q) = ZOO: nc,(n)cos(Q2n), 7,(Q)= i nc,(n)cos(Qn) ,

where ¢, (n) and c,(n) are the cepstral coefficients of the minimum phase equivalent
signals derived from spectral magnitude and phase of X (€2) respectively [3].

3. Noisy speech processing using group delay spectrum properties

The additive and high resolution properties of the GDS allow its domains to be sepa-
rately processed. In this work, the negative domains of the GDS are of interest, because
they correspond to low level logarithmic power spectrum [2, 10].

It was shown in [2], that by substitution of the values of 7 () in (4) in these
domains with their mean value can achieved suppression of the noise influence in the

LPC spectrum. This approach requires calculation of two GDSs 7_(Q) -2 () and
72(Q) - The 7 (Q) is an unsmoothed GDS and for its calculation are used all cepstral

coefficients (typically their number is equal to the size of cos transform). The 7’ (Q)

is a smoothed GDS and for its calculation are used only part of coefficients (typically
the first 10 or 20). The negative values’ regions are determined in smoothed GDS. In
the unsmoothed GDS the levels in these frequency regions are substituted with their
mean values. The inverse cos transform is then used to obtain the modified cepstrum

cr.(€2) inwhich the influence of low level spectral regions is reduced. The reconstruc-

tion of the autocorrelation function is done by processing of the cepstrum ¢’ (Q) via

an inverse homomaorphic system. The values of the autocorrelation function are used by
Levinson-Durbin algorithm to produce the linear prediction coefficients. From them
the LPC cepstrum is calculated.

This approach is effective but it is very complicated and it does not allow
analytical solution. Our aim is to reduce (not so effective as in [2]) the variance of the
LPC cepstral coefficients for noisy speech using a similar idea and in a more simple
way.
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4. Clipped LPC cepstrum

In the paper we will use the GDS 7(Q) in (3) obtained by LPC cepstrum. In this case
we will process a minimum phase part of speech signal consists of information only for

poles of speech spectrum (c_(n) in (4) consists of information for zeros and poles). It

is well-known that in all-pole model of linear prediction analysis only the spectral
peaks are well represented. In this model the low level spectral regions are approxi-
mated with insufficient accuracy and their variability (caused by a bad approximation
or a noise influence) is one of the sources of the LPC cepstrum variability. We suppose
that if we smooth and reduce the spectrum values in these regions then we can decrease
the LPC cepstral coefficients’ variance.

Let c(n) is the LPC cepstrum of the analyzed speech signal, the GDS (Q) is
defined as in (3) and the smoothed GDS obtained by using the first M LPC cepstral
coefficients in (3) is noted as 7,(€2) . The GDS formed by positive terms of 7,(€2) is

noted as z,"(€2) and
(5) 70 (Q) =W[r,(Q)] = 7.(Q)Y[r, ()] + GY[-7,(Q)],
where W[.] is a negative values’ clipping function, G is a constant and Y[.] is the

Heaviside function. The LPC cepstrum corresponding to " () is noted as c* (k)
and according to (3) and (5), for k >0, it is

6) c (k)= élq (Q) cos(QK)dQ =k—iI{q (QY[r.(]+G Y[z, (Q)]}cos@K)dQ .

The direct solution of (6) by using of an analytical form of W[.], is a very difficult
task. Therefore we are propose to use in (6) a polynomial approximation of the clipping
function W[.]. This kind of approximation (performed by least squares method (LSM))

allowed us to evaluate analytically the integral. We note the approximation of W[.] as
W([.], and the GDS obtained by Wy[.] as 7/ (Q) . The LPC cepstrum corresponding

to 77 (Q) we call clipped LPC (CLPC) cepstrum and note it as c_ (k). According to
(3) and (6), we have

2 A R M
@) c. (k) = —j{z b, [ZO nc(n) cos(Qn)] Fcos(Qk)dQ k> 0,

kﬂ- r=0

where R is the order and b, — coefficients of the polynomial.
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The approximation of W[.] is performed for z,(Q2) between 7 (Q),., and
T,(Q) oy - The values of 7,(Q),;, and 7,(Q)
7,(€2) . This range is determined by few factors: speech signal properties, an all-pole
model order and a number of cepstral coefficients. The experiments revealed, that when
we used autocorrelation method with model order P < F, +10, where F, is sampling
frequency in kHz and number of LPC cepstral coefficients M < 3P, then the inequal-
ity 7,(Q) ., < 7,(Q) < 7,(Q),,,, Where 7.(Q), . =-30 and 7,(Q),.. = 30, is
always fulfilled.

It was found that c_ (k) in (7) could be efficiently evaluated when R < 3. For

depend on the amplitude range of

min max

max ! max

R =3 the used polynomial coefficients are b,=0, b =0.2, b, -0.002,
b, =-0.00013. They are obtained after correction ad hoc on LSM derived coeffi-
cients. Through it we enhance positive values in 7?(Q).

We obtain CLPC cepstrum c, (k) in (7) as a sum of three terms — Cci(K) , Ce2(K)
and cc3(k). The (real) LPC cepstrum is ¢(n) =0 for n<O0[1]. In this case the terms

of the CLPC cepstrum ¢ (k), k =1,---,M_, M_ < M , where M, is the number of
the CLPC cepstral coefficients, are

® (k) =be(k).,
© C.o (K) = (B, 1KIR(K) +05R" (K)].
(10 Ceo(K) = 025(b, 1K) Y_ne(m) Y[R + R V)],

where v=-n-k,—n+k,n—k,n+k and R(.), R™(.) are correlation functions
of the index-weighted LPC cepstrum of the form

(11) R(q)=§qlc(l)(l+q)c(l+q)- R(q)zilc(l)(_nq)c(_nq).

We ignore c_,(k) in (10) (b, <<b,) and according to (8) and (9), we have the

following simplified formula for c,(k) , 1<k < M_,

(12) ¢ (k)=hc(k)+(b,/ k)sznc(n)(n +K)e(n+k) +(0.50, / k)kzjjnc(n)(k —n)e(k—n).
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5. OSALPC cepstrum

It is known that the autocorrelation sequence preserves the all-pole properties of origi-
nal time sequence. The OSALPC cepstrum is obtained by AR modelling of the causal
part of the autocorrelation sequence. In some speaker identification research works has
shown that in additive white noise experiments and in noisy car environment this cepstrum
produces lower recognition error than the standard LPC cepstrum [7]. The description
of the algorithm for OSALPC cepstrum calculation is given bellow [7]:

— from speech segment of length N samples the autocorrelation function (ACF)
with lags M=N/2 is computed;

—the Oth lag is set to zero — R(0) = 0;

— the Hamming window from m = 0 to M is applied to one-sided ACF obtained in
the previous two steps;

—the first p + 1 autocorrelation lags of this sequence are computed using classical
biased estimator;

— these values are used by Levinson-Durbin algorithm to produce the AR param-
eters;

— the cepstral coefficients are recurrently obtained from those AR parameters.

6. Experiments

6.1. Normalized variance estimation

In this experiment we have evaluated the normalized variances of the LPC, CLPC and
OSALPC cepstral coefficients for telephone speech corrupted by an additive white
noise. The speech signal is sampled at 8 kHz. A 14th order autocorrelation analysis
without preemphasis is used. The variance of the each cepstral coefficient is measured
over 3997 frames (frames of 32 ms at 8 ms rate). The speech is corrupted by additive
white Gaussian noise with segmental signal-to-noise ratio (SNR) 20, 10 and 0 dB.

The normalised variance is V, (c(n)) =V (c(n))/V (c(1)) where V (c(n)) is
the variance of n-thcepstral coefficient and V, (c(1)) is the variance of the 1-st coeffi-

cient. In Figs. 1, 2 and 3 the values for V| (.) are shown, respectively for standard
LPC, CLPC and OSALPC cepstrums and different SNR.
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Fig.1. LPC cepstrum, SNR 20, 10 and 0 dB

On the base results gained from the experi-
ment we can make the following conclusions:

— at the same SNR the CLPC and the
OSALPC cepstrums produce lower than the
standard LPC cepstrum normalized variance
for all coefficients;

—the normalized variance for the CLPC
cepstrum is less than this one for OSALPC
cepstrum especially for SNR 0 dB and
cepstral index from 2 to 12;

The CLPC cepstrum is obtained by
non-linear transformation of the GDS that
acts on spectrum level. We suppose that
CLPC cepstrum will be more effective for
voiced frames because for them the non-lin-
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Fig.2. Clipped LPC cepstrum, SNR 20, 10 and 0 dB
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Fig. 3. OSALPC cepstrum, SNR 20, 10

and 0 dB

ear spectrum level reducing is more significant. Probably for unvoiced frames the simi-
lar approach would be lead to negligible effect.

6.2. Speaker identification experiments

6.2.1. Speech database

The analysed speech (reading text in Bulgarian language) is recorded over dialled-up
analogues telephone lines in the city of Sofia. The reading text lasts about 40 seconds
and was read at least 2 times from each of 12 speakers (male). Every repetition is
recorded from different telephone call. The speech database for each speaker is divided
in two parts — for training and for recognition. These two parts are of different linguis-
tic contents and are obtained from different telephone calls. We did not accomplish
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preliminary selection of the speech data for training and testing based on its noisy
characteristics.

6.2.2. Speaker identification technique

There are a lot of techniques that have demonstrated good text-independent speaker
identification performance. For the current task we have selected one that is easy to
implement and has in the same time high computational efficiently. That is an algebraic
approach with arithmetic-geometric sphericity measure [5, 6].

Algebraic approaches are well-known techniques in text-independent speaker rec-
ognition tasks. They are based on an estimation of the covariance matrix of the se-
guence of the parametric vectors of speech data. The description of the selected tech-
nique is a given bellow [5].

From the sampled speech signal we compute parametric presentation — sequence

of N vectors in p-dimensional space. Let {xn}, n=1,...,N, is the vector sequence. The

covariance matrix X of {Xn} is obtained as [5]:

X X —mm’;
n=1

(13) A=

Z|H

N
2 X,

n=1

Z‘I—‘

(14) m, =

where m, is the mean vector of {Xn} and T is matrix transposition. The covariance

matrix of a test sequence {YI },I =1,...,L,isdenotedas Y .

There are measures which can be considered as different estimations of the simi-
larity of two covariance matrices [5]. They belong to the distances that could be defined

using only the eigenvalues of the product YX ™. Let the p-ordered eigenvalues of the

matrix YX ' are denoted as {ﬂ,l} and three particular functions of {/1,} are
defined [5]

1 p
(15) A(@,...,AP)=5§&.;
(16) G(Ayid,) =% f A
P -1
(17) H(4,..04,) = D(Zlfj :

Functions A, G and H are respectively arithmetic, geometric and harmonic means
of the eigenvalues {Ai } The swapping of the matrices X and Y leads to transformation

of Ainto H!, Ginto G* and H into A™.
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The arithmetic-geometric sphericity measure w1, (X,Y) [5] is

9 pno (X ) =log[ 2]

The measure equals zero if A=G, that is when all eigenvalues are equal — i.e. X
and Y are proportional. The arithmetic-geometric sphericity measure is non-symmetric.
If we take into account the length of data for X and Y estimation then the general

symmetric measure #*"(X,Y)is [5]

(19) EITXY) =y g (XY ) + oy s (Y, X))
where o +a =1.

The weighting functions ¢, and «, are:

L N
TMAL P TN

In training mode one reference is used per speaker which is the covariance matrix
of cepstral vectors of training data. In testing mode we calculate the arithmetic-geomet-

(20) a\y

ric measures 4™ (X,Y)in (19) between covariance matrix Y obtained from input
speech sequence from speaker with unknown identity and reference matrices X_ of all
speakers s=1,---,S . Then we make decision based on minimum distance rule. No
additional threshold is used.

6.2.3. Experiments and results

The speech signal is digitized at 8 kHz on 16 bits, after low-pass filtering at 4 kHz.
Preemphasis is not applied. Hamming windowing frames with 32 ms length are used,
with frame rate of 8 ms. A 14th order autocorrelation analysis is carried out. Each
frame has been converted into 14th order cepstral vector — standard LPC, CLPC and
OSALPC. In our study the low level speech frames has been removed by energy thresh-
old and their lengths are not included further in processing data length.

We examined the recognition rate as a function of training data. The data pool has
been clustered into three different lengths of data for training — 4, 8 and 12 s. In testing
mode we processed supra frames with length of 4 seconds and frame rate of 0.5 s. The
number of tests is 265 and the identification error is averaged over 12 speakers. For
this case the experimental results are shown in Table 1. If we exclude only from testing
data the speakers with the worst recognition rate then the number of tests is 216 and the
results are shown in Table 2.
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Table 1. Identification error in percentage averaged over 12 speakers

TIPS Test - 4 seconds
Training data in
seconds LPC CLPC OSALPC
4 43.98 40.74 46.29
8 33.33 26.38 36.57
12 22.68 17.59 33.33

Table 2. Identification error in percentage averaged over 10 speakers
(without the worst 2 speakers)

A Test - 4 seconds
Training data in
seconds LPC CLPC OSALPC
4 54.33 51.69 56.22
8 45.66 40.00 48.30
12 36.98 32.83 45.66

7. Discussion and conclusions

To obtain the results shown in Table 1, two additional experiments have been done. In
the first one we calculated the CLPC cepstrum for all segments in speech. The recogni-
tion rate in few of the tests was close to the LPC one, but for the rest was worse. In the
second experiment we set an additional energy threshold to produce voiced segments
selection. Then we used CLPC cepstrum only for voiced segments and the LPC one for
the rest. In that case we obtained the results already shown in Table 1. The detailed
analysis of CLPC cepstrum properties shows that the recognition rate depends on the
order M of the LPC cepstrum used in (12). We observed that the best results were
produced when M ~ 3M, in (12). Inour case M, =14 and M =50.

We expected from the OSALPC cepstrum to demonstrate a better recognition
rate. We analyzed the OSALPC cepstrum behaviour for each speaker and noticed that
for some cases this method gives the best results and vice versa for others. The excel-
lent results were obtained in the cases when the training speech was clear and the test
one contained only regular background noise. In the rest cases — when the noise is
irregular pulse noise or there is a cross-talk plus harmonic noise or the training data is
noisy but the testing — clear, the OSALPC cepstrum produced unsatisfactory results.

The analysis of experimental results revealed that there are two speakers which
can not be identified correctly in all tests and for all cepstrums. For these cases it
appears that the combination of the selected cepstrums and identification technique has
not enough discrimination capability to achieve the correct recognition. We excluded
these two speakers from the test data and obtained the significant reduction of the
identification error, as it is shown in Table 2.
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The results from our study demonstrate that this cepstrum modification is effec-
tive in real telephone speech identification tasks. This motivates us in our forthcoming
work to examine the CLPC cepstrum as feature in others speaker identification tech-
niques.
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Kimmnupan JIII-xencrbp ¥ NPUIOKEHUETO MY IIPU HE3aBUCHUMA OT TEKCTA
UACHTU(UKALINS HA JUKTOPU

Amanac Y3ynos

Huemumym no ungopmayuonnu mexuonoauu,, 1113 Copus

(PezwmMme)

[Ipennoxena e enna moaudukanus Ha JIII-kemcTepa, HapeueHa KIUMHPaH
JlII-kenictbp. B knunupanwust JIII-kencTbp € HamManeHO BIMSAHUETO HA O0JIAacTUTE C
Hucko HuBo B JITI-criekThpa. B paboraTa e HarnpaBeH CpaBHUTENICH EKCIICPUMEHTAJICH
aHanu3 Ha edexTuBHOCTTA Ha Knunupanus JI[I-kencTbp M Apyru ABe KENCTpaIHU
NpeACTaBsAHUA IIPU HE3aBHUCUMa OT TEKCTa I/IZ[GHTI/I(bI/IKaHI/I}I Ha JUKTOPU 3a TOBOPCH
CHTHAJI, TIONTy4eH 1o TenedoHeH kaHal. Kato kiacupukannonHa cxema e u3Moi3BaH
anreOpuueH TOAXOA C apUTMETUYHO-TEOMETpHUYHA Mspa 3a OJIH30CT.
EkcniepuMeHTanHuTe pe3yiaTard JEMOHCTpUpAT IMPEIUMCTBATa Ha IIpellokKeHaTa
MoaruQUKAIHSL.
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