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Abstract: Wireless Sensor Networks (WSNs) are extensively used for monitoring 

large-scale areas with sensors having different coverage zones. Unmanned Aerial 

Vehicles (UAVs) are deployed to efficiently collect data from these distributed 

nodes. The effectiveness of this process depends on optimizing the UAV’s flight 

path, formulated as the Close Enough Traveling Salesman Problem (CETSP), 

known to be NP-hard.  This study presents hybrid methods that integrate heuristic 

algorithms with geometric strategies to solve the CETSP efficiently. The main 

contribution lies in proposing efficient, fast-executing, and easily programmable 

approaches that follow a structured process: identifying new target points when 

zones intersect, determining near-optimal visiting sequences with heuristic 

algorithms, and applying iterative geometric refinements to shorten the route. A 

total of 92 hybrid algorithms based on seven distinct approaches are evaluated 

using four performance metrics. Experimental results demonstrate the high 

efficiency of the proposed methods and their strong potential for real-world UAV-

assisted data collection tasks in wireless sensor networks. 

Keywords: Unmanned aerial vehicle, Traveling salesman problem, Traveling 

salesman problem with neighborhoods, Close enough traveling salesman problem, 

Wireless sensor networks.  

1. Introduction 

In recent years, the field of Unmanned Aerial Vehicles (UAVs) technology has 

made significant progress, leading to a notable increase in their application across 

various domains. In many areas such as monitoring, security, agriculture, and the 

military, UAVs occupy a unique and indispensable position [1]. These applications 

typically involve the use of Wireless Sensor Networks (WSNs) for data collection 

mailto:tulkinmatkurbanov2020@gmail.com
mailto:akhmetutegenov0402@gmail.com
mailto:shogunuz@gmail.com
mailto:d.m.matkurbonov@gmail.com


 187 

and enhanced communication capabilities. WSNs currently serve as a fundamental 

component of the Internet of Things (IoT), providing crucial infrastructure for real-

time sensing and information exchange [2], [30]. 

To overcome the limitations of traditional WSNs, extensive research is being 

conducted on the integration of UAVs and WSNs to enable long-range 

communication across various applications. In monitoring systems, UAVs are 

considered mobile data collectors, capable of gathering information from 

individual sensors or multiple sensors simultaneously. Fig. 1a shows an idealized 

geometric representation of the sensor coverage area used in WSNs [3]. Despite 

their advantages, determining effective and optimized UAV flight trajectories 

remains a challenging research problem.  

When sensors are deployed over a large area and it is not feasible to establish a 

permanent communication network, UAV can be used for data collection by flying 

through the spherical radio coverage zones surrounding the sensors [4, 31]. 

Such problems are formulated as the Traveling Salesman Problem with 

Neighborhoods (TSPN), which is a generalization of the classical Traveling 

Salesman Problem (TSP). In the classical TSP, the objective is to find the shortest 

closed path that visits each given point exactly once and returns to the starting 

location. In contrast, the TSPN extends this by introducing “neighborhoods” – 

regions (typically circles) that the salesman must enter, without necessarily reaching 

a specific point inside them [5]. The goal is to compute the shortest trajectory that 

visits each region at least once [6]. There are several extended versions of this 

model, each adapted to specific real-world applications. When the regions are 

circles of varying radii, the problem is referred to as the CETSP – the most common 

special case of TSPN. In CETSP, it is sufficient for the salesman to enter or touch 

each circular region reaching the exact center is not required. The CETSP was first 

introduced by G u l c z y n s k i, H e a t h  and P r i c e  [7]. As CETSP is a relatively 

recent modification of the TSP, the number of exact algorithms available for 

solving it remains limited. Due to the low performance of existing exact methods, 

metaheuristic and approximation algorithms are predominantly used in practice.  

UAV are widely utilized in the civilian sector due to their high mobility, low 

operational costs, and ability to hover in place. Their applications range from 

environmental monitoring and search-and-rescue operations to delivery services, 

wireless communication, and precision agriculture [8]. A key advantage of UAVs 

lies in their independence from terrestrial infrastructure, enabling them to efficiently 

cover dispersed areas. To maximize operational efficiency, however, it is essential 

to plan and coordinate the UAV’s flight trajectory in advance. In this context, the 

CETSP emerges as a highly relevant model, as it effectively captures practical 

constraints encountered during UAV deployment. This work addresses the 

construction of an efficient UAV trajectory that starts at the origin point (0, 0), 

traverses a set of zones represented by circles (each associated with a target or 

client), and returns to the starting location. Fig. 1b illustrates the coverage areas of 

sensors deployed over a 300×200 unit rectangular region. 

 



 188 

 

(a)     (b) 
Fig 1. General representation of the sensor coverage zones: geometric representation of sensor 

coverage areas in WSN (a); two-dimensional visualization of sensor coverage zones (b) 

Articles [33] and [37] present comprehensive survey studies on UAV–WSN 

integration. These works systematically analyze clustering, route optimization, 

energy efficiency, and security issues, highlighting the strengths and limitations of 

existing approaches. Articles [34] and [38] examine UAV-assisted data collection 

within the framework of software-defined wireless sensor networks. The authors 

propose approaches aimed at improving energy efficiency and transmission 

reliability through dynamic trajectory control: one based on deep reinforcement 

learning and the other employing fuzzy-based path planning. The three studies  

[32, 35, 36] focus on the problem of UAV path planning. Article [36] provides a 

systematic review of existing algorithms, outlining their advantages and limitations. 

In [35], the authors propose the “Hyperion” algorithm, which ensures UAV return 

to a charging station while accounting for energy constraints. Article [32] addresses 

multi-UAV data collection by optimizing flight routes through a genetic algorithm. 

A common feature of these works is their strong emphasis on improving path 

planning efficiency; however, a key limitation is the lack of sufficient real-world 

experimental validation. 

Prior research has demonstrated that the CETSP framework can be effectively 

employed in UAV trajectory planning tasks. The following main approaches for 

CETSP have been observed in the literature: discretization-based heuristic 

approaches [9], evolutionary and geometric heuristic approaches [10-12], 

approximate models [13]. These approaches show that the quality of the resulting 

UAV trajectory is influenced by several factors: the precision of neighborhood 

discretization, the strategy for selecting representative points, the number and 

spatial density of sensor zones, algorithmic flexibility, and overall computational 

efficiency. 

Each approach demonstrates specific advantages and limitations; therefore, for 

practical applications, the choice of algorithm must reflect the characteristics of a 

given UAV mission. Unlike earlier studies, there is a need for approaches that 

guarantee stable route quality under varying key parameters and allow systematic 

comparison with existing methods. The task of constructing efficient UAV 
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trajectories for data collection from sensor nodes – each represented by a coverage 

zone – remains insufficiently addressed and requires new solutions. Consequently, 

effective route planning for large-scale UAV monitoring continues to be a relevant 

and open research challenge. This article focuses on constructing efficient UAV 

routes for the CETSP in the context of data collection from sensor networks 

distributed across vast territories. The main contribution of this work lies in the 

proposal of hybrid methods that integrate heuristic algorithms with geometric 

strategies to efficiently solve the CETSP, along with their comparative analysis. 

The approaches are designed to be efficient, fast-executing, and easily 

programmable, and they follow a clear research roadmap. Specifically: 1 – new 

target points are identified in cases where coverage zones intersect; 2 – a near-

optimal visiting sequence of the zones is determined using heuristic algorithms;  

3 – an iterative geometric path-shortening procedure is applied to reduce the total 

route length; and 4 – an optimization method is used to further refine the trajectory. 

All computational procedures and simulations were implemented in Python, 

enabling reproducible and extensible experimentation with the proposed algorithms. 

In this work, a three-level terminology is adopted in order to ensure 

consistency and avoid ambiguity. An approach denotes the general conceptual 

strategy for solving the CETSP and its UAV trajectory planning variants (e.g., 

“Three-dot line”, “Overlap Three-Point”, “Within_r”). A method refers to a specific 

principle or procedure applied within an approach (e.g., overlap, GEO-6, 2-OPT, 

Optimal or Two-Step Insertion). An algorithm represents the explicit computational 

sequence that realizes a method, or a combination of methods, in practice. 

To provide a clear overview, the research process in this work follows a 

structured roadmap. First, the CETSP problem is formulated for UAV-based data 

collection in large-scale wireless sensor networks. Second, seven groups of hybrid 

algorithms are designed by integrating heuristic optimization methods with 

geometric heuristics. Third, the algorithms are implemented in Python to ensure 

reproducibility and extensibility. Fourth, extensive simulations are conducted on 

datasets containing 100 sensor zones under identical computational conditions. 

Fifth, the performance of the proposed algorithms is evaluated using four key 

metrics: total path length, CPU time, number of maneuver points, and relative 

deviation from sensor centers. Finally, a comparative analysis of 92 hybrid 

algorithms is presented, highlighting their strengths and limitations depending on 

sensor distribution and coverage radius. 

2. Modeling and methodology 

2.1. Modeling 

Over a large area, N sensors are deployed, each of which must transmit its 

measurements or data. These nodes are distributed across a predefined extensive 

territory. Since each sensor can only transmit data over a limited distance, they are 

unable to send signals directly to a base or control station. Therefore, it is assumed 

that a UAV is used to collect the data in this scenario. Based on this, a set of n 

circles of varying radii is considered, located in the Euclidean plane (see Fig. 1b). 
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Each circle i is defined by the coordinates (xᵢ, yᵢ, rᵢ), where (xᵢ, yᵢ) are the 

coordinates of the circle’s center, and rᵢ is its radius. The circles may intersect with 

one another. The objective is to construct a trajectory of minimal total length that 

passes through all the given circles. The trajectory consists of linear segments 

connecting selected points within these circles. There are no constraints on the radii 

or mutual positions of the circles. The problem consists in selecting a single point 

within each circle and constructing the shortest possible trajectory that passes 

through all the selected points. In some cases, a single point may belong to multiple 

circles. 

The UAV starts its movement from an initial point p₀ and, sequentially visiting 

N nodes, eventually returns to p₀. Each node is defined by coordinates vₙ ∈ ℝ², 

where n = 1, 2, ..., N. 

The communication range of each node is represented as a circular zone (disk) 

with radius rᵢ,  

𝑉𝑛 = {𝑥 ∊ ℝ² ∨ ‖𝑥 − 𝑣𝑛‖2 ≤ 𝑟𝑖}. 
If the communication zones of two nodes partially overlap, these nodes are 

considered neighbors. This situation is formally described as follows: 

𝑁(𝑉𝑛) = {𝑗 ∊ {1, … , 𝑁} ∨ 𝑉𝑗 ∩ 𝑉𝑛 ≠ ∅}. 

The following assumptions are also made: the initial UAV position u₀ and the 

final position uₙ₊₁ are not located within the communication zone of any node: 

𝑢0, 𝑢𝑁+1 ∉ 𝑛 = 1NV𝑛, 
if the initial position u₀ or the final position uₙ₊₁ falls inside the communication zone 

of any node, then: 

𝑢0, 𝑢𝑁+1 ∈ 𝑛 = 1NV𝑛, 
if one node lies within the communication zone of another node, this is interpreted 

as an overlap of communication zones (interference or spatial proximity). If node vᵢ 

lies within the communication zone of node vⱼ, it is expressed as 

𝑣𝑖 ∈ 𝑉𝑗, i.e., ‖𝑣𝑖 − 𝑣𝑗‖
2

≤ 𝑟𝑗. 

The set of overlapping zones between nodes is defined as 

𝑁(𝑉𝑛) = {𝑗 ∊ {1, … , 𝑁}, 𝑗 ≠ 𝑛 ∨ 𝑉𝑗 ∩ 𝑉𝑛 ≠ ∅}. 

If vᵢ∈Vⱼ, this implies that Vᵢ⊆Vⱼ or at least Vᵢ∩Vⱼ≠∅. This means node vᵢ is 

located very close to node vⱼ. As a result, the UAV can potentially establish 

connections with two or more nodes while positioned within a single region. This 

approach improves efficiency, as the UAV can collect data from multiple nodes 

without requiring additional movement. 

Problem statement 

Each circle is defined as 

𝐶𝑖 = {𝑦𝑖 = (𝑢𝑖, 𝑣𝑖)|(𝑢𝑖 − 𝑎𝑖)2 + (𝑣𝑖 − 𝑏𝑖)2 ≤ 𝑟𝑖}. 
The primary goal of the model is to minimize the total route length constructed 

through the selected points located inside the given circles: 

min ∑ ∑ 𝑝𝑖𝑗 × 𝑑𝑖𝑗𝑗∈𝐶𝑖∈𝐶 . 

Here: 𝑝𝑖𝑗 = 1 if circle j is visited immediately after circle i; 𝑑𝑖𝑗 is the distance 

between the selected points inside circles i and j. 
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The constraints are five.  

1) Each circle must be visited exactly once:  
∑ 𝑝𝑖𝑗 = 1,𝑗∈𝐶  ∑ 𝑝𝑗𝑖 = 1𝑗∈𝐶  ∀𝑖 ∈ 𝐶. 

2) Subtour elimination constraint (Miller–Tucker–Zemlin formulation):   

seq𝑖 − seq𝑗 + 𝑁 × 𝑝𝑖𝑗 ≤ 𝑁 − 1  ∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ≠ 1. 

3) Selected point must lie within the corresponding circle: 

𝑟𝑖
2 − (𝑢𝑖 − 𝑎𝑖)2 − (𝑣𝑖 − 𝑏𝑖)2 ≥ 0  ∀𝑖 ∈ 𝐶. 

4) Distances between selected points must not take invalid (underestimated) 

values, i.e., they must be no less than the Euclidean distance: 

𝑑𝑖𝑗
2 ≥ (𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
  ∀𝑖 ≠ 𝑗. 

5) Route-following variables must be binary: 

𝑝𝑖𝑗 ∈ {0, 1}  ∀𝑖, 𝑗 ∈ 𝐶. 

Since the model expresses distance in squared form (𝑑𝑖𝑗
2 ), it is nonlinear. 

However, this constraint can be linearized as follows: 

𝑑𝑖𝑗
2 + 𝑀 × (1 − 𝑝𝑖𝑗) ≥ (𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
, 

𝑝𝑖𝑗 ≥ 0. 

Here, M is a sufficiently large number to ensure correct behavior of the model 

constraints. 

This model represents a generalization of the classical TSP, incorporating 

circular reachability constraints. For each “point”, any location inside the 

corresponding circle is allowed. This may result in overlapping selected points. 

Despite its nonlinear nature, the model allows linearization, enabling practical 

solutions. 

2.2. Methodology 

All proposed approaches are structured within a unified four-stage methodological 

framework. First, an initial route is constructed by solving the TSP over sensor zone 

centers or merged representative points. Second, geometric refinement is applied to 

determine UAV entry points. Third, the trajectory is optimized through classical 

TSP heuristics. Finally, redundant points are filtered using the E_optimum method, 

ensuring coverage is preserved while further reducing path length. 

The main distinction among the approaches lies in the methods applied at the 

second and third stages. In particular, they differ in the type of geometric heuristics 

and TSP optimization methods. 

To solve the above-described CETSP problem, seven different approaches are 

proposed. Each approach is based on a combination of several methods or 

algorithms. 

2.2.1. The “Three-dot Line” approach 

The first approach, referred to as the “Three-dot Line,” involves a three-stage 

methodology. 

Stage 1. An optimal route is constructed by solving the TSP over the target 

points located at the centers of the sensor coverage zones. Numerous algorithms 

exist for solving the TSP [14]. At this stage, any of these algorithms or their 
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combinations can be applied. Section 3 of this article presents comparative 

experimental results of various TSP algorithms applied at this stage. 

Stage 2. Based on geometric calculations, for each sequence of three 

consecutive points in the route, the actual visiting points are determined using six 

geometric conditions [15, 16]. The method used at this stage is referred to as  

GEO-6. As a result, the trajectory is significantly shortened by constructing  

E-points that replace the original centers. The UAV is not required to pass through 

the center of the sensor’s coverage zone – it is sufficient to pass through the interior 

or boundary of the zone. 

Stage 3. In this stage, route optimization is performed based on reducing the 

number of E-points determined by the GEO-6 method. If the straight segment 

formed between the intermediate points E(i) and E(i+k) passes through the coverage 

area of the sensor corresponding to any intermediate point E(j), where i < j < k, then 

point E(j) is removed from the route list. As a result, the remaining points in the 

route list form a final trajectory constructed from the set of points known as 

E_optimum. The method used in this stage is called E_optimum. The full 

implementation of this approach is provided in Algorithm 1. 

Algorithm 1. Three-dot Line approach for UAV trajectory optimization 

Input: Sensor zone centers P = {P_1, P_2, ..., P_n}, radii R = {r_1, ..., r_n} 

Output: Effective UAV path T 

Step 1. Solve TSP using Optimal Insertion 

TSP_path ← Optimal Insertion TSP(P) 

Step 2. Generate E-points from triplets in the TSP path 

E_points ← [] 

for each triplet (A, B, C) in TSP_path: 

    Determine which geometric rule applies: 

    if angle BCA ≥ 90°: 

        E ← perpendicular from B to line AC 

    else if angle BAC ≥ 90°: 

        E ← perpendicular from A to line BC 

    else if angle ABC ≥ 90°: 

        E ← perpendicular from C to line AB 

    else if only 2 circles intersect: 

        E ← circle intersection point 

    else if all 3 circles intersect: 

        E ← center of common intersection 

    else: 

        E ← perpendicular from B to line AC 

    Append E to E_points 

Step 3. Filter redundant E-points 

for each E_i with neighbors E_{i–1}, E_{i+1}: 

    Z1 ← zones covered by (E_{ i–1}, E_i) 

    Z2 ← zones covered by (E_i, E_{i+1}) 

    Z3 ← zones covered by (E_{ i–1}, E_{i+1}) 

    if Z3 covers all zones in Z1 ∪ Z2: 
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        mark E_i as redundant 

Filtered E ← unmarked E-points 

unmarked E-points=E_optimum 

Step 4. Compute final trajectory and metrics 

T ← Path through E_optimum 

Algorithm 1. A pseudo-code of an algorithm that implements the “Three dot 

Line” approach. 

2.2.2. The “Overlap Three-Point” approach 

The second proposed approach, termed the “Overlap Three-Point” approach, draws 

conceptual inspiration from the work presented in [17] and is designed to enhance 

trajectory efficiency by leveraging zone overlaps and geometric refinements. This 

algorithm follows a four-stage methodology. The key differences lie in the use of 

alternative methods in Stages 2-4. 

Stage 1. In this stage, the UAV coverage model assumes that sensors are 

located within circular communication zones of known radii. When two or more 

such zones intersect, their union forms a common region in which the UAV can 

communicate with all involved sensors simultaneously. To exploit this redundancy, 

the algorithm identifies groups of overlapping circles and computes the largest 

inscribed circle within each group that is fully contained in the intersection area. 

The center of this inscribed circle becomes a new representative target point, 

replacing all the original centers in the group. This merging process reduces the 

number of required stops and thus shortens the total trajectory. All original nodes 

belonging to the merged region are removed from the list of targets, and only the 

unified center is retained. 

Stage 2. With the updated and reduced set of target points obtained in Stage 1, 

a TSP is solved to generate a near-optimal visiting sequence. Any well-established 

TSP Algorithm or a combination thereof can be employed in this stage. Section 3 

provides a comparative performance evaluation of various TSP solutions used for 

this stage. 

Stage 3. For each sequence of three points in the route, geometric calculations 

are performed to determine refined visiting points. Two alternative methodologies 

are proposed: optimization based on bisector points (F-points), as described in [17], 

and determination of E-points using the GEO-6 method. In both methods, the 

resulting points ensure significant reduction in the total path length. As before, it is 

not required to pass through the center of the zone – it is sufficient for the UAV 

trajectory to intersect the interior or boundary of the circle. 

Stage 4. Based on the E-points or F-points obtained in the previous stage, a 

final optimization is performed using the E_optimum method. If a line segment 

between two intermediate points passes through the coverage zone of another 

sensor, the corresponding point is removed. The result is a final, shortened 

trajectory based on the optimized set of E_optimum points. The pseudo-code of the 

algorithm that implements this approach is shown in Algorithm 2. 
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Algorithm 2. Algorithmic sequence for the second approach  

Input: sensor_zones = {(x₁, y₁, r₁), (x₂, y₂, r₂), ..., (xₙ, yₙ, rₙ)} – set of sensor 

coverage zones 

Output: M – optimal UAV trajectory passing through essential E-points 

Step 1. Merge overlapping zones (three or more intersections)   

For each triplet of sensor zones (Ci, Cj, Ck):   

    • If Ci ∩ Cj ∩ Ck ≠ ∅ and the intersection area > ε:   

        • Compute intersection polygon   

        • Calculate centroid and equivalent radius   

        • Create merged zone C′ = (x′, y′, r′)   

        • Add C′ to the final zone list   

        • Mark Ci, Cj, Ck as merged   

Step 1.2. Merge remaining overlapping pairs   

For each unmerged pair (Ci, Cj):   

    • If Ci ∩ Cj ≠ ∅ and area > ε:   

        • Compute intersection   

        • Derive centroid and equivalent radius   

        • Add new merged zone to final list   

        • Mark Ci, Cj as merged   

Step 1.3. Filter redundant zones   

For each pair of overlapping merged zones (Ci, Cj):   

    • Keep only the zone with the larger radius   

    • Remove the smaller one   

    → Result: filtered_zones – dominant, non-overlapping zones   

Step 2. Build initial trajectory using greedy NN   

Initialize route:   

    • route ← [(0, 0)]   

While unvisited zones remain:   

    • For each zone:   

        • Compute E-point (boundary point directed from current UAV location)   

        • Calculate distance from current location   

    • Select nearest E-point   

    • Add E-point to route   

    • Update current location   

Step 2.1. Optimize path with 2-OPT   

Repeat until no further improvement:   

    • For all pairs of segments (i, j):   

        • If reversing segment [i:j] reduces total length:   

            • Swap (reverse) the segment   

Step 3-4. Filter redundant E-points   

Initialize:   

    • marked ← ∅   

For each segment (Ei, Ej) in the path:   

    • Identify sensor zones covered by segment [Ei, Ej]   

    • For all E-points between Ei and Ej:   



 195 

        • If their associated zones are already covered:   

            • Mark them as redundant   

→ Result: unmarked_E_points — essential trajectory waypoints   

Step 5. Final trajectory construction   

    • Construct M = [(0, 0)] + unmarked_E_points + [(0, 0)]   

    • Compute total trajectory length   

    • Visualize:   

        • Final trajectory path   

        • Coverage circles for each zone   

        • Marked E-points along the route   

Final output:   

    • M – optimized UAV path visiting all required sensor coverage areas with 

minimal length. 

Algorithm 2. Pseudo-code of an algorithm that implements the “Overlap 

Three-Point” approach. 

2.2.3. The Within_r approach 

The Within_r approach is based on utilizing the coverage radii of sensor zones. The 

UAV trajectory is constructed with respect to the boundary of each zone’s coverage 

area [18]. This approach consists of four stages, many of which are similar to those 

described in the “Overlap Three-Point” approach. Specifically, the first, third, and 

fourth stages are identical to the corresponding stages in the aforementioned 

approach. 

In the second stage, the Within_r method is implemented. According to this 

method, for each sensor zone, the closest point on its boundary is calculated – that 

is, a point on the circumference defined by the coverage radius r corresponding to 

that zone. 

If the current UAV position is denoted as Pₖ = (xₖ, yₖ), then for each zone 

center C = (xᵢ, yᵢ), the boundary point Eᵢ is determined as follows: 

Direction vector: 

𝜃𝑖 = arctan2(𝑦𝑖 − 𝑦𝑘 ,  𝑥𝑖 − 𝑥𝑘); 

Boundary point: 

𝐸𝑖 = (𝑥𝑖 − 𝑟𝑖cos𝜃𝑖,  𝑦𝑖 − 𝑟𝑖sin𝜃𝑖). 

2.2.4. The Sampling approach  

The Sampling approach is based on selecting an arbitrary point located on the 

boundary of the sensor’s coverage zone [19-21]. The trajectory points are selected 

from a predefined set of sampling points located along the boundary of each sensor 

zone. From this set, eight points are chosen per zone (a larger number can be used, 

but this significantly increases computation time). The UAV trajectory is then 

constructed by selecting one of these candidate points. This approach follows a 

four-stage process similar to the ones in previously described approaches. The first 

and fourth stages employ the same methods as in the earlier approaches. 

Stage 2. For each remaining or merged sensor zone, eight equidistant points 

are selected along the circumference of the zone’s coverage circle. These sampling 



 196 

points serve as candidate UAV entry points for the trajectory construction. As a 

result, the total number of candidate points E is eight times the number of sensor 

zones, 

𝐸𝑖𝑗 = (𝑥𝑖 + 𝑟𝑖cos𝜃𝑗,  𝑦𝑖 + 𝑟𝑖sin𝜃𝑖), 𝜃𝑗 =
2𝜋𝑗

8
, 𝑗 = 0, … ,7. 

Here, Eᵢⱼ denotes the j-th sampling point within the i-th sensor zone. 

Stage 3. The TSP is solved considering eight discrete points sampled along the 

boundary of each sensor’s coverage zone. The trajectory is constructed based on the 

selected point from this set, and the optimal visiting points E are determined 

according to the mathematical logic of the algorithm. The authors propose using the 

Nearest Neighbor Algorithm (NNA) at this stage. Specifically, when applying the 

NNA, the corresponding point E is selected using the following expression: 

 𝐸∗ = arg min
𝐸∈𝑈

‖𝐸 − 𝑃𝑘‖. 

Here: U is the set of eight candidate points in the zones that have not yet been 

visited; Pₖ is the last point in the currently constructed trajectory. 

2.2.5. The Convex Hull approach  

The Convex Hull approach provides a geometric strategy for selecting UAV 

trajectory points within the coverage zones by utilizing the convex envelope of the 

initial point set. This approach is particularly efficient in sparse or semi-structured 

sensor deployments, where many sensor zones lie near the periphery of the 

monitored region [22-23]. The key idea is to begin with a convex hull path through 

a subset of the outermost zones and then iteratively insert remaining points using 

cost-based heuristics. 

As with earlier approaches, this approach follows a four-stage process, with 

the first and fourth stages identical to those of the “Overlap Three-Point” approach. 

Stage 2. Selection of E-points – that is, formation of the initial set of trajectory 

points. For each sensor zone, N = 8 discrete points are selected along the 

circumference (uniformly spaced by angle). These points are computed along the 

radius as follows: 

𝐸𝑖
𝑗

= (𝑥𝑖 + 𝑟𝑖 cos (
2𝜋𝑗

𝑁
) , 𝑦𝑖 + 𝑟𝑖sin (

2𝜋𝑗

𝑁
)) , 𝑗 = 0, … , 𝑁 − 1. 

Here, 𝐸𝑖
𝑗
 denotes the j-th point in the i-th sensor zone. From all discretely 

sampled points, one point is randomly selected to represent each zone. 

𝑃init = {𝑃1, 𝑃2, … , 𝑃𝑛},  𝑃𝑖ϵ{𝐸𝑖
0, 𝐸𝑖

1, … , 𝐸𝑖
𝑁−1}. 

An initial path is then constructed using the following geometric principle:  

𝐻 = ConvexHull(𝑃init).  
Here: 𝑃init refers to one point taken from the boundary of each zone, i.e., one 

discretized point selected from each zone; H represents the convex hull formed by 

these points, that is, the outermost boundary points. 

As a result, the initial trajectory is defined as 

𝑇0 = {𝑃0, 𝐻1, 𝐻2, … , 𝐻𝑘 , 𝑃0}. 

Stage 3. At this stage, the TSP is solved based on the identified H points. One 

or several TSP algorithms can be applied. The authors propose using the  
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Optimal Insertion Algorithm (OIA) followed by the 2-OPT Algorithm as the 

optimal solution. For each zone, the following insertion cost is calculated: 

∆𝐿 = ‖𝑃𝑖 − 𝐸𝑗‖ + ‖𝐸𝑗 − 𝑃𝑖+1‖ − ‖𝑃𝑖 − 𝑃𝑖+1‖. 

The point 𝐸𝑗 is inserted between 𝑃𝑖 and 𝑃𝑖+1 at the position that results in the 

smallest ΔL. The constructed route is then further optimized using the 2-OPT 

Algorithm. At this stage, two segments in the route are swapped to reduce the 

overall trajectory length. If the following condition is met: 

‖𝑃𝑖 − 𝑃𝑗‖ + ‖𝑃𝑖+1 − 𝑃𝑗+1‖ < ‖𝑃𝑖 − 𝑃𝑖+1‖ + ‖𝑃𝑗 − 𝑃𝑗+1‖, 

then: [Pᵢ₊₁, ..., Pⱼ] → reverse. 

2.2.6. The Directional Nearest Neighbor (DNN) approach 

This approach is inspired by the DNN approach presented in the paper by [24]. In 

other words, this approach can be viewed as a modified version of the original 

method. It is similar in structure to the previously described Within_r approach, but 

differs in its algorithmic implementation. The objective of the DNN Algorithm is to 

construct a faster and more efficient UAV route by allowing entry into a sensor 

zone through the nearest boundary point rather than through its center. This helps 

reduce the total mission time and improves data collection efficiency. The structure 

of the proposed approach includes steps analogous to the first and fourth stages 

described in earlier approaches and uses the same methods applied in those stages. 

Stage 2. Selection of E-points, i.e., the initial set of route points. Let the initial 

UAV position be p0 = (0, 0) and the set of all sensor zones be {C₁, C₂, ..., Cₙ}, each 

with a coverage radius {r₁, r₂, ..., rₙ}.  At the first step, the nearest zone center Cᵢ is 

determined as follows: 

𝑗 = argmin
𝑖ϵ𝑈

‖𝐶𝑖 − 𝑃𝑘‖. 

Finding a point on the edge of this zone, i.e., finding a route point, 

𝐸𝑗 = 𝐶𝑗 −
𝑟𝑗 × (𝐶𝑗 − 𝑃𝑘)

‖𝐶𝑖 − 𝑃𝑘‖
. 

The UAV moves to the selected point: 𝑃𝑘+1 = 𝐸𝑗. Zone j is added to the list of 

visited zones. This process repeats until all zones have been covered. 

Stage 3. A TSP is then solved over the set of determined Eⱼ-points. One or 

several TSP algorithms can be applied. The authors recommend first applying the 

NNA, followed by the 2-OPT Algorithm to further optimize the trajectory. 

2.2.7. The Directional Directed to the next Nearest Node (DDNN) approach  

This approach is based on the DDNN strategy described in [24]. The DDNN 

approach is similar to the previously described DNN approach but introduces key 

algorithmic differences. It represents an improved version of the Nearest Neighbor 

method in which the UAV’s approach point to each sensor zone is directed beyond 

the center of the circle, toward the direction of the next nearest zone. The core idea 

of this approach is to modify the classical TSP-NN Algorithm so that, at the 

beginning of its movement: The UAV moves directly to the first selected node; 

upon reaching the edge of the node’s communication radius, it targets a boundary 
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point on the coverage circle, which is treated as a turning point; then it proceeds 

toward the next closest node, and so on. 

This process continues until all nodes have been visited. This approach is 

similar to the first and fourth stages in the second approach. It uses the methods in 

these stages.  

Stage 2. First, the nearest zone center is selected: 

𝑃 = arg min
(𝑥𝑖,𝑦𝑖)ϵ𝑈

‖(𝑥𝑖, 𝑦𝑖) − 𝑝0‖. 

Then, the entry point Q on the outer boundary of zone P is calculated as 

𝑄 = 𝑃 −
𝑟𝑝×𝑃−𝐵

‖𝑃−𝐵‖
. 

This point lies on the edge of the coverage circle. The UAV is assumed to pass 

through point Q, and zone P is marked as visited: U = U\{P}. Updated current 

position: B = P. 

The next closest zone A in the queue is selected using: 

𝐴 = arg min
(𝑥𝑖,𝑦𝑖)ϵ𝑈

‖(𝑥𝑖, 𝑦𝑖) − 𝐵‖. 

The new turning point C is computed as  

𝐶 = 𝐴 −
𝑟𝑎×𝐴−𝑄

‖𝐴−𝑄‖
. 

The UAV is then assumed to pass through point C, and zone A is marked as 

visited: U = U\{A}. Updated current positions: Q = C, B = A. 

The resulting set of route points is 𝑇0 = {𝑃0, 𝑄1, 𝐶1, 𝐶2, … , 𝐶𝑘 , 𝑃0}. 

Stage 3. Based on the set of generated route points T0, a TSP is formulated. 

For solving this problem, one may use any known TSP algorithm or a hybrid 

method, i.e., a combination of two algorithms. The authors propose applying the 

NNA, followed by the 2-OPT Algorithm for further route optimization. 

For consistency and clarity in the evaluation of the proposed approaches, the 

concept of efficiency in UAV trajectory is defined as a composite measure 

comprising four indicators: the total path length traveled by the UAV [39], the 

computational cost expressed in CPU time [40], the number of maneuver points 

required along the trajectory [41], and the relative deviation of the planned 

trajectory from the sensor centers [10, 42]. Taken together, these indicators provide 

a comprehensive and quantifiable framework that corresponds to the formulated 

research tasks and establishes a transparent basis for the comparative assessment of 

the proposed methods. 

3. Numerical results 

This section presents the numerical results obtained by applying the developed 

algorithms, based on the proposed approaches, to the CETSP. Experiments were 

conducted using a common set of 100 sensor zones for each of the proposed 

algorithms. Table 1 provides the coordinates and coverage radii of the 100 sensor 

zones used across all experiments. 
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Table 1. Parameters of the 100 sensor zones deployed within a 400 × 300 unit monitoring area 

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x 359 78 39 309 205 212 214 145 161 155 363 14 47 179 112 

y 137 145 287 254 29 77 284 242 121 90 86 163 285 24 245 

Radius 5 5 5 5 5 5 5 6 6 6 7 7 7 7 7 

No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

x 89 314 149 224 135 132 145 268 270 267 327 57 171 327 244 

y 107 44 154 277 199 145 77 260 51 281 89 226 143 51 61 

Radius 7 8 8 8 8 8 8 9 9 9 10 10 10 10 11 

No 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

x 250 355 39 100 101 67 315 214 230 366 41 189 119 90 387 

y 100 130 35 221 145 48 232 178 75 259 170 166 269 39 180 

Radius 11 11 11 11 12 12 12 12 12 12 12 12 12 12 13 

No 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

x 146 289 292 369 151 196 301 353 114 188 69 186 45 349 220 

y 91 28 228 65 32 230 136 163 170 45 143 170 179 63 137 

Radius 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 

No 61 62 63 64 65 66 67 68 69 70 71 72 73 61 62 

x 191 372 193 297 306 233 377 10 323 22 234 305 156 191 372 

y 218 233 117 14 30 271 185 276 280 101 288 107 226 218 233 

Radius 15 15 15 15 16 16 16 16 16 16 16 16 16 15 15 

No 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 

x 244 29 47 196 126 69 92 140 370 138 319 285 76 338 216 

y 171 65 14 30 124 64 236 32 164 36 117 110 144 270 71 

Radius 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19 

No 91 92 93 94 95 96 97 98 99 100      

x 114 131 105 390 152 152 22 351 69 11      

y 145 93 45 89 189 45 108 62 207 180      

Radius 19 20 20 20 20 20 20 20 20 20      

Fig. 2 provides a visual representation of the sensor coverage zones distributed 

over a 400×300 unit area, as defined by the data presented in Table 1. Fig. 2a 

specifically illustrates the solution to the TSP constructed using the OIA, where the 

UAV trajectory is computed based on the coordinates of the centers of the sensor 

zones. This result corresponds to stage 1 of the “three-dot line” approach, where the 

initial route is generated by treating the centers of the zones as target points. In the 

first stage of this approach, an initial UAV trajectory is constructed based on the 

sensor zone centers, resulting in a total path length of 2758 units. This route 

effectively intersects all designated sensor coverage zones and can therefore be 

considered suitable for data collection tasks. In the second stage, the trajectory is 

refined using E-points determined by the GEO-6 method, which incorporates 

geometric rules to reduce unnecessary detours. This refinement decreases the total 

trajectory length to 1961 units, with 98 E-points generated to ensure coverage. 
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(a)   (b)   (c) 

Fig. 2. Trajectories built for sensor zones based on the “three-dot line” approach: Trajectory 

generated using the OIA based on the centers of the initial sensor zones (a); Trajectory optimization 

using the GEO-6 method applied to the route points formed from sensor zone centers (b); Efficient 

trajectory covering the sensor zones, constructed using the three-dot line approach (c) 

In the third stage, redundant E-points are eliminated based on coverage 

overlap and segment intersection logic. The resulting optimized trajectory is 

illustrated in Fig. 2c, with a final path length of 1934 units. This final configuration 

successfully covers all sensor zones using only 52 maneuver points, defined as the 

critical turning or shaping points of the trajectory. 

• Experiment for the Second Approach  

The “Overlap Three-Point” approach to solving the CETSP consists of four 

stages, with Stage 1 involving a series of operations that generate merged and 

isolated sensor zones. The general structure of Stage 1 of this approach is illustrated 

in Fig. 3.  

 

   
(a)   (b)   (c) 

Fig. 3. The results of the first stage of processing, taking into account the partial overlap of the 

coverage areas: First stage of the overlap operation – sample visualization of regions formed by the 

intersection of three or more circles (a); Visualization of shapes obtained from the intersection of two 

neighboring circles (b); Final distribution of sensor zones after completion of the first stage (c) 

The first stage of the “Overlap Three-Point” approach consists of the overlap 

operation, which includes several sequential procedures. Initially, the common 

intersection region of three or more circles is identified. In Fig. 3a, the resulting 

areas are shown in blue. For each such region, the maximum inscribed circle is 

computed along with its center. Since this step focuses on intersections involving 

three or more zones, the corresponding original sensor zones are removed from the 

list, and the newly formed zones (circles) are added to it. Next, the second overlap 

step is performed for pairs of intersecting circles. As shown in Fig. 3b, a common 

intersection area is identified for each pair, and within it, the largest inscribed circle 

is generated, and its center is calculated. The original pair of circles is removed 

from the list, and the new circle is added. As a result, an updated set of sensor zones 

is formed over the 400×300 unit area, illustrated in Fig. 3c. After applying the 
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overlap operations to the initial 100 sensor zones, accounting for their mutual 

intersections, a total of 58 merged sensor zones are obtained. Based on these 

merged zones, the second stage of the proposed approach is carried out: a TSP is 

solved over the centers of the 58 circles using the 2-OPT Algorithm. The result is 

shown in Fig. 4a. The total length of the trajectory formed in the second stage is 

2379 units. While this trajectory can serve as a feasible solution to the problem, 

further optimization is possible. In the third stage, using the route obtained in the 

second stage, sequences of three consecutive points (A–B–C) are analyzed to 

determine bisector points. A refined trajectory is then constructed based on these 

bisector points (Figs 4b-4c). The total length of the trajectory constructed at this 

stage by the most effective version of the algorithm is 2017 units, with 58 trajectory 

points. To further improve the efficiency of the trajectory obtained in the third stage 

of the “Overlap Three-Point” approach, a fourth stage is carried out. At this stage, 

the E_optimum method is applied, which reduces the number of trajectory points 

(from 58) while ensuring that the path still intersects all coverage zones. The result 

is shown in Fig. 4d. 

 

 
(a)     (b) 

  
(c)     (d) 

Fig. 4. Visualization of trajectory construction at different stages of the “Overlap Three-Point” 

approach: Initial trajectory through sensor zone centers using the 2-OPT Algorithm (Stage 1) (a); 

Refined trajectory over isolated zones formed during Stage 1 (b); Trajectory adjusted based on the 

original sensor zones (Stage 3) (c); Final optimized trajectory covering all sensor zones using the 

complete “Overlap Three-Point” approach (d) 

• Experiment for the Third Approach  

The experiment for the “Within_r” approach was conducted according to the 

four stages described in Section 2. The construction of the complete trajectory 

involved the following methods: overlap, within_r, nearest neighbor, 2-OPT, and 

E_optimum.  
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• Experiment for the Fourth Approach  

The experiment for the Sampling approach was conducted using three stages 

(excluding the first of the four stages described in Approach 2). The overall 

trajectory was constructed using the following methods: Sampling, Nearest 

Neighbor (NN), 2-OPT, and E_optimum. 

• Experiment for the Fifth Approach  

The experiment for the Convex Hull approach was also conducted using three 

stages (excluding the first of the four mentioned previously). The overall trajectory 

was constructed using the following methods: Convex Hull, Optimal Insertion,  

2-OPT, and E_optimum. 

• Experiment for the Sixth Approach 

The experiment for the DNN approach was conducted using all four stages. 

The overall trajectory was constructed using the following methods: Overlap, DNN, 

NN, 2-OPT, and E_optimum. 

• Experiment for the Seventh Approach  

The experiment for the DDNN approach was carried out using the complete 

four-stage process. The overall trajectory was constructed using the following 

sequence of methods: Overlap, DDNN, Nearest Neighbor, 2-OPT, and 

E_optimum.  

• Results analysis  

Based on the seven proposed approaches, hybrid algorithms were designed 

and implemented as part of this study. Each algorithm was developed in Python and 

executed in a cloud-based Google Colab environment using an Intel Xeon processor 

with 12.67 GB of RAM (via Google Compute Engine).  

All experiments were conducted using the common set of 100 sensor zones 

provided in Table 1. The experimental results were evaluated across four key 

parameters: trajectory length, algorithm computation time, total number of 

maneuver points in the generated trajectory, and relative proximity to each sensor 

zone. The results for these four parameters are summarized in Table 2. 

Table 2 presents a comparative analysis of the efficiency of various hybrid 

algorithms developed using the proposed methodological approaches. In total, 92 

hybrid algorithm variants were implemented – each representing a unique 

combination of routing and optimization strategies. 

The notations and abbreviations in the table represent key components of the 

hybrid algorithms. Optimal Insertion (OI) is a heuristic path-building method from 

[25], while NN uses proximity-based logic [26]. TSI (Two-Step Insertion) extends 

basic insertion by considering two-point integration [27]. The  

2-OPT Algorithm [28] refines trajectories by removing intersecting segments. The 

Overlap method, applied in the first stage, merges intersecting sensor zones to 

simplify planning. In the third stage, the Bisser method introduces bisector points 

(from nodes A, B, and C) to improve route geometry. GEO-6 generates E-points 

that smooth sharp turns. In the final stage, E_optimum removes redundant 

maneuver points while maintaining complete zone coverage, reducing path 

complexity without performance loss. 
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Table 2. Analytical results of the performance of 92 hybrid algorithms developed based on 

seven proposed approaches 
C Approaches (algorithms) L N T R/d 

1.1 Three-dot line (OI+GEO-6+E_optimum) 1934 53 7.2 0.69 

1.2 Three-dot line (2-OPT+GEO-6+E_optimum) 2077 51 16 0.64 

1.3 Three-dot line (NN+GEO-6+E_optimum) 2490 53 9.2 0.6 

1.4 Three-dot line (TSI+GEO-6+E_optimum) 2343 62 8.9 0.69 

1.5 Three-dot line (TSI+2-OPT+GEO-6+E_optimum) 2087 56 11.7 0.67 

1.6 Three-dot line (OI+2-OPT+GEO-6+E_optimum) 2219 53 9.8 0.64 

2.1 Overlab three point (overlab+OI+Bisser+E_optimum) 2183 47 22 0.64 

2.2 Overlab three point (overlab+2-OPT+Bisser+E_optimum) 2000 40 72 0.58 

2.3 Overlab three point (overlab+NN+Bisser+E_optimum) 2633 46 22 0.6 

2.4 Overlab three point (overlab+TSI+Bisser+E_optimum) 2047 43 22 0.62 

2.5 Overlab three point (overlab+TSI+2-OPT+Bisser+E_optimum) 2443 41 19 0.55 

2.6 Overlab three point (overlab+OI+2-OPT+Bisser+E_optimum) 2143 43 21 0.62 

2.7 Overlab three point (overlab+OI+Geo-6+E_optimum) 2210 50 24 0.63 

2.8 Overlab three point (overlab+2-OPT+Geo-6+E_optimum) 2017 44 81 0.59 

2.9 Overlab three point (overlab+NN+Geo-6+E_optimum) 2644 46 25 0.61 

2.10 Overlab three point (overlab+TSI+Geo-6+E_optimum) 2070 47 20 0.63 

2.11 Overlab three point (overlab+TSI+2-OPT+Geo-6+E_optimum) 2467 40 23.2 0.57 

2.12 Overlab three point (overlab+OI+2-OPT+Geo-6+E_optimum) 2158 43 25.7 0.63 

3.1.1 Within_r (Within_r +NN+E_optimum) 2613 53 6 0.56 

3.1.2 Within_r (Within_r +NN+2-OPT+E_optimum) 2574 53 13 0.57 

3.1.3 Within_r (overlab+Within_r +NN+E_optimum) 2594 53 10 0.58 

3.1.4 Within_r (overlab+Within_r +NN+2-OPT+E_optimum) 2282 51 14 0.58 

3.2.1 Within_r (Within_r +OI+E_optimum) 2844 48 4 0.56 

3.2.2 Within_r (Within_r +OI+2-OPT+E_optimum) 2499 46 42 0.6 

3.2.3 Within_r (overlab+Within_r +OI+E_optimum) 2681 49 12 0.5 

3.2.4 Within_r (overlab+Within_r +OI+2-OPT+E_optimum) 2515 49 15.3 0.51 

3.3.1 Within_r (Within_r +TSI+E_optimum) 2650 60 8.86 0.52 

3.3.2 Within_r (Within_r +TSI+2-OPT+E_optimum) 2492 52 22.6 0.52 

3.3.3 Within_r (overlab+Within_r +TSI+E_optimum) 2369 50 9.83 0.53 

3.3.4 Within_r (overlab+Within_r +TSI+2-OPT+E_optimum) 2297 49 11.4 0.53 

4.1.1 Sampling (sampling+NN+E_optimum) 2462 51 3 0.55 

4.1.2 Sampling (sampling+NN+2-OPT+E_optimum) 2323 48 18 0.52 

4.1.3 Sampling (overlab+sampling+NN+E_optimum) 2507 54 9 055 

4.1.4 Sampling (overlab+sampling+NN+2-OPT+E_optimum) 2368 49 13 0.55 

4.2.1 Sampling (sampling+OI+E_optimum) 2590 51 32 0.56 

4.2.2 Sampling (sampling+OI+2-OPT+E_optimum) 2553 50 40 0.57 

4.2.3 Sampling (overlab+sampling+OI+E_optimum) 2477 48 19 0.55 

4.2.4 Sampling (overlab+sampling+OI+2-OPT+E_optimum) 2373 49 19 0.56 

4.3.1 Sampling (sampling+TSI+E_optimum) 2980 51 2.3 0.5 

4.3.2 Sampling (sampling+TSI+2-OPT+E_optimum) 2645 52 2.3 0.5 

4.3.3 Sampling (overlab+sampling+TSI+E_optimum) 2633 46 7.2 0.49 

4.3.4 Sampling (overlab+sampling+TSI+2-OPT+E_optimum) 2524 47 6.82 0.48 

4.4.1 Sampling (sampling+2-OPT+E_optimum) 2480 53 30 0.58 

4.4.2 Sampling (overlab+sampling+2-OPT+E_optimum) 2392 50 17 0.51 

5.1.1 Convex Hull (Convex Hull +OI+E_optimum) 2351 58 7.5 0.68 
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Table 2 (c o n t i n u e d ) 
5.1.2 Convex Hull (Convex Hull +OI+2-OPT+E_optimum) 2232 56 14.6 0.7 

5.1.3 Convex Hull (overlab+ Convex Hull +OI+E_optimum) 2360 49 8 0.53 

5.1.4 Convex Hull (overlab+ Convex Hull +OI+2-OPT+E_optimum) 2331 49 11.2 0.54 

5.2.1. Convex Hull (Convex Hull +NN+E_optimum) 4190 57 7.1 0.51 

5.2.2 Convex Hull (Convex Hull +NN+2-OPT+E_optimum) 3084 58 23 0.5 

5.2.3 Convex Hull (overlab+ Convex Hull +NN+E_optimum) 3645 52 12 0.48 

5.2.4 Convex Hull (overlab+ Convex Hull +NN+2-OPT+E_optimum) 2683 49 13.4 0.47 

5.3.1 Convex Hull (Convex Hull +TSI+E_optimum) 2784 64 3.4 0.56 

5.3.2 Convex Hull (Convex Hull +TSI+2-OPT+E_optimum) 2627 57 4.3 0.55 

5.3.3 Convex Hull (overlab+ Convex Hull +TSI+E_optimum) 2579 51 8.6 0.48 

5.3.4 Convex Hull (overlab+ Convex Hull +TSI+2-OPT+E_optimum) 2473 50 14.1 0.5 

5.4.1 Convex Hull (Convex Hull +2-OPT+E_optimum) 3648 62 6.2 0.49 

5.4.2 Convex Hull (overlab+ Convex Hull +2-OPT+E_optimum) 3241 51 12.3 0.6 

6.1.1 DNN (DNN +OI+E_optimum) 2645 53 15.6 0.5 

6.1.2 DNN (DNN+OI+2-OPT+E_optimum) 2452 50 23 0.53 

6.1.3 DNN (overlab+ DNN +OI+E_optimum) 2526 49 10.4 0.54 

6.1.4 DNN (overlab+DNN+OI+2-OPT+E_optimum) 2367 49 13 0.54 

6.2.1 DNN (DNN +TSI+E_optimum) 2547 49 5.3 0.52 

6.2.2 DNN (DNN+TSI+2-OPT+E_optimum) 2299 46 6.1 0.58 

6.2.3 DNN (overlab+ DNN +TSI+E_optimum) 2205 52 9.7 0.56 

6.2.4 DNN (overlab+DNN+TSI+2-OPT+E_optimum) 2185 51 11.8 0.57 

6.3.1 DNN (DNN +NN+E_optimum) 2656 52 6.4 0.54 

6.3.2 DNN (DNN+NN+2-OPT+E_optimum) 2215 50 6.6 0.57 

6.3.3 DNN (overlab+ DNN +NN+E_optimum) 2346 50 10.8 0.57 

6.3.4 DNN (overlab+DNN+NN+2-OPT+E_optimum) 2127 47 15.4 0.57 

6.4.1. DNN (DNN +E_optimum) 2665 53 5.6 0.55 

6.4.2 DNN (DNN+2-OPT+E_optimum) 2558 53 10 0.57 

6.4.3 DNN (overlab+ DNN+E_optimum) 2460 52 10.7 0.58 

6.4.4 DNN (overlab+DNN+2-OPT+E_optimum) 2346 50 11.6 0.58 

7.1.1 DDNN (NN+DDNN+E_optimum) 2669 49 5.4 0.55 

7.1.2 DDNN (DDNN+NN+E_optimum) 2799 51 10 0.49 

7.1.3 DDNN (DDNN +NN+2-OPT+E_optimum) 2412 51 30 0.51 

7.1.4 DDNN (overlab+NN+DDNN+E_optimum) 2743 45 13 0.54 

7.1.5 DDNN (overlab+DDNN+NN+E_optimum) 2420 44 16 0.56 

7.1.6 DDNN (overlab+DDNN+NN++2-OPT+E_optimum) 2256 45 17 0.59 

7.2.1 DDNN (DDNN +TSI+E_optimum) 2752 50 7.2 0.49 

7.2.2 DDNN (DDNN+TSI+2-OPT+E_optimum) 2620 51 15 0.46 

7.2.3 DDNN (overlab+ DDNN +TSI+E_optimum) 2740 47 14.9 0.54 

7.2.4 DDNN (overlab+DDNN+TSI+2-OPT+E_optimum) 2460 47 13.5 0.54 

7.3.1 DDNN (DDNN +OI+E_optimum) 2672 52 19.3 0.47 

7.3.2 DDNN (DDNN+OI+2-OPT+E_optimum) 2552 54 16.3 0.49 

7.3.3 DDNN (overlab+ DDNN +OI+E_optimum) 2591 47 12 0.57 

7.3.4 DDNN (overlab+DDNN+OI+2-OPT+E_optimum) 2523 45 12.6 0.56 

7.4.1 DDNN (DDNN +E_optimum) 2681 50 11.3 0.54 

7.4.2 DDNN (DNN+2-OPT+E_optimum) 2503 50 2.3 0.53 

7.4.3 DDNN (overlab+ DDNN+E_optimum) 2743 45 7.45 0.54 

7.4.4 DDNN (overlab+DDNN+2-OPT+E_optimum) 2582 48 7.25 0.56 

 

The performance of the hybrid algorithms was evaluated using four key 

metrics: total trajectory Length (L), Number of maneuver points (N), computation 
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Time (T), and Relative deviation (R/d). Length L measures the overall UAV travel 

distance; N indicates the number of hotspots forming the route; T reflects 

algorithmic processing time; and R/d represents the normalized average distance 

from the UAV path to the centers of the sensor zones, directly impacting data 

accuracy.  

Depending on mission constraints, the four metrics are prioritized as follows. 

• For energy-constrained missions, the priority is L, followed by N, T, and 

finally R/d. 

• For real-time or on-board replanning tasks, T is the primary criterion, 

followed by L, N, and R/d. 

• Under strong kinematic constraints, N (or trajectory smoothness) is 

prioritized first, followed by L, T, and R/d. 

• For coverage-quality-driven missions, R/d is the leading criterion, followed 

by L, N, and T. 

For multi-objective settings, a normalized weighted score is additionally 

reported: 

𝑆 = 𝜔1𝐿′ + 𝜔2𝑇′ + 𝜔3𝑁′ + 𝜔4 (
𝑅

𝑑
)

′
,  

where L′, T′, N′, (R/d)′ denote the normalized values of the metrics, and the weights 

𝜔1, 𝜔2, 𝜔3, 𝜔4 are weighting coefficients that reflect the relative importance of the 

metrics under specific mission scenarios. 

Communication quality, energy consumption, and real-time trajectory 

adjustments are beyond the scope of this study and left for future work. The results 

show that algorithm performance strongly depends on the spatial distribution and 

coverage radius of sensor zones. Besides coverage, factors such as node density, 

inter-node distances, and network topology also affect outcomes. Therefore, a 

preliminary assessment of sensor placement is recommended. In dense 

deployments, overlap-based approaches tend to perform better. 

4. Conclusion 

Based on experimental analysis, the efficiency of 92 hybrid algorithms – developed 

from seven convergence models – was evaluated according to four key parameters: 

total trajectory length, computation time, number of maneuver points, and relative 

deviation from sensor zones. The results demonstrated that trajectory performance 

depends not only on the chosen algorithm, but also on the placement, spatial 

density, and coverage radius of the sensor nodes. One of the key aspects of the 

analysis was the relative deviation parameter, reflecting how close the trajectory 

passes to the centers of the sensor zones – thus directly influencing data acquisition 

quality.  

To further demonstrate the practical relevance of the proposed methods, a case 

study was conducted based on the dataset of 100 sensor zones deployed in a  

400 × 300 unit area (Table 1 and Fig. 2). The configuration models a precision 

agriculture scenario with soil moisture and temperature sensors having coverage 

radii between 5 and 20 units. Using a classical TSP-based routing approach, the 
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UAV trajectory length was about 2600 units. With the proposed hybrid algorithms, 

the total route length was reduced by 15-20% while ensuring complete coverage of 

all sensor zones. This reduction leads to shorter flight times and lower energy 

consumption, which is particularly important for UAVs with limited battery 

capacity. Based on the above results, the “Three-dot Line” can be recognized as the 

most effective approach. 

Although the proposed approaches demonstrate efficiency in UAV trajectories 

for large-scale data collection, certain practical constraints, such as UAV autonomy 

margin, communication range, and environmental factors, were not explicitly 

addressed in this study. These factors represent important practical considerations 

and will be investigated in future research to extend the applicability of the 

proposed approaches to real-world scenarios. 
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