
 186

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 25, No 3

Sofia • 2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2025-0029

Advanced Trajectory Planning for Unmanned Aerial Vehicles

in the Context of Data Collection from Spatially Distributed

Wireless Sensor Networks

Tulkin Matkurbanov1, Akhmet Utegenov2, Mengliyev Davlatyor3,

Dilshod Matkurbonov2
1Urgench State University named after Abu Rayhan Biruni Urgench, 222100 Uzbekistan
2Tashkent University of Information Technologies Named after Muhammad al-Khwarizmi, Tashkent,

100000 Uzbekistan
3Cyber University, Nurafshan, 111500 Uzbekistan

E-mails: tulkinmatkurbanov2020@gmail.com akhmetutegenov0402@gmail.com

shogunuz@gmail.com d.m.matkurbonov@gmail.com

Abstract: Wireless Sensor Networks (WSNs) are extensively used for monitoring

large-scale areas with sensors having different coverage zones. Unmanned Aerial

Vehicles (UAVs) are deployed to efficiently collect data from these distributed

nodes. The effectiveness of this process depends on optimizing the UAV’s flight

path, formulated as the Close Enough Traveling Salesman Problem (CETSP),

known to be NP-hard. This study presents hybrid methods that integrate heuristic

algorithms with geometric strategies to solve the CETSP efficiently. The main

contribution lies in proposing efficient, fast-executing, and easily programmable

approaches that follow a structured process: identifying new target points when

zones intersect, determining near-optimal visiting sequences with heuristic

algorithms, and applying iterative geometric refinements to shorten the route. A

total of 92 hybrid algorithms based on seven distinct approaches are evaluated

using four performance metrics. Experimental results demonstrate the high

efficiency of the proposed methods and their strong potential for real-world UAV-

assisted data collection tasks in wireless sensor networks.

Keywords: Unmanned aerial vehicle, Traveling salesman problem, Traveling

salesman problem with neighborhoods, Close enough traveling salesman problem,

Wireless sensor networks.

1. Introduction

In recent years, the field of Unmanned Aerial Vehicles (UAVs) technology has

made significant progress, leading to a notable increase in their application across

various domains. In many areas such as monitoring, security, agriculture, and the

military, UAVs occupy a unique and indispensable position [1]. These applications

typically involve the use of Wireless Sensor Networks (WSNs) for data collection

mailto:tulkinmatkurbanov2020@gmail.com
mailto:akhmetutegenov0402@gmail.com
mailto:shogunuz@gmail.com
mailto:d.m.matkurbonov@gmail.com

 187

and enhanced communication capabilities. WSNs currently serve as a fundamental

component of the Internet of Things (IoT), providing crucial infrastructure for real-

time sensing and information exchange [2], [30].

To overcome the limitations of traditional WSNs, extensive research is being

conducted on the integration of UAVs and WSNs to enable long-range

communication across various applications. In monitoring systems, UAVs are

considered mobile data collectors, capable of gathering information from

individual sensors or multiple sensors simultaneously. Fig. 1a shows an idealized

geometric representation of the sensor coverage area used in WSNs [3]. Despite

their advantages, determining effective and optimized UAV flight trajectories

remains a challenging research problem.

When sensors are deployed over a large area and it is not feasible to establish a

permanent communication network, UAV can be used for data collection by flying

through the spherical radio coverage zones surrounding the sensors [4, 31].

Such problems are formulated as the Traveling Salesman Problem with

Neighborhoods (TSPN), which is a generalization of the classical Traveling

Salesman Problem (TSP). In the classical TSP, the objective is to find the shortest

closed path that visits each given point exactly once and returns to the starting

location. In contrast, the TSPN extends this by introducing “neighborhoods” –

regions (typically circles) that the salesman must enter, without necessarily reaching

a specific point inside them [5]. The goal is to compute the shortest trajectory that

visits each region at least once [6]. There are several extended versions of this

model, each adapted to specific real-world applications. When the regions are

circles of varying radii, the problem is referred to as the CETSP – the most common

special case of TSPN. In CETSP, it is sufficient for the salesman to enter or touch

each circular region reaching the exact center is not required. The CETSP was first

introduced by G u l c z y n s k i, H e a t h and P r i c e [7]. As CETSP is a relatively

recent modification of the TSP, the number of exact algorithms available for

solving it remains limited. Due to the low performance of existing exact methods,

metaheuristic and approximation algorithms are predominantly used in practice.

UAV are widely utilized in the civilian sector due to their high mobility, low

operational costs, and ability to hover in place. Their applications range from

environmental monitoring and search-and-rescue operations to delivery services,

wireless communication, and precision agriculture [8]. A key advantage of UAVs

lies in their independence from terrestrial infrastructure, enabling them to efficiently

cover dispersed areas. To maximize operational efficiency, however, it is essential

to plan and coordinate the UAV’s flight trajectory in advance. In this context, the

CETSP emerges as a highly relevant model, as it effectively captures practical

constraints encountered during UAV deployment. This work addresses the

construction of an efficient UAV trajectory that starts at the origin point (0, 0),

traverses a set of zones represented by circles (each associated with a target or

client), and returns to the starting location. Fig. 1b illustrates the coverage areas of

sensors deployed over a 300×200 unit rectangular region.

 188

(a) (b)
Fig 1. General representation of the sensor coverage zones: geometric representation of sensor

coverage areas in WSN (a); two-dimensional visualization of sensor coverage zones (b)

Articles [33] and [37] present comprehensive survey studies on UAV–WSN

integration. These works systematically analyze clustering, route optimization,

energy efficiency, and security issues, highlighting the strengths and limitations of

existing approaches. Articles [34] and [38] examine UAV-assisted data collection

within the framework of software-defined wireless sensor networks. The authors

propose approaches aimed at improving energy efficiency and transmission

reliability through dynamic trajectory control: one based on deep reinforcement

learning and the other employing fuzzy-based path planning. The three studies

[32, 35, 36] focus on the problem of UAV path planning. Article [36] provides a

systematic review of existing algorithms, outlining their advantages and limitations.

In [35], the authors propose the “Hyperion” algorithm, which ensures UAV return

to a charging station while accounting for energy constraints. Article [32] addresses

multi-UAV data collection by optimizing flight routes through a genetic algorithm.

A common feature of these works is their strong emphasis on improving path

planning efficiency; however, a key limitation is the lack of sufficient real-world

experimental validation.

Prior research has demonstrated that the CETSP framework can be effectively

employed in UAV trajectory planning tasks. The following main approaches for

CETSP have been observed in the literature: discretization-based heuristic

approaches [9], evolutionary and geometric heuristic approaches [10-12],

approximate models [13]. These approaches show that the quality of the resulting

UAV trajectory is influenced by several factors: the precision of neighborhood

discretization, the strategy for selecting representative points, the number and

spatial density of sensor zones, algorithmic flexibility, and overall computational

efficiency.

Each approach demonstrates specific advantages and limitations; therefore, for

practical applications, the choice of algorithm must reflect the characteristics of a

given UAV mission. Unlike earlier studies, there is a need for approaches that

guarantee stable route quality under varying key parameters and allow systematic

comparison with existing methods. The task of constructing efficient UAV

 189

trajectories for data collection from sensor nodes – each represented by a coverage

zone – remains insufficiently addressed and requires new solutions. Consequently,

effective route planning for large-scale UAV monitoring continues to be a relevant

and open research challenge. This article focuses on constructing efficient UAV

routes for the CETSP in the context of data collection from sensor networks

distributed across vast territories. The main contribution of this work lies in the

proposal of hybrid methods that integrate heuristic algorithms with geometric

strategies to efficiently solve the CETSP, along with their comparative analysis.

The approaches are designed to be efficient, fast-executing, and easily

programmable, and they follow a clear research roadmap. Specifically: 1 – new

target points are identified in cases where coverage zones intersect; 2 – a near-

optimal visiting sequence of the zones is determined using heuristic algorithms;

3 – an iterative geometric path-shortening procedure is applied to reduce the total

route length; and 4 – an optimization method is used to further refine the trajectory.

All computational procedures and simulations were implemented in Python,

enabling reproducible and extensible experimentation with the proposed algorithms.

In this work, a three-level terminology is adopted in order to ensure

consistency and avoid ambiguity. An approach denotes the general conceptual

strategy for solving the CETSP and its UAV trajectory planning variants (e.g.,

“Three-dot line”, “Overlap Three-Point”, “Within_r”). A method refers to a specific

principle or procedure applied within an approach (e.g., overlap, GEO-6, 2-OPT,

Optimal or Two-Step Insertion). An algorithm represents the explicit computational

sequence that realizes a method, or a combination of methods, in practice.

To provide a clear overview, the research process in this work follows a

structured roadmap. First, the CETSP problem is formulated for UAV-based data

collection in large-scale wireless sensor networks. Second, seven groups of hybrid

algorithms are designed by integrating heuristic optimization methods with

geometric heuristics. Third, the algorithms are implemented in Python to ensure

reproducibility and extensibility. Fourth, extensive simulations are conducted on

datasets containing 100 sensor zones under identical computational conditions.

Fifth, the performance of the proposed algorithms is evaluated using four key

metrics: total path length, CPU time, number of maneuver points, and relative

deviation from sensor centers. Finally, a comparative analysis of 92 hybrid

algorithms is presented, highlighting their strengths and limitations depending on

sensor distribution and coverage radius.

2. Modeling and methodology

2.1. Modeling

Over a large area, N sensors are deployed, each of which must transmit its

measurements or data. These nodes are distributed across a predefined extensive

territory. Since each sensor can only transmit data over a limited distance, they are

unable to send signals directly to a base or control station. Therefore, it is assumed

that a UAV is used to collect the data in this scenario. Based on this, a set of n

circles of varying radii is considered, located in the Euclidean plane (see Fig. 1b).

 190

Each circle i is defined by the coordinates (xᵢ, yᵢ, rᵢ), where (xᵢ, yᵢ) are the

coordinates of the circle’s center, and rᵢ is its radius. The circles may intersect with

one another. The objective is to construct a trajectory of minimal total length that

passes through all the given circles. The trajectory consists of linear segments

connecting selected points within these circles. There are no constraints on the radii

or mutual positions of the circles. The problem consists in selecting a single point

within each circle and constructing the shortest possible trajectory that passes

through all the selected points. In some cases, a single point may belong to multiple

circles.

The UAV starts its movement from an initial point p₀ and, sequentially visiting

N nodes, eventually returns to p₀. Each node is defined by coordinates vₙ ∈ ℝ²,

where n = 1, 2, ..., N.

The communication range of each node is represented as a circular zone (disk)

with radius rᵢ,

𝑉𝑛 = {𝑥 ∊ ℝ² ∨ ‖𝑥 − 𝑣𝑛‖2 ≤ 𝑟𝑖}.
If the communication zones of two nodes partially overlap, these nodes are

considered neighbors. This situation is formally described as follows:

𝑁(𝑉𝑛) = {𝑗 ∊ {1, … , 𝑁} ∨ 𝑉𝑗 ∩ 𝑉𝑛 ≠ ∅}.

The following assumptions are also made: the initial UAV position u₀ and the

final position uₙ₊₁ are not located within the communication zone of any node:

𝑢0, 𝑢𝑁+1 ∉ 𝑛 = 1NV𝑛,
if the initial position u₀ or the final position uₙ₊₁ falls inside the communication zone

of any node, then:

𝑢0, 𝑢𝑁+1 ∈ 𝑛 = 1NV𝑛,
if one node lies within the communication zone of another node, this is interpreted

as an overlap of communication zones (interference or spatial proximity). If node vᵢ

lies within the communication zone of node vⱼ, it is expressed as

𝑣𝑖 ∈ 𝑉𝑗, i.e., ‖𝑣𝑖 − 𝑣𝑗‖
2

≤ 𝑟𝑗.

The set of overlapping zones between nodes is defined as

𝑁(𝑉𝑛) = {𝑗 ∊ {1, … , 𝑁}, 𝑗 ≠ 𝑛 ∨ 𝑉𝑗 ∩ 𝑉𝑛 ≠ ∅}.

If vᵢ∈Vⱼ, this implies that Vᵢ⊆Vⱼ or at least Vᵢ∩Vⱼ≠∅. This means node vᵢ is

located very close to node vⱼ. As a result, the UAV can potentially establish

connections with two or more nodes while positioned within a single region. This

approach improves efficiency, as the UAV can collect data from multiple nodes

without requiring additional movement.

Problem statement

Each circle is defined as

𝐶𝑖 = {𝑦𝑖 = (𝑢𝑖, 𝑣𝑖)|(𝑢𝑖 − 𝑎𝑖)2 + (𝑣𝑖 − 𝑏𝑖)2 ≤ 𝑟𝑖}.
The primary goal of the model is to minimize the total route length constructed

through the selected points located inside the given circles:

min ∑ ∑ 𝑝𝑖𝑗 × 𝑑𝑖𝑗𝑗∈𝐶𝑖∈𝐶 .

Here: 𝑝𝑖𝑗 = 1 if circle j is visited immediately after circle i; 𝑑𝑖𝑗 is the distance

between the selected points inside circles i and j.

 191

The constraints are five.

1) Each circle must be visited exactly once:
∑ 𝑝𝑖𝑗 = 1,𝑗∈𝐶 ∑ 𝑝𝑗𝑖 = 1𝑗∈𝐶 ∀𝑖 ∈ 𝐶.

2) Subtour elimination constraint (Miller–Tucker–Zemlin formulation):

seq𝑖 − seq𝑗 + 𝑁 × 𝑝𝑖𝑗 ≤ 𝑁 − 1 ∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ≠ 1.

3) Selected point must lie within the corresponding circle:

𝑟𝑖
2 − (𝑢𝑖 − 𝑎𝑖)2 − (𝑣𝑖 − 𝑏𝑖)2 ≥ 0 ∀𝑖 ∈ 𝐶.

4) Distances between selected points must not take invalid (underestimated)

values, i.e., they must be no less than the Euclidean distance:

𝑑𝑖𝑗
2 ≥ (𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
 ∀𝑖 ≠ 𝑗.

5) Route-following variables must be binary:

𝑝𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝐶.

Since the model expresses distance in squared form (𝑑𝑖𝑗
2), it is nonlinear.

However, this constraint can be linearized as follows:

𝑑𝑖𝑗
2 + 𝑀 × (1 − 𝑝𝑖𝑗) ≥ (𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
,

𝑝𝑖𝑗 ≥ 0.

Here, M is a sufficiently large number to ensure correct behavior of the model

constraints.

This model represents a generalization of the classical TSP, incorporating

circular reachability constraints. For each “point”, any location inside the

corresponding circle is allowed. This may result in overlapping selected points.

Despite its nonlinear nature, the model allows linearization, enabling practical

solutions.

2.2. Methodology

All proposed approaches are structured within a unified four-stage methodological

framework. First, an initial route is constructed by solving the TSP over sensor zone

centers or merged representative points. Second, geometric refinement is applied to

determine UAV entry points. Third, the trajectory is optimized through classical

TSP heuristics. Finally, redundant points are filtered using the E_optimum method,

ensuring coverage is preserved while further reducing path length.

The main distinction among the approaches lies in the methods applied at the

second and third stages. In particular, they differ in the type of geometric heuristics

and TSP optimization methods.

To solve the above-described CETSP problem, seven different approaches are

proposed. Each approach is based on a combination of several methods or

algorithms.

2.2.1. The “Three-dot Line” approach

The first approach, referred to as the “Three-dot Line,” involves a three-stage

methodology.

Stage 1. An optimal route is constructed by solving the TSP over the target

points located at the centers of the sensor coverage zones. Numerous algorithms

exist for solving the TSP [14]. At this stage, any of these algorithms or their

 192

combinations can be applied. Section 3 of this article presents comparative

experimental results of various TSP algorithms applied at this stage.

Stage 2. Based on geometric calculations, for each sequence of three

consecutive points in the route, the actual visiting points are determined using six

geometric conditions [15, 16]. The method used at this stage is referred to as

GEO-6. As a result, the trajectory is significantly shortened by constructing

E-points that replace the original centers. The UAV is not required to pass through

the center of the sensor’s coverage zone – it is sufficient to pass through the interior

or boundary of the zone.

Stage 3. In this stage, route optimization is performed based on reducing the

number of E-points determined by the GEO-6 method. If the straight segment

formed between the intermediate points E(i) and E(i+k) passes through the coverage

area of the sensor corresponding to any intermediate point E(j), where i < j < k, then

point E(j) is removed from the route list. As a result, the remaining points in the

route list form a final trajectory constructed from the set of points known as

E_optimum. The method used in this stage is called E_optimum. The full

implementation of this approach is provided in Algorithm 1.

Algorithm 1. Three-dot Line approach for UAV trajectory optimization

Input: Sensor zone centers P = {P_1, P_2, ..., P_n}, radii R = {r_1, ..., r_n}

Output: Effective UAV path T

Step 1. Solve TSP using Optimal Insertion

TSP_path ← Optimal Insertion TSP(P)

Step 2. Generate E-points from triplets in the TSP path

E_points ← []

for each triplet (A, B, C) in TSP_path:

 Determine which geometric rule applies:

 if angle BCA ≥ 90°:

 E ← perpendicular from B to line AC

 else if angle BAC ≥ 90°:

 E ← perpendicular from A to line BC

 else if angle ABC ≥ 90°:

 E ← perpendicular from C to line AB

 else if only 2 circles intersect:

 E ← circle intersection point

 else if all 3 circles intersect:

 E ← center of common intersection

 else:

 E ← perpendicular from B to line AC

 Append E to E_points

Step 3. Filter redundant E-points

for each E_i with neighbors E_{i–1}, E_{i+1}:

 Z1 ← zones covered by (E_{ i–1}, E_i)

 Z2 ← zones covered by (E_i, E_{i+1})

 Z3 ← zones covered by (E_{ i–1}, E_{i+1})

 if Z3 covers all zones in Z1 ∪ Z2:

 193

 mark E_i as redundant

Filtered E ← unmarked E-points

unmarked E-points=E_optimum

Step 4. Compute final trajectory and metrics

T ← Path through E_optimum

Algorithm 1. A pseudo-code of an algorithm that implements the “Three dot

Line” approach.

2.2.2. The “Overlap Three-Point” approach

The second proposed approach, termed the “Overlap Three-Point” approach, draws

conceptual inspiration from the work presented in [17] and is designed to enhance

trajectory efficiency by leveraging zone overlaps and geometric refinements. This

algorithm follows a four-stage methodology. The key differences lie in the use of

alternative methods in Stages 2-4.

Stage 1. In this stage, the UAV coverage model assumes that sensors are

located within circular communication zones of known radii. When two or more

such zones intersect, their union forms a common region in which the UAV can

communicate with all involved sensors simultaneously. To exploit this redundancy,

the algorithm identifies groups of overlapping circles and computes the largest

inscribed circle within each group that is fully contained in the intersection area.

The center of this inscribed circle becomes a new representative target point,

replacing all the original centers in the group. This merging process reduces the

number of required stops and thus shortens the total trajectory. All original nodes

belonging to the merged region are removed from the list of targets, and only the

unified center is retained.

Stage 2. With the updated and reduced set of target points obtained in Stage 1,

a TSP is solved to generate a near-optimal visiting sequence. Any well-established

TSP Algorithm or a combination thereof can be employed in this stage. Section 3

provides a comparative performance evaluation of various TSP solutions used for

this stage.

Stage 3. For each sequence of three points in the route, geometric calculations

are performed to determine refined visiting points. Two alternative methodologies

are proposed: optimization based on bisector points (F-points), as described in [17],

and determination of E-points using the GEO-6 method. In both methods, the

resulting points ensure significant reduction in the total path length. As before, it is

not required to pass through the center of the zone – it is sufficient for the UAV

trajectory to intersect the interior or boundary of the circle.

Stage 4. Based on the E-points or F-points obtained in the previous stage, a

final optimization is performed using the E_optimum method. If a line segment

between two intermediate points passes through the coverage zone of another

sensor, the corresponding point is removed. The result is a final, shortened

trajectory based on the optimized set of E_optimum points. The pseudo-code of the

algorithm that implements this approach is shown in Algorithm 2.

 194

Algorithm 2. Algorithmic sequence for the second approach

Input: sensor_zones = {(x₁, y₁, r₁), (x₂, y₂, r₂), ..., (xₙ, yₙ, rₙ)} – set of sensor

coverage zones

Output: M – optimal UAV trajectory passing through essential E-points

Step 1. Merge overlapping zones (three or more intersections)

For each triplet of sensor zones (Ci, Cj, Ck):

 • If Ci ∩ Cj ∩ Ck ≠ ∅ and the intersection area > ε:

 • Compute intersection polygon

 • Calculate centroid and equivalent radius

 • Create merged zone C′ = (x′, y′, r′)

 • Add C′ to the final zone list

 • Mark Ci, Cj, Ck as merged

Step 1.2. Merge remaining overlapping pairs

For each unmerged pair (Ci, Cj):

 • If Ci ∩ Cj ≠ ∅ and area > ε:

 • Compute intersection

 • Derive centroid and equivalent radius

 • Add new merged zone to final list

 • Mark Ci, Cj as merged

Step 1.3. Filter redundant zones

For each pair of overlapping merged zones (Ci, Cj):

 • Keep only the zone with the larger radius

 • Remove the smaller one

 → Result: filtered_zones – dominant, non-overlapping zones

Step 2. Build initial trajectory using greedy NN

Initialize route:

 • route ← [(0, 0)]

While unvisited zones remain:

 • For each zone:

 • Compute E-point (boundary point directed from current UAV location)

 • Calculate distance from current location

 • Select nearest E-point

 • Add E-point to route

 • Update current location

Step 2.1. Optimize path with 2-OPT

Repeat until no further improvement:

 • For all pairs of segments (i, j):

 • If reversing segment [i:j] reduces total length:

 • Swap (reverse) the segment

Step 3-4. Filter redundant E-points

Initialize:

 • marked ← ∅

For each segment (Ei, Ej) in the path:

 • Identify sensor zones covered by segment [Ei, Ej]

 • For all E-points between Ei and Ej:

 195

 • If their associated zones are already covered:

 • Mark them as redundant

→ Result: unmarked_E_points — essential trajectory waypoints

Step 5. Final trajectory construction

 • Construct M = [(0, 0)] + unmarked_E_points + [(0, 0)]

 • Compute total trajectory length

 • Visualize:

 • Final trajectory path

 • Coverage circles for each zone

 • Marked E-points along the route

Final output:

 • M – optimized UAV path visiting all required sensor coverage areas with

minimal length.

Algorithm 2. Pseudo-code of an algorithm that implements the “Overlap

Three-Point” approach.

2.2.3. The Within_r approach

The Within_r approach is based on utilizing the coverage radii of sensor zones. The

UAV trajectory is constructed with respect to the boundary of each zone’s coverage

area [18]. This approach consists of four stages, many of which are similar to those

described in the “Overlap Three-Point” approach. Specifically, the first, third, and

fourth stages are identical to the corresponding stages in the aforementioned

approach.

In the second stage, the Within_r method is implemented. According to this

method, for each sensor zone, the closest point on its boundary is calculated – that

is, a point on the circumference defined by the coverage radius r corresponding to

that zone.

If the current UAV position is denoted as Pₖ = (xₖ, yₖ), then for each zone

center C = (xᵢ, yᵢ), the boundary point Eᵢ is determined as follows:

Direction vector:

𝜃𝑖 = arctan2(𝑦𝑖 − 𝑦𝑘 , 𝑥𝑖 − 𝑥𝑘);

Boundary point:

𝐸𝑖 = (𝑥𝑖 − 𝑟𝑖cos𝜃𝑖, 𝑦𝑖 − 𝑟𝑖sin𝜃𝑖).

2.2.4. The Sampling approach

The Sampling approach is based on selecting an arbitrary point located on the

boundary of the sensor’s coverage zone [19-21]. The trajectory points are selected

from a predefined set of sampling points located along the boundary of each sensor

zone. From this set, eight points are chosen per zone (a larger number can be used,

but this significantly increases computation time). The UAV trajectory is then

constructed by selecting one of these candidate points. This approach follows a

four-stage process similar to the ones in previously described approaches. The first

and fourth stages employ the same methods as in the earlier approaches.

Stage 2. For each remaining or merged sensor zone, eight equidistant points

are selected along the circumference of the zone’s coverage circle. These sampling

 196

points serve as candidate UAV entry points for the trajectory construction. As a

result, the total number of candidate points E is eight times the number of sensor

zones,

𝐸𝑖𝑗 = (𝑥𝑖 + 𝑟𝑖cos𝜃𝑗, 𝑦𝑖 + 𝑟𝑖sin𝜃𝑖), 𝜃𝑗 =
2𝜋𝑗

8
, 𝑗 = 0, … ,7.

Here, Eᵢⱼ denotes the j-th sampling point within the i-th sensor zone.

Stage 3. The TSP is solved considering eight discrete points sampled along the

boundary of each sensor’s coverage zone. The trajectory is constructed based on the

selected point from this set, and the optimal visiting points E are determined

according to the mathematical logic of the algorithm. The authors propose using the

Nearest Neighbor Algorithm (NNA) at this stage. Specifically, when applying the

NNA, the corresponding point E is selected using the following expression:

 𝐸∗ = arg min
𝐸∈𝑈

‖𝐸 − 𝑃𝑘‖.

Here: U is the set of eight candidate points in the zones that have not yet been

visited; Pₖ is the last point in the currently constructed trajectory.

2.2.5. The Convex Hull approach

The Convex Hull approach provides a geometric strategy for selecting UAV

trajectory points within the coverage zones by utilizing the convex envelope of the

initial point set. This approach is particularly efficient in sparse or semi-structured

sensor deployments, where many sensor zones lie near the periphery of the

monitored region [22-23]. The key idea is to begin with a convex hull path through

a subset of the outermost zones and then iteratively insert remaining points using

cost-based heuristics.

As with earlier approaches, this approach follows a four-stage process, with

the first and fourth stages identical to those of the “Overlap Three-Point” approach.

Stage 2. Selection of E-points – that is, formation of the initial set of trajectory

points. For each sensor zone, N = 8 discrete points are selected along the

circumference (uniformly spaced by angle). These points are computed along the

radius as follows:

𝐸𝑖
𝑗

= (𝑥𝑖 + 𝑟𝑖 cos (
2𝜋𝑗

𝑁
) , 𝑦𝑖 + 𝑟𝑖sin (

2𝜋𝑗

𝑁
)) , 𝑗 = 0, … , 𝑁 − 1.

Here, 𝐸𝑖
𝑗
 denotes the j-th point in the i-th sensor zone. From all discretely

sampled points, one point is randomly selected to represent each zone.

𝑃init = {𝑃1, 𝑃2, … , 𝑃𝑛}, 𝑃𝑖ϵ{𝐸𝑖
0, 𝐸𝑖

1, … , 𝐸𝑖
𝑁−1}.

An initial path is then constructed using the following geometric principle:

𝐻 = ConvexHull(𝑃init).
Here: 𝑃init refers to one point taken from the boundary of each zone, i.e., one

discretized point selected from each zone; H represents the convex hull formed by

these points, that is, the outermost boundary points.

As a result, the initial trajectory is defined as

𝑇0 = {𝑃0, 𝐻1, 𝐻2, … , 𝐻𝑘 , 𝑃0}.

Stage 3. At this stage, the TSP is solved based on the identified H points. One

or several TSP algorithms can be applied. The authors propose using the

 197

Optimal Insertion Algorithm (OIA) followed by the 2-OPT Algorithm as the

optimal solution. For each zone, the following insertion cost is calculated:

∆𝐿 = ‖𝑃𝑖 − 𝐸𝑗‖ + ‖𝐸𝑗 − 𝑃𝑖+1‖ − ‖𝑃𝑖 − 𝑃𝑖+1‖.

The point 𝐸𝑗 is inserted between 𝑃𝑖 and 𝑃𝑖+1 at the position that results in the

smallest ΔL. The constructed route is then further optimized using the 2-OPT

Algorithm. At this stage, two segments in the route are swapped to reduce the

overall trajectory length. If the following condition is met:

‖𝑃𝑖 − 𝑃𝑗‖ + ‖𝑃𝑖+1 − 𝑃𝑗+1‖ < ‖𝑃𝑖 − 𝑃𝑖+1‖ + ‖𝑃𝑗 − 𝑃𝑗+1‖,

then: [Pᵢ₊₁, ..., Pⱼ] → reverse.

2.2.6. The Directional Nearest Neighbor (DNN) approach

This approach is inspired by the DNN approach presented in the paper by [24]. In

other words, this approach can be viewed as a modified version of the original

method. It is similar in structure to the previously described Within_r approach, but

differs in its algorithmic implementation. The objective of the DNN Algorithm is to

construct a faster and more efficient UAV route by allowing entry into a sensor

zone through the nearest boundary point rather than through its center. This helps

reduce the total mission time and improves data collection efficiency. The structure

of the proposed approach includes steps analogous to the first and fourth stages

described in earlier approaches and uses the same methods applied in those stages.

Stage 2. Selection of E-points, i.e., the initial set of route points. Let the initial

UAV position be p0 = (0, 0) and the set of all sensor zones be {C₁, C₂, ..., Cₙ}, each

with a coverage radius {r₁, r₂, ..., rₙ}. At the first step, the nearest zone center Cᵢ is

determined as follows:

𝑗 = argmin
𝑖ϵ𝑈

‖𝐶𝑖 − 𝑃𝑘‖.

Finding a point on the edge of this zone, i.e., finding a route point,

𝐸𝑗 = 𝐶𝑗 −
𝑟𝑗 × (𝐶𝑗 − 𝑃𝑘)

‖𝐶𝑖 − 𝑃𝑘‖
.

The UAV moves to the selected point: 𝑃𝑘+1 = 𝐸𝑗. Zone j is added to the list of

visited zones. This process repeats until all zones have been covered.

Stage 3. A TSP is then solved over the set of determined Eⱼ-points. One or

several TSP algorithms can be applied. The authors recommend first applying the

NNA, followed by the 2-OPT Algorithm to further optimize the trajectory.

2.2.7. The Directional Directed to the next Nearest Node (DDNN) approach

This approach is based on the DDNN strategy described in [24]. The DDNN

approach is similar to the previously described DNN approach but introduces key

algorithmic differences. It represents an improved version of the Nearest Neighbor

method in which the UAV’s approach point to each sensor zone is directed beyond

the center of the circle, toward the direction of the next nearest zone. The core idea

of this approach is to modify the classical TSP-NN Algorithm so that, at the

beginning of its movement: The UAV moves directly to the first selected node;

upon reaching the edge of the node’s communication radius, it targets a boundary

 198

point on the coverage circle, which is treated as a turning point; then it proceeds

toward the next closest node, and so on.

This process continues until all nodes have been visited. This approach is

similar to the first and fourth stages in the second approach. It uses the methods in

these stages.

Stage 2. First, the nearest zone center is selected:

𝑃 = arg min
(𝑥𝑖,𝑦𝑖)ϵ𝑈

‖(𝑥𝑖, 𝑦𝑖) − 𝑝0‖.

Then, the entry point Q on the outer boundary of zone P is calculated as

𝑄 = 𝑃 −
𝑟𝑝×𝑃−𝐵

‖𝑃−𝐵‖
.

This point lies on the edge of the coverage circle. The UAV is assumed to pass

through point Q, and zone P is marked as visited: U = U\{P}. Updated current

position: B = P.

The next closest zone A in the queue is selected using:

𝐴 = arg min
(𝑥𝑖,𝑦𝑖)ϵ𝑈

‖(𝑥𝑖, 𝑦𝑖) − 𝐵‖.

The new turning point C is computed as

𝐶 = 𝐴 −
𝑟𝑎×𝐴−𝑄

‖𝐴−𝑄‖
.

The UAV is then assumed to pass through point C, and zone A is marked as

visited: U = U\{A}. Updated current positions: Q = C, B = A.

The resulting set of route points is 𝑇0 = {𝑃0, 𝑄1, 𝐶1, 𝐶2, … , 𝐶𝑘 , 𝑃0}.

Stage 3. Based on the set of generated route points T0, a TSP is formulated.

For solving this problem, one may use any known TSP algorithm or a hybrid

method, i.e., a combination of two algorithms. The authors propose applying the

NNA, followed by the 2-OPT Algorithm for further route optimization.

For consistency and clarity in the evaluation of the proposed approaches, the

concept of efficiency in UAV trajectory is defined as a composite measure

comprising four indicators: the total path length traveled by the UAV [39], the

computational cost expressed in CPU time [40], the number of maneuver points

required along the trajectory [41], and the relative deviation of the planned

trajectory from the sensor centers [10, 42]. Taken together, these indicators provide

a comprehensive and quantifiable framework that corresponds to the formulated

research tasks and establishes a transparent basis for the comparative assessment of

the proposed methods.

3. Numerical results

This section presents the numerical results obtained by applying the developed

algorithms, based on the proposed approaches, to the CETSP. Experiments were

conducted using a common set of 100 sensor zones for each of the proposed

algorithms. Table 1 provides the coordinates and coverage radii of the 100 sensor

zones used across all experiments.

 199

Table 1. Parameters of the 100 sensor zones deployed within a 400 × 300 unit monitoring area

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 359 78 39 309 205 212 214 145 161 155 363 14 47 179 112

y 137 145 287 254 29 77 284 242 121 90 86 163 285 24 245

Radius 5 5 5 5 5 5 5 6 6 6 7 7 7 7 7

No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

x 89 314 149 224 135 132 145 268 270 267 327 57 171 327 244

y 107 44 154 277 199 145 77 260 51 281 89 226 143 51 61

Radius 7 8 8 8 8 8 8 9 9 9 10 10 10 10 11

No 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

x 250 355 39 100 101 67 315 214 230 366 41 189 119 90 387

y 100 130 35 221 145 48 232 178 75 259 170 166 269 39 180

Radius 11 11 11 11 12 12 12 12 12 12 12 12 12 12 13

No 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

x 146 289 292 369 151 196 301 353 114 188 69 186 45 349 220

y 91 28 228 65 32 230 136 163 170 45 143 170 179 63 137

Radius 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15

No 61 62 63 64 65 66 67 68 69 70 71 72 73 61 62

x 191 372 193 297 306 233 377 10 323 22 234 305 156 191 372

y 218 233 117 14 30 271 185 276 280 101 288 107 226 218 233

Radius 15 15 15 15 16 16 16 16 16 16 16 16 16 15 15

No 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

x 244 29 47 196 126 69 92 140 370 138 319 285 76 338 216

y 171 65 14 30 124 64 236 32 164 36 117 110 144 270 71

Radius 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19

No 91 92 93 94 95 96 97 98 99 100

x 114 131 105 390 152 152 22 351 69 11

y 145 93 45 89 189 45 108 62 207 180

Radius 19 20 20 20 20 20 20 20 20 20

Fig. 2 provides a visual representation of the sensor coverage zones distributed

over a 400×300 unit area, as defined by the data presented in Table 1. Fig. 2a

specifically illustrates the solution to the TSP constructed using the OIA, where the

UAV trajectory is computed based on the coordinates of the centers of the sensor

zones. This result corresponds to stage 1 of the “three-dot line” approach, where the

initial route is generated by treating the centers of the zones as target points. In the

first stage of this approach, an initial UAV trajectory is constructed based on the

sensor zone centers, resulting in a total path length of 2758 units. This route

effectively intersects all designated sensor coverage zones and can therefore be

considered suitable for data collection tasks. In the second stage, the trajectory is

refined using E-points determined by the GEO-6 method, which incorporates

geometric rules to reduce unnecessary detours. This refinement decreases the total

trajectory length to 1961 units, with 98 E-points generated to ensure coverage.

 200

(a) (b) (c)

Fig. 2. Trajectories built for sensor zones based on the “three-dot line” approach: Trajectory

generated using the OIA based on the centers of the initial sensor zones (a); Trajectory optimization

using the GEO-6 method applied to the route points formed from sensor zone centers (b); Efficient

trajectory covering the sensor zones, constructed using the three-dot line approach (c)

In the third stage, redundant E-points are eliminated based on coverage

overlap and segment intersection logic. The resulting optimized trajectory is

illustrated in Fig. 2c, with a final path length of 1934 units. This final configuration

successfully covers all sensor zones using only 52 maneuver points, defined as the

critical turning or shaping points of the trajectory.

• Experiment for the Second Approach

The “Overlap Three-Point” approach to solving the CETSP consists of four

stages, with Stage 1 involving a series of operations that generate merged and

isolated sensor zones. The general structure of Stage 1 of this approach is illustrated

in Fig. 3.

(a) (b) (c)

Fig. 3. The results of the first stage of processing, taking into account the partial overlap of the

coverage areas: First stage of the overlap operation – sample visualization of regions formed by the

intersection of three or more circles (a); Visualization of shapes obtained from the intersection of two

neighboring circles (b); Final distribution of sensor zones after completion of the first stage (c)

The first stage of the “Overlap Three-Point” approach consists of the overlap

operation, which includes several sequential procedures. Initially, the common

intersection region of three or more circles is identified. In Fig. 3a, the resulting

areas are shown in blue. For each such region, the maximum inscribed circle is

computed along with its center. Since this step focuses on intersections involving

three or more zones, the corresponding original sensor zones are removed from the

list, and the newly formed zones (circles) are added to it. Next, the second overlap

step is performed for pairs of intersecting circles. As shown in Fig. 3b, a common

intersection area is identified for each pair, and within it, the largest inscribed circle

is generated, and its center is calculated. The original pair of circles is removed

from the list, and the new circle is added. As a result, an updated set of sensor zones

is formed over the 400×300 unit area, illustrated in Fig. 3c. After applying the

 201

overlap operations to the initial 100 sensor zones, accounting for their mutual

intersections, a total of 58 merged sensor zones are obtained. Based on these

merged zones, the second stage of the proposed approach is carried out: a TSP is

solved over the centers of the 58 circles using the 2-OPT Algorithm. The result is

shown in Fig. 4a. The total length of the trajectory formed in the second stage is

2379 units. While this trajectory can serve as a feasible solution to the problem,

further optimization is possible. In the third stage, using the route obtained in the

second stage, sequences of three consecutive points (A–B–C) are analyzed to

determine bisector points. A refined trajectory is then constructed based on these

bisector points (Figs 4b-4c). The total length of the trajectory constructed at this

stage by the most effective version of the algorithm is 2017 units, with 58 trajectory

points. To further improve the efficiency of the trajectory obtained in the third stage

of the “Overlap Three-Point” approach, a fourth stage is carried out. At this stage,

the E_optimum method is applied, which reduces the number of trajectory points

(from 58) while ensuring that the path still intersects all coverage zones. The result

is shown in Fig. 4d.

(a) (b)

(c) (d)

Fig. 4. Visualization of trajectory construction at different stages of the “Overlap Three-Point”

approach: Initial trajectory through sensor zone centers using the 2-OPT Algorithm (Stage 1) (a);

Refined trajectory over isolated zones formed during Stage 1 (b); Trajectory adjusted based on the

original sensor zones (Stage 3) (c); Final optimized trajectory covering all sensor zones using the

complete “Overlap Three-Point” approach (d)

• Experiment for the Third Approach

The experiment for the “Within_r” approach was conducted according to the

four stages described in Section 2. The construction of the complete trajectory

involved the following methods: overlap, within_r, nearest neighbor, 2-OPT, and

E_optimum.

 202

• Experiment for the Fourth Approach

The experiment for the Sampling approach was conducted using three stages

(excluding the first of the four stages described in Approach 2). The overall

trajectory was constructed using the following methods: Sampling, Nearest

Neighbor (NN), 2-OPT, and E_optimum.

• Experiment for the Fifth Approach

The experiment for the Convex Hull approach was also conducted using three

stages (excluding the first of the four mentioned previously). The overall trajectory

was constructed using the following methods: Convex Hull, Optimal Insertion,

2-OPT, and E_optimum.

• Experiment for the Sixth Approach

The experiment for the DNN approach was conducted using all four stages.

The overall trajectory was constructed using the following methods: Overlap, DNN,

NN, 2-OPT, and E_optimum.

• Experiment for the Seventh Approach

The experiment for the DDNN approach was carried out using the complete

four-stage process. The overall trajectory was constructed using the following

sequence of methods: Overlap, DDNN, Nearest Neighbor, 2-OPT, and

E_optimum.

• Results analysis

Based on the seven proposed approaches, hybrid algorithms were designed

and implemented as part of this study. Each algorithm was developed in Python and

executed in a cloud-based Google Colab environment using an Intel Xeon processor

with 12.67 GB of RAM (via Google Compute Engine).

All experiments were conducted using the common set of 100 sensor zones

provided in Table 1. The experimental results were evaluated across four key

parameters: trajectory length, algorithm computation time, total number of

maneuver points in the generated trajectory, and relative proximity to each sensor

zone. The results for these four parameters are summarized in Table 2.

Table 2 presents a comparative analysis of the efficiency of various hybrid

algorithms developed using the proposed methodological approaches. In total, 92

hybrid algorithm variants were implemented – each representing a unique

combination of routing and optimization strategies.

The notations and abbreviations in the table represent key components of the

hybrid algorithms. Optimal Insertion (OI) is a heuristic path-building method from

[25], while NN uses proximity-based logic [26]. TSI (Two-Step Insertion) extends

basic insertion by considering two-point integration [27]. The

2-OPT Algorithm [28] refines trajectories by removing intersecting segments. The

Overlap method, applied in the first stage, merges intersecting sensor zones to

simplify planning. In the third stage, the Bisser method introduces bisector points

(from nodes A, B, and C) to improve route geometry. GEO-6 generates E-points

that smooth sharp turns. In the final stage, E_optimum removes redundant

maneuver points while maintaining complete zone coverage, reducing path

complexity without performance loss.

 203

Table 2. Analytical results of the performance of 92 hybrid algorithms developed based on

seven proposed approaches
C Approaches (algorithms) L N T R/d

1.1 Three-dot line (OI+GEO-6+E_optimum) 1934 53 7.2 0.69

1.2 Three-dot line (2-OPT+GEO-6+E_optimum) 2077 51 16 0.64

1.3 Three-dot line (NN+GEO-6+E_optimum) 2490 53 9.2 0.6

1.4 Three-dot line (TSI+GEO-6+E_optimum) 2343 62 8.9 0.69

1.5 Three-dot line (TSI+2-OPT+GEO-6+E_optimum) 2087 56 11.7 0.67

1.6 Three-dot line (OI+2-OPT+GEO-6+E_optimum) 2219 53 9.8 0.64

2.1 Overlab three point (overlab+OI+Bisser+E_optimum) 2183 47 22 0.64

2.2 Overlab three point (overlab+2-OPT+Bisser+E_optimum) 2000 40 72 0.58

2.3 Overlab three point (overlab+NN+Bisser+E_optimum) 2633 46 22 0.6

2.4 Overlab three point (overlab+TSI+Bisser+E_optimum) 2047 43 22 0.62

2.5 Overlab three point (overlab+TSI+2-OPT+Bisser+E_optimum) 2443 41 19 0.55

2.6 Overlab three point (overlab+OI+2-OPT+Bisser+E_optimum) 2143 43 21 0.62

2.7 Overlab three point (overlab+OI+Geo-6+E_optimum) 2210 50 24 0.63

2.8 Overlab three point (overlab+2-OPT+Geo-6+E_optimum) 2017 44 81 0.59

2.9 Overlab three point (overlab+NN+Geo-6+E_optimum) 2644 46 25 0.61

2.10 Overlab three point (overlab+TSI+Geo-6+E_optimum) 2070 47 20 0.63

2.11 Overlab three point (overlab+TSI+2-OPT+Geo-6+E_optimum) 2467 40 23.2 0.57

2.12 Overlab three point (overlab+OI+2-OPT+Geo-6+E_optimum) 2158 43 25.7 0.63

3.1.1 Within_r (Within_r +NN+E_optimum) 2613 53 6 0.56

3.1.2 Within_r (Within_r +NN+2-OPT+E_optimum) 2574 53 13 0.57

3.1.3 Within_r (overlab+Within_r +NN+E_optimum) 2594 53 10 0.58

3.1.4 Within_r (overlab+Within_r +NN+2-OPT+E_optimum) 2282 51 14 0.58

3.2.1 Within_r (Within_r +OI+E_optimum) 2844 48 4 0.56

3.2.2 Within_r (Within_r +OI+2-OPT+E_optimum) 2499 46 42 0.6

3.2.3 Within_r (overlab+Within_r +OI+E_optimum) 2681 49 12 0.5

3.2.4 Within_r (overlab+Within_r +OI+2-OPT+E_optimum) 2515 49 15.3 0.51

3.3.1 Within_r (Within_r +TSI+E_optimum) 2650 60 8.86 0.52

3.3.2 Within_r (Within_r +TSI+2-OPT+E_optimum) 2492 52 22.6 0.52

3.3.3 Within_r (overlab+Within_r +TSI+E_optimum) 2369 50 9.83 0.53

3.3.4 Within_r (overlab+Within_r +TSI+2-OPT+E_optimum) 2297 49 11.4 0.53

4.1.1 Sampling (sampling+NN+E_optimum) 2462 51 3 0.55

4.1.2 Sampling (sampling+NN+2-OPT+E_optimum) 2323 48 18 0.52

4.1.3 Sampling (overlab+sampling+NN+E_optimum) 2507 54 9 055

4.1.4 Sampling (overlab+sampling+NN+2-OPT+E_optimum) 2368 49 13 0.55

4.2.1 Sampling (sampling+OI+E_optimum) 2590 51 32 0.56

4.2.2 Sampling (sampling+OI+2-OPT+E_optimum) 2553 50 40 0.57

4.2.3 Sampling (overlab+sampling+OI+E_optimum) 2477 48 19 0.55

4.2.4 Sampling (overlab+sampling+OI+2-OPT+E_optimum) 2373 49 19 0.56

4.3.1 Sampling (sampling+TSI+E_optimum) 2980 51 2.3 0.5

4.3.2 Sampling (sampling+TSI+2-OPT+E_optimum) 2645 52 2.3 0.5

4.3.3 Sampling (overlab+sampling+TSI+E_optimum) 2633 46 7.2 0.49

4.3.4 Sampling (overlab+sampling+TSI+2-OPT+E_optimum) 2524 47 6.82 0.48

4.4.1 Sampling (sampling+2-OPT+E_optimum) 2480 53 30 0.58

4.4.2 Sampling (overlab+sampling+2-OPT+E_optimum) 2392 50 17 0.51

5.1.1 Convex Hull (Convex Hull +OI+E_optimum) 2351 58 7.5 0.68

 204

Table 2 (c o n t i n u e d)
5.1.2 Convex Hull (Convex Hull +OI+2-OPT+E_optimum) 2232 56 14.6 0.7

5.1.3 Convex Hull (overlab+ Convex Hull +OI+E_optimum) 2360 49 8 0.53

5.1.4 Convex Hull (overlab+ Convex Hull +OI+2-OPT+E_optimum) 2331 49 11.2 0.54

5.2.1. Convex Hull (Convex Hull +NN+E_optimum) 4190 57 7.1 0.51

5.2.2 Convex Hull (Convex Hull +NN+2-OPT+E_optimum) 3084 58 23 0.5

5.2.3 Convex Hull (overlab+ Convex Hull +NN+E_optimum) 3645 52 12 0.48

5.2.4 Convex Hull (overlab+ Convex Hull +NN+2-OPT+E_optimum) 2683 49 13.4 0.47

5.3.1 Convex Hull (Convex Hull +TSI+E_optimum) 2784 64 3.4 0.56

5.3.2 Convex Hull (Convex Hull +TSI+2-OPT+E_optimum) 2627 57 4.3 0.55

5.3.3 Convex Hull (overlab+ Convex Hull +TSI+E_optimum) 2579 51 8.6 0.48

5.3.4 Convex Hull (overlab+ Convex Hull +TSI+2-OPT+E_optimum) 2473 50 14.1 0.5

5.4.1 Convex Hull (Convex Hull +2-OPT+E_optimum) 3648 62 6.2 0.49

5.4.2 Convex Hull (overlab+ Convex Hull +2-OPT+E_optimum) 3241 51 12.3 0.6

6.1.1 DNN (DNN +OI+E_optimum) 2645 53 15.6 0.5

6.1.2 DNN (DNN+OI+2-OPT+E_optimum) 2452 50 23 0.53

6.1.3 DNN (overlab+ DNN +OI+E_optimum) 2526 49 10.4 0.54

6.1.4 DNN (overlab+DNN+OI+2-OPT+E_optimum) 2367 49 13 0.54

6.2.1 DNN (DNN +TSI+E_optimum) 2547 49 5.3 0.52

6.2.2 DNN (DNN+TSI+2-OPT+E_optimum) 2299 46 6.1 0.58

6.2.3 DNN (overlab+ DNN +TSI+E_optimum) 2205 52 9.7 0.56

6.2.4 DNN (overlab+DNN+TSI+2-OPT+E_optimum) 2185 51 11.8 0.57

6.3.1 DNN (DNN +NN+E_optimum) 2656 52 6.4 0.54

6.3.2 DNN (DNN+NN+2-OPT+E_optimum) 2215 50 6.6 0.57

6.3.3 DNN (overlab+ DNN +NN+E_optimum) 2346 50 10.8 0.57

6.3.4 DNN (overlab+DNN+NN+2-OPT+E_optimum) 2127 47 15.4 0.57

6.4.1. DNN (DNN +E_optimum) 2665 53 5.6 0.55

6.4.2 DNN (DNN+2-OPT+E_optimum) 2558 53 10 0.57

6.4.3 DNN (overlab+ DNN+E_optimum) 2460 52 10.7 0.58

6.4.4 DNN (overlab+DNN+2-OPT+E_optimum) 2346 50 11.6 0.58

7.1.1 DDNN (NN+DDNN+E_optimum) 2669 49 5.4 0.55

7.1.2 DDNN (DDNN+NN+E_optimum) 2799 51 10 0.49

7.1.3 DDNN (DDNN +NN+2-OPT+E_optimum) 2412 51 30 0.51

7.1.4 DDNN (overlab+NN+DDNN+E_optimum) 2743 45 13 0.54

7.1.5 DDNN (overlab+DDNN+NN+E_optimum) 2420 44 16 0.56

7.1.6 DDNN (overlab+DDNN+NN++2-OPT+E_optimum) 2256 45 17 0.59

7.2.1 DDNN (DDNN +TSI+E_optimum) 2752 50 7.2 0.49

7.2.2 DDNN (DDNN+TSI+2-OPT+E_optimum) 2620 51 15 0.46

7.2.3 DDNN (overlab+ DDNN +TSI+E_optimum) 2740 47 14.9 0.54

7.2.4 DDNN (overlab+DDNN+TSI+2-OPT+E_optimum) 2460 47 13.5 0.54

7.3.1 DDNN (DDNN +OI+E_optimum) 2672 52 19.3 0.47

7.3.2 DDNN (DDNN+OI+2-OPT+E_optimum) 2552 54 16.3 0.49

7.3.3 DDNN (overlab+ DDNN +OI+E_optimum) 2591 47 12 0.57

7.3.4 DDNN (overlab+DDNN+OI+2-OPT+E_optimum) 2523 45 12.6 0.56

7.4.1 DDNN (DDNN +E_optimum) 2681 50 11.3 0.54

7.4.2 DDNN (DNN+2-OPT+E_optimum) 2503 50 2.3 0.53

7.4.3 DDNN (overlab+ DDNN+E_optimum) 2743 45 7.45 0.54

7.4.4 DDNN (overlab+DDNN+2-OPT+E_optimum) 2582 48 7.25 0.56

The performance of the hybrid algorithms was evaluated using four key

metrics: total trajectory Length (L), Number of maneuver points (N), computation

 205

Time (T), and Relative deviation (R/d). Length L measures the overall UAV travel

distance; N indicates the number of hotspots forming the route; T reflects

algorithmic processing time; and R/d represents the normalized average distance

from the UAV path to the centers of the sensor zones, directly impacting data

accuracy.

Depending on mission constraints, the four metrics are prioritized as follows.

• For energy-constrained missions, the priority is L, followed by N, T, and

finally R/d.

• For real-time or on-board replanning tasks, T is the primary criterion,

followed by L, N, and R/d.

• Under strong kinematic constraints, N (or trajectory smoothness) is

prioritized first, followed by L, T, and R/d.

• For coverage-quality-driven missions, R/d is the leading criterion, followed

by L, N, and T.

For multi-objective settings, a normalized weighted score is additionally

reported:

𝑆 = 𝜔1𝐿′ + 𝜔2𝑇′ + 𝜔3𝑁′ + 𝜔4 (
𝑅

𝑑
)

′
,

where L′, T′, N′, (R/d)′ denote the normalized values of the metrics, and the weights

𝜔1, 𝜔2, 𝜔3, 𝜔4 are weighting coefficients that reflect the relative importance of the

metrics under specific mission scenarios.

Communication quality, energy consumption, and real-time trajectory

adjustments are beyond the scope of this study and left for future work. The results

show that algorithm performance strongly depends on the spatial distribution and

coverage radius of sensor zones. Besides coverage, factors such as node density,

inter-node distances, and network topology also affect outcomes. Therefore, a

preliminary assessment of sensor placement is recommended. In dense

deployments, overlap-based approaches tend to perform better.

4. Conclusion

Based on experimental analysis, the efficiency of 92 hybrid algorithms – developed

from seven convergence models – was evaluated according to four key parameters:

total trajectory length, computation time, number of maneuver points, and relative

deviation from sensor zones. The results demonstrated that trajectory performance

depends not only on the chosen algorithm, but also on the placement, spatial

density, and coverage radius of the sensor nodes. One of the key aspects of the

analysis was the relative deviation parameter, reflecting how close the trajectory

passes to the centers of the sensor zones – thus directly influencing data acquisition

quality.

To further demonstrate the practical relevance of the proposed methods, a case

study was conducted based on the dataset of 100 sensor zones deployed in a

400 × 300 unit area (Table 1 and Fig. 2). The configuration models a precision

agriculture scenario with soil moisture and temperature sensors having coverage

radii between 5 and 20 units. Using a classical TSP-based routing approach, the

 206

UAV trajectory length was about 2600 units. With the proposed hybrid algorithms,

the total route length was reduced by 15-20% while ensuring complete coverage of

all sensor zones. This reduction leads to shorter flight times and lower energy

consumption, which is particularly important for UAVs with limited battery

capacity. Based on the above results, the “Three-dot Line” can be recognized as the

most effective approach.

Although the proposed approaches demonstrate efficiency in UAV trajectories

for large-scale data collection, certain practical constraints, such as UAV autonomy

margin, communication range, and environmental factors, were not explicitly

addressed in this study. These factors represent important practical considerations

and will be investigated in future research to extend the applicability of the

proposed approaches to real-world scenarios.

Acknowledgment: The authors gratefully acknowledge the Urgench State University for its invaluable

support and resources throughout this research.

R e f e r e n c e s

1. A b r a m o v, M. M. New and Promising Directions for the Use of Unmanned Aerial Vehicles.

Izvestiya of Tula State University. – Technical Sciences, 2022, No 3, pp. 227-232.

2. P o p e s c u, D., et al. A Survey of Collaborative UAV-WSN Systems for Efficient Monitoring. –

Sensors, Vol. 19, 2019, No 21, 4690.

3. H e d g e s, D. A., J. P. C o o n, G. C h e n. A Continuum Model for Route Optimization in Large-

Scale Inhomogeneous Multi-Hop Wireless Networks. – IEEE Transactions on

Communications, Vol. 68, 2020, No 2, pp. 1058-1070.

4. J a w h a r, I., N. M o h a m e d, J. A l-J a r o o d i, S. Z h a n g. A Framework for Using Unmanned

Aerial Vehicles for Data Collection in Linear Wireless Sensor Networks. – J. Intell. Robot.

Syst., Vol. 74, 2014, pp. 437-453.

5. D u m i t r e s c u, A., J. S. B. M i t c h e l l. Approximation Algorithms for TSP with

Neighborhoods in the Plane. – Journal of Algorithms, Vol. 48, 2003, No 1, pp. 135-159.

6. A l a t a r t s e v, S., M. A u g u s t i n e, F. O r t m e i e r. Constricting Insertion Heuristic for

Traveling Salesman Problem with Neighborhoods. – In: Proc. of International Conference on

Automated Planning and Scheduling, Vol. 23, 2013, pp. 2-10.

7. G u l c z y n s k i, D. J., J. W. H e a t h, C. C. P r i c e. The Close Enough Traveling Salesman

Problem: A Discussion of Several Heuristics. – Springer US, 2006, pp. 271-283.

8. A b r a m o v, M. M. New and Promising Directions for the Use of Unmanned Aerial Vehicles,

Izvestiya of Tula State University. – Technical Sciences, 2022, No 3, pp. 227-232.

9. C a r r a b s, F., et al. Improved Upper and Lower Bounds for the Close Enough Traveling

Salesman Problem. – In: Proc. of 12th International Conference, Green, Pervasive, and Cloud

Computing (GPC’17), Cetara, Italy, 11-14 May 2017. Springer International Publishing,

2017, pp. 165-177.

10. Q i a n, Q., Y. W a n g, D. B o y l e. On Solving Close Enough Orienteering Problems with

Overlapped Neighborhoods. – European Journal of Operational Research, Vol. 318, 2024,

No 2, pp. 369-387.

11. C a r r a b s, F., et al. A Novel Discretization Scheme for the Close Enough Traveling Salesman

Problem. – Computers & Operations Research, Vol. 78, 2017. pp. 163-171.

12. C a r r a b s, F., et al. An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for

the Close-Enough Traveling Salesman Problem. – INFORMS Journal on Computing,

Vol. 32, 2020, No 4, pp. 1030-1048.

13. S i n h a R o y, D., et al. Estimating the Tour Length for the Close Enough Traveling Salesman

Problem. – Algorithms, Vol. 14, 2021, No 4, p. 123.

 207

14. A i t S a a d i, A., et al. UAV Path Planning Using Optimization Approaches: A Survey. –

Archives of Computational Methods in Engineering, Vol. 29, 2022, No 6, pp. 4233-4284.

15. R o d i o n o v, A. S., T. A. M a t k u r b a n o v. UAV Flight Trajectory Planning for Large-Area

Monitoring. – Informatics and Automation, Vol. 24, 2025, No 3, pp. 791-827.

16. M a r k o v, A. V., V. I. S i m a n k o v. Methodology for Calculating UAV Flight Trajectories for

Terrain Observation. – Reports of BSUIR, Vol. 4, 2019, No 122, pp. 57-63.

17. C a r i o u, C., et al. Evolutionary Algorithm with Geometrical Heuristics for Solving the Close

Enough Traveling Salesman Problem: Application to the Trajectory Planning of an

Unmanned Aerial Vehicle. – Algorithms, Vol. 16, 2023, No 1, p. 44.

18. A l e m a y e h u, T. S., J. H. K i m. Efficient Nearest Neighbor Heuristic TSP Algorithms for

Reducing Data Acquisition Latency of UAV Relay WSN. – Wireless Personal

Communications, Vol. 95, 2017, No 3, pp. 3271-3285.

19. I s a a c s, J. T., J. P. H e s p a n h a. Dubins Traveling Salesman Problem with Neighborhoods:

A Graph-Based Approach. – Algorithms, Vol. 6, 2013, No 1, pp. 84-99.

20. J a n s o n, L., B. I c h t e r, M. P a v o n e. Deterministic Sampling-Based Motion Planning:

Optimality, Complexity, and Performance. – The International Journal of Robotics Research,

Vol. 37, 2018, No 1, pp. 46-61.

21. K a r a m a n, S., E. F r a z z o l i. Sampling-Based Algorithms for Optimal Motion Planning. – The

International Journal of Robotics Research, Vol. 30, 2011, No 7, pp. 846-894.

22. A l a t a r t s e v, S., M. A u g u s t i n e, F. O r t m e i e r. Constricting Insertion Heuristic for

Traveling Salesman Problem with Neighborhoods. – In: Proc. of International Conference on

Automated Planning and Scheduling, Vol. 23, 2013, pp. 2-10.

23. G o u t h a m, M., et al. A Convex Hull Cheapest Insertion Heuristic for the Non-Euclidean TSP. –

arXiv Preprint arXiv:2302.06582, 2023.

24. A l e m a y e h u, T. S., J. H. K i m. Efficient Nearest Neighbor Heuristic TSP Algorithms for

Reducing Data Acquisition Latency of UAV Relay WSN. – Wireless Personal

Communications, Vol. 95, 2017, No 3, pp. 3271-3285.

25. J o h n s o n, D. S., L. A. M c G e o c h. The Traveling Salesman Problem: A Case Study in Local

Optimization. – In: Local Search in Combinatorial Optimization, 1997.

26. H o u g a r d y, S., M. W i l d e. On the Nearest Neighbor Rule for the Metric Traveling Salesman

Problem. – In: Discrete Applied Mathematics, 2015.

27. R o d i o n o v, A. S., T. A. M a t k u r b a n o v, U. B. K h a i r u l l a e v. Constructing UAV Flight

Trajectories for Agricultural Land Monitoring. – Problems of Informatics, Vol. 1, 2025,

No 66.

28. H o u g a r d y, S., F. Z a i s e r, X. Z h o n g. The Approximation Ratio of the 2-OPT Heuristic for

the Metric Traveling Salesman Problem. – In: Operations Research Letters, 2020.

29. K e u n g, G. Y., et al. The Target Tracking in Mobile Sensor Networks. – In: Proc. of 2011 IEEE

Global Telecommunications Conference (GLOBECOM’11), IEEE, 2011, pp. 1-5.

30. C h a v a n, P., et al. Dual-Step Hybrid Mechanism for Energy Efficiency Maximization in

Wireless Network. – Cybernetics and Information Technologies, Vol. 23, 2023, No 3,

pp. 70-88.

31. K o c k e n, K., B. Ö z k ö k, H. K ö ç k e n. A Fuzzy Programming-Based Approach to a Multi-

Objective Multi-Echelon Green Closed-Loop Supply Chain Problem. – Cybernetics and

Information Technologies, Vol. 23, 2023, No 3, pp. 40-55.

32. Z h a n g, L., et al. Multi-UAV Data Collection and Path Planning Method for Large-Scale

Terminal Access. – Sensors, Vol. 23, 2023, No 20, 8601.

33. N g u y e n, M. T., et al. UAV-Assisted Data Collection in Wireless Sensor Networks:

A Comprehensive Survey. – Electronics, Vol. 10, 2021, No 21, 2603.

34. K a r e g a r, P. A., D. Z. A l-H a m i d, P. H. J. C h o n g. Deep Reinforcement Learning for UAV-

Based SDWSN Data Collection – Future Internet, Vol. 16, 2024, No 11, p. 398.

35. L u o, J., Y. T i a n, Z. W a n g. Research on Unmanned Aerial Vehicle Path Planning. – Drones,

Vol. 8, 2024, No 2, p. 51.

36. X i a n g, Z., et al. Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data

Collection in Complex Environments. – Biomimetics, Vol. 10, 2025, No 2, p. 109.

 208

37. K h a n, M. A., F. F a r o o q. A Comprehensive Survey on UAV-Based Data Gathering

Techniques in Wireless Sensor Networks. – ICCK Transactions on Intelligent Systems,

Vol. 2, 2025, No 1, pp. 66-75.

38. K a r e g a r, P. A., D. Z. A l-H a m i d, P. H. J. C h o n g. UAV-Enabled Software Defined Data

Collection from an Adaptive WSN. – Wireless Networks, Vol. 31, 2025, No 1, pp. 69-90.

39. Z h a n, C., Y. Z e n g, R. Z h a n g. Energy-Efficient Data Collection in UAV-Enabled Wireless

Sensor Network. – IEEE Wireless Communications Letters, Vol. 7, 2017, No 3, pp. 328-331.

40. X i a o, B., et al. Algorithms for Disk Covering Problems with the Most Points. – In: Proc. of

IASTED Int’l Conf. Parallel and Distributed Computing and Systems, 2003, pp. 541-546.

41. T o k e k a r, P., et al. Sensor Planning for a Symbiotic UAV and UGV System for Precision

Agriculture. – IEEE Transactions on Robotics, Vol. 32, 2016, No 6, pp. 1498-1511.

42. C a r r a b s, F., et al. An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for

the Close-Enough Traveling Salesman Problem. – INFORMS Journal on Computing,

Vol. 32, 2020, No 4, pp. 1030-1048.

Fast-track. Received: 10.08.2025. Revised Version: 28.08.2025. Accepted: 04.09.2025

