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Abstract: This study aims to expand the understanding of Artificial Intelligence (AI) 

attack scenarios and develop effective protection mechanisms against them. The 

triadic principle was used to investigate attacks on traditional systems and AI 

systems, enhance these attacks using AI, and employ AI for cybersecurity defence. 

By systematically analysing the interactions between these elements, we create a 

comprehensive set of attack scenarios and corresponding defensive strategies. 

Current analysis reveals distinct attack patterns and vulnerabilities associated with 

traditional and AI-based systems. Effective defence mechanisms and strategies were 

identified and tailored to various attack scenarios, leveraging AI’s capabilities for 

improved security measures. The findings provide a structured approach to 

understanding and mitigating AI-related threats in cybersecurity. By mapping out 

the roles of AI in both attack and defence, this study offers valuable insights for 

developing advanced tools and methods to assess system security and enhance 

countermeasures.  

Keywords: Cybersecurity, Artificial Intelligence (AI), Machine Learning (ML), 

Cyberattacks, Countermeasures. 

1. Introduction and related works 

1.1. Motivation 

Artificial Intelligence (AI) is rapidly evolving, integrating into an increasing 

number of products, services, and processes and becoming an indispensable tool for 

solving complex problems and enhancing efficiency across all areas of society and 

industry. On the one hand, this leads to greater automation of processes, making life 

easier. Still, on the other hand, modern scientific and technological progress, 

particularly in AI, could potentially lead to certain kinds of disasters. The negative 

consequences of the rapid development of AI could be irreversible and have an 

adverse impact on society and human life. 
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Firstly, Artificial Intelligence Systems (AIS) are increasingly being integrated 

into critical components of society, creating a new surface for attacks on the AI 

technology itself. Secondly, the lawfulness of AI usage raises concerns. Lawfulness 

refers to an AI system’s ability to comply with applicable laws and regulations. Any 

technology can be used both legally and maliciously. Recently, there has been a 

rapid increase in the use of AI to enhance existing cyberattacks and create entirely 

new services utilising AI that aim to violate legal norms. Additionally, AI-as-a-

Service is becoming more widespread, lowering the barrier to market entry by 

reducing the skills and technical expertise required to use AI. The Bletchley 

Declaration [1], signed by representatives of twenty-eight governments at the AI 

safety summit, emphasises the importance of regulation and ethics in AI 

development. This declaration unites countries for joint research and the 

development of new rules governing the use of AI.  
To understand the full range of possibilities and limitations of AI, it is 

essential to examine it from multiple perspectives. This includes considering it a 

vulnerable system that can be attacked, as a tool for creating and enhancing 

cyberattacks, and as a means of defence against traditional cyberattacks [2]. This 

comprehensive understanding can pave the way for leveraging AI’s potential to 

strengthen cybersecurity, offering hope in the battle against cyber threats. 

1.2. Related works 

During the review process, 63 studies focusing on cyberattacks and the use of AI 

for defence against attacks were considered, as shown in Table 1. Most reviews 

focus on specific attacks or approaches to ensuring cybersecurity.  

Table 1. Related works analysis 
Reference Type of attack Description 

[3-11] DDoS 
The sources examine the principles of DDoS attacks, potential defence mechanisms, 

and both traditional methods and AI-powered solutions 

[12-15] 
DGA 

generation 

The sources examine various Domain Generation Algorithms (DGA) and potential 

defence mechanisms based on ML 

[16-19] 
Fake news 

generation 

The sources examine various types of fake news, including methods for manually 

detecting them and utilising automated tools, as well as the challenges involved in 
the detection process 

[20-25] 
Fake images 

generation 

The sources examine methods for detecting fake, manipulated, or misused images 

using traditional and AI-powered techniques 

[26-29] 
Deep fake 
generation 

The sources examine methods for detecting fake videos using AI-powered tools 

[30-41] Phishing attack 

The sources examine various phases of the phishing attack lifecycle, their taxonomy, 

and countermeasures using multiple techniques, including both static methods and 
AI-powered tools 

[42-51] Poisoning attacks 

The sources examine various poisoning attacks (Targeted, Indiscriminate, Backdoor) 

on different learning and models, such as Machine Learning (ML), Deep Learning 

(DL), and federated learning. They review and analyse countermeasures to mitigate 
poisoning attacks, focusing on limitations and complexities involved in defence 

strategies 

[48, 51-

57] 

Model component 

stealing 

The sources examine various types of privacy attacks on AI models, categorization, 
goals, and methods of applying attacks to obtain confidential data about the internal 

components of models, training data, or copies of their behaviour 

[51, 58-

65] 

Evasion 
(Adversarial & 

Sponge) Attack 

The sources examine methods of conducting adversarial attacks on ML and DL 
models, as well as countermeasures to mitigate the consequences of attacks or avoid 

them altogether 
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While numerous cyberattack types exist, this study deliberately focuses on a 

selected subset that is both highly representative and directly relevant to the role of 

AI in cybersecurity. The chosen attack types – DDoS, DGA, fake/disinformation, 

phishing, poisoning, model theft, and adversarial (evasion) attacks – were identified 

from the analysis of 63 recent studies (see Table 1) as among the most prevalent 

and impactful. They represent diverse mechanisms (network-level, content-level, 

data-level, and model-level), ensuring that the taxonomy captures the main 

dimensions of AI-related cyber threats without diluting the analysis across less 

significant or rarely documented attacks. This scope allows for a balanced treatment 

of depth and breadth while maintaining relevance to the triadic principle. 

1.3. Objectives, structure, and scenario-based approach 

The primary objective of this investigation is to develop an expanded set of attack 

scenarios and corresponding defensive strategies [2] using the proposed triadic 

principle, as presented in Table 2. This principle integrates three dimensions: the 

type of attack, the type of protection, and the type of system. All this three 

dimensions could be either traditional or AI-powered. By systematically combining 

these elements, the study enumerates all logically possible configurations of 

cyberattacks and countermeasures in both traditional and AI-driven contexts. The 

resulting taxonomy contributes to a deeper understanding of the diverse roles of AI 

in cybersecurity. It provides a foundation for creating assessment tools and 

methodologies to evaluate system resilience and the effectiveness of 

countermeasures. 
 

Table 2. Scenarios  

Scenario No Scenario 

1 TA – TP – TS 

2 TA – AIP – TS 

3 AIA – TP – TS 

4 AIA – AIP – TS 

5 TA – TP – AIS 

6 TA – AIP – AIS 

7 AIA – TP – AIS 

8 AIA – AIP – AIS 

Scenarios Abbreviation: T – Traditional, AI – AI-powered, S – System,  

P – Protection/countermeasures, A – Attack. 
 

It should be noted that Table 2 represents the complete set of possible 

scenarios that emerge when applying the triadic principle. By combining the three 

dimensions – type of attack, kind of protection, and type of – the resulting eight 

scenarios form an exhaustive taxonomy. This clarification is essential, as it ensures 

that the analysis covers all logically possible configurations of attack and defence in 

the context of both traditional and AI-driven cybersecurity. 

Based on a set of attack scenario taxonomy [2], the proposed methodology can 

be dedicated to developing a framework for cybersecurity analysis of AI-based and 

AI-protected systems in conditions of AI-powered attacks. To better understand the 

complexities of cybersecurity threats in AI-powered systems, a comprehensive 
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analysis identified seven general attacks, along with subdistributions that cover the 

abovementioned scenarios. The survey organisation is presented in Fig. 1. 

The first part motivates by emphasising the critical need for advanced 

cybersecurity frameworks tailored to AI-powered systems in response to the 

evolving cyber threat landscape. The second part reviews prior research efforts, 

primarily concentrating on categorising cyber threats and devising defence 

mechanisms to counter them. The third stage delineates the primary objective of 

proposing a methodology to analyse and combat AI-driven cyber threats. It also 

provides a structured overview of the research methodology, including the 

definition of key terms (described below), aiming to offer a comprehensive 

approach to addressing cybersecurity challenges in the context of AI advancements. 

 

 
Fig. 1. Survey process and overall structure of the manuscript 

In the paper, a detailed analysis is conducted for each of the defined attacks – 

DDoS, DGA generation, fake data generation, phishing, penetration attacks, model 

extraction, and poisoning attacks – to cover various crucial aspects. This includes 

examining state-of-the-art techniques employed in perpetrating the attack, 

understanding its impact on the fundamental principles of cybersecurity – namely, 

Confidentiality, Integrity, and Availability (CIA) – explaining the underlying attack 

principles, and assessing the potential for leveraging AI to enhance the 

effectiveness of the attack. Furthermore, defensive strategies are explored, both 

with and without the integration of AI, to counteract the identified threats.  

The remainder of the manuscript is organised as follows. Sections 2-8 examine 

selected attack types, including DDoS, DGA, fake/disinformation, phishing, 

poisoning, model theft, and adversarial attacks. For each attack, the state-of-the-art 

attack mechanism and defensive strategies (both traditional and AI-powered) are 

analysed, along with their impact on the CIA triad. Section 9 presents a case study 

of risk assessment using the quantitative methodology Intrusion Modes Effects 

Criticality Analysis (IMECA) [2]. Section 10 discusses the broader challenges and 

limitations of AI in critical systems, with a particular focus on explainability, 
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lawfulness, and ethics. It outlines the role of AI within the cyber kill chain, 

emphasising its importance in enhancing overall cybersecurity defence strategies. 

Finally, Section 11 concludes the paper and outlines future research in the field of 

AI-powered cybersecurity. 

1.4. Definitions 

To create a taxonomy, it is necessary to define what constitutes traditional and AI-

powered attacks, including AI-powered countermeasures, and to distinguish 

between traditional and AI Systems. 

Traditional System – a set of resources organised for the collection, 

processing, maintenance, use, sharing, dissemination, or hosting of information, 

without embedded capabilities of AI for analysis and decision-making. 

Artificial Intelligence System – a complex of tools and algorithms aimed at 

collecting, processing, and understanding information, and capable of analysing 

data and making intelligent decisions using methods such as ML, neural networks, 

and DL, to achieve tasks previously considered achievable only by humans. 

Traditional Cyber Attack – intentional exploitation of vulnerabilities in 

computer systems and networks to cause harm, gain unauthorised access, destroy 

information, etc. 

AI-powered Cyber Attack – attacks using AI technologies to enhance existing 

cyber-attacks and create entirely new services using AI, aimed at violating legal 

norms.  

Attack on AI – deliberate manipulation of AIS with the ultimate goal of 

causing its malfunction. 

Traditional Protection – a set of methods and tools designed to protect 

computer systems and data from threats and attacks. TP includes the use of 

antivirus software, firewalls, security monitoring systems, authentication and 

authorisation methods, data encryption, and other traditional protection methods to 

ensure the confidentiality, integrity, and availability of information. 

Protection based on AI for Traditional Systems – involves using AIS to detect 

and prevent security threats in real-time, such as detecting unusual activity in 

computer networks, filtering spam and malicious emails, identifying manipulated 

images, etc.  

Protection of AI Systems using AI Tools – entails developing and 

implementing intelligent methods and algorithms that leverage the process of 

creating AI models to detect and prevent potential threats for self-defence.  

2. DDOS attacks 

2.1. State-of-the-art 

Research into Distributed Denial of Service (DDoS) attacks remains a popular and 

active field of study: [3] describes the lifecycle, taxonomy, architecture, and 

characteristics of stationary and mobile botnets, and it outlines requirements for 

defence mechanisms against DDoS attacks and compares ML and statistical 

methods; [4] analyses Botnet Detection Techniques, botnet Command and Control 
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(C&C) system architecture, and more; [8] presents an overview of the latest 

methods for detecting DDoS attacks at the application level; authors in [9] delve 

into performance evaluation metrics, attack execution tools, and systematic defence 

mechanisms against DDoS. 

2.2. Attack mechanism 

DDoS attacks are typically launched using botnet technology through centralised, 

distributed, or hybrid command-and-control architectures [4]. The botmaster can 

maintain a Command and Control (C&C) server to manage the bot and initiate 

various types of cyberattacks, such as DDoS attacks, spam, phishing, fraud, 

information theft, and cryptocurrency mining. The operation scheme of a DDoS 

attack is illustrated in Fig. 2. The architecture of a botnet’s C&C system is generally 

categorised into three types [4]: centralised – where the bot primarily receives 

control commands from a polling-based control server, and the botmaster sends 

control commands and resources to the zombie hosts through these servers; 

distributed – where any node can act as both a client and server simultaneously and 

the communication process doesn’t rely on publicly reachable server resources, 

hybrid – which typically combines both central and Peer-to-Peer (P2P) structures. 

Attackers leverage large-scale compromised hosts, known as “zombies”, to flood a 

target with traffic, rendering services unavailable. 

 

 
Fig. 2. DDoS attacks scheme 

2.3. Defence strategies 

TTraditional countermeasures include IDS, firewalls, and anomaly detection; 

however, these approaches struggle to distinguish between malicious and legitimate 

traffic. AI-based methods – such as ML classifiers (Naive Bayes, Random Forest, 

SVM) and DL models (CNNs, RNNs, LSTMs) – improve detection by learning 

complex traffic patterns and achieving lower false positive rates [9-11]. This shift 

from traditional filtering towards AI-driven solutions represents the core 

contribution of current research on DDoS mitigation. 
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In summary, although DDoS is a well-studied attack, AI substantially 

increases both the scale and efficiency of botnet-based assaults while also enabling 

more accurate and adaptive detection. AI-driven models, particularly ML and DL 

approaches, outperform traditional defences in distinguishing malicious from 

legitimate traffic, making AI the central factor in both the evolution and mitigation 

of modern DDoS threats. 

3. DGA generation attack 

3.1. State-of-the-art 

Domain Generation Algorithms (DGAs) are utilised by various malicious software 

families to periodically generate new domain names for connecting infected hosts to 

their C&C servers. DGAs may employ pseudo-random algorithms to create domain 

names, starting from a common root/initial seed, which could be a string, a date, or 

a set of numbers and special characters. DGAs are integral to DDoS attacks. 

In the context of DGA research, the primary focus is on methods for 

distinguishing between legitimate and malicious domains. Article [13] describes 

techniques for detecting generated domain names, particularly those used by 

malicious software. Article [12] discusses the taxonomy of DGAs, including Script-

Based DGAs and Binary-Based DGAs. Article [14] proposes a method for 

detecting DGA domain names based on ML.  

This rotation of domains complicates blacklisting and enhances botnet 

resilience [12-15]. As this attack vector is extensively analysed in the literature, we 

provide only a brief overview before focusing on the specific role of AI in both 

creating and defending against DGA-based threats. 

3.2. Attack mechanism 

DGAs generate thousands of domain names daily using pseudo-random or 

algorithmic seeds shared between the malware and its C&C server. Attackers 

register a fraction of these domains, ensuring persistence even if some are 

blacklisted. The operational principle of DGA is illustrated in Fig. 3. 

 

 
Fig. 3. DGA attack scheme 

In addition to traditional domain generation algorithms, their generation can be 

automated using AI. Recent advances include AI-powered DGAs, such as 
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DeepDGA, which leverage GANs to produce domain names that closely resemble 

legitimate ones and evade detection even by DL-based classifiers [66]. 

In summary, DGAs remain a key enabler of resilient botnet infrastructures, 

and the integration of AI significantly increases their sophistication by generating 

domains that closely resemble legitimate ones and evade traditional detection. At 

the same time, AI-powered defence mechanisms – ranging from feature-based ML 

classifiers to deep learning models – provide the most effective countermeasures. 

This dual role underscores the importance of advancing adaptive AI-driven 

detection strategies to keep pace with the evolution of AI-enhanced DGAs. 

3.3. Defence strategies 

Traditional methods, such as blacklisting or rule-based filtering, are ineffective 

against rapidly changing domains. Instead, detection has shifted towards AI 

approaches. Feature-based ML models use lexical and statistical properties (length, 

character ratios, etc.) [13, 14], while featureless DL methods employ character-level 

embeddings for classification [15]. These AI-driven approaches significantly 

outperform traditional defences in terms of adaptability and detection accuracy, 

making them the primary direction for combating modern DGAs. 

4. Disinformation attacks 

4.1. State-of-the-art 

The EU Commission [67] defines misinformation as the creation, presentation, and 

dissemination of false or misleading information for economic gain or intentional 

public deception, which can harm society. Disinformation, encompassing fake 

news, manipulated media, and synthetic content, represents a critical cybersecurity 

and societal challenge. It can undermine public trust, influence political processes, 

and facilitate large-scale manipulation campaigns. While numerous typologies exist 

(misinformation, propaganda, satire, hoaxes, rumours, clickbait) [16-19], this study 

provides only a concise overview and instead emphasises the role of AI in 

generating and countering disinformation. 

4.2. Attack mechanism 

Social bots are the most common non-human creators of fake news. Social bots are 

computer algorithms designed to mimic human behaviour, automatically generate 

content, and interact with people on social media. Creating fake news involves 

various AI techniques, such as Generative Adversarial Networks (GAN), models 

like Generative Pre-trained Transformer (GPT), Long Short-Term Memory 

(LSTM), and Natural Language Processing (NLP) techniques to generate false 

information. Real people are vital sources of spreading fake news; they may use AI 

to create and spread fake news, but they can also rely on other methods. 

Disinformation can take various forms, including textual data, images, videos, and 

audio recordings, which will be discussed in the following sections. 
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4.3. Defence strategies 

When analysing the news, key characteristics can be identified [16, 17]: Source 

(human or automated), information content, social context, target promoters (bots or 

humans), and target audience or victims [18]. 

4.3.1. Detection of fake news 

Fact-checking determines the accuracy and truthfulness of information that may be 

unreliable or contain falsehoods. Fact-checking can be conducted manually and 

automatically [19], utilising computer algorithms and AI to analyse and verify 

information, detecting false or unreliable facts in news and other sources. Online 

news can be collected from various sources, such as news agencies’ homepages, 

search engines, and social media websites [16, 18]. Additionally, models are aimed 

at detecting toxic content, manipulation, hate speech, sexism, anti-Semitism, radical 

symbols, and fake reviews. 

4.3.2. Fake image detection 

Fake or manipulated images are also used to create false news. The complex 

changes may involve removing or inserting people into images [20]. Visual features 

include clarity assessment, coherence assessment, similarity distribution histogram, 

diversity assessment, clustering assessment, and more. In [17], it is noted that 

compared to genuine images, fake images often exhibit higher clarity and coherence 

but lower diversity and clustering. 

Traditional methods for detecting fake images (or those used in the wrong 

context) include Metadata analysis [21], which includes information about how files 

are generated and processed, and image reverse search based on the web.  

AI methods for detecting fake images (or those used in the wrong context) are 

as follows.  

• Image forgery detection [22]. The goal is to detect image manipulations, 

including copying and pasting, montage, deletion, and enhancement. Authors of 

[22] propose a forgery detection system implemented through three modules: A 

metadata-based module, neural networks, and error-level analysis. Meanwhile, 

resource [23] discusses the creation of the Digital Forensics 2023 (DF2023) 

database, which shall consist of one million images distributed across four main 

categories of forgeries, thereby opening avenues for research and the development 

of new forgery detection methods.  

• Image-based geolocation estimation. The task involves estimating the 

location where a photo was taken. Methods for this include location estimation 

using image content and DL to recognise patterns.  

• Fake face detection. The task is to detect counterfeit images of faces, 

which can be used to create fake user profiles, author photos, or those of witnesses 

or experts. 

GANs can generate realistic fake face images that can easily deceive people. 

For example, the service https://thispersondoesnotexist.com creates realistic 

photos of people who do not exist using DL technology.  

https://thispersondoesnotexist.com/


 165 

Research [24] focuses on understanding and detecting fake faces created by 

GANs, making key contributions: first, studying how humans and Convolutional 

Neural Networks (CNNs) distinguish between fake and real faces; second, 

enhancing fake face detection through the “Gram-Net” architecture, which utilises 

global texture representations. [25] discusses a new method to thereby enhance fake 

face detection and enable more effective detection of counterfeit details. 

4.3.3. Fake video detection 

Deepfake is a technique for synthesising human images based on AI. Deepfake 

combines and overlays existing pictures and videos onto target images or videos 

using ML methods. These realistically manipulated videos are difficult to 

distinguish with the naked eye [26]. 

However, deepfakes also pose significant threats to our society, political 

systems, and businesses According to the purposes of facial manipulation 

algorithms, existing deepfake algorithms can be categorised into two categories 

[27]: Face swapping and face reenactment.  

The goal of AI-based methods is to detect fake or altered video content, 

including identifying manipulated video recordings and content created within 

videos. This requires various technologies, such as pattern analysis and recognising 

fake elements or artefacts that may indicate video manipulation. In [28], a proposed 

system employs a neural network approach to detect Deepfake videos. In [29], an 

automatic deepfake detection system is introduced, utilising a CNN to extract 

frame-level features. These features are then fed into a Recurrent Neural Network 

(RNN), which determines whether the video has been manipulated. 

In summary, while disinformation is not a new phenomenon, AI dramatically 

increases its scale and realism. At the same time, AI provides the most promising 

defensive capabilities, making the balance between adversarial generation and 

detection a dynamic research frontier. 

5. Phishing attack 

5.1. State-of-the-art 

Phishing is one of the most widespread cyberattacks, exploiting both technical and 

human vulnerabilities to obtain sensitive data, spread malware, or hijack 

accounts.[68]. Current research on phishing attacks and defences includes the 

development of various taxonomies, classifications, and attack stages [30-33]. 

Relevant directions involve developing and assessing countermeasures based on 

ML, DL, and traditional methods [34-40]. The emergence of Phishing-as-a-Service 

(PhaaS) platforms further lowers the entry barrier for adversaries by offering ready-

to-use infrastructures [30]. 

5.2. Attack mechanism 

Among the methods of phishing attacks, the following are distinguished: deceptive 

phishing, where the perpetrator uses social engineering methods to deceive victims 

[31-32]. The most common types of social phishing include phishing emails, 
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spoofed websites, phone phishing (vishing and SMishing), social media attacks 

(soshing and social media phishing), and technical phishing.  

It is possible to highlight the diversity of phishing attacks via email, which 

consists of six stages, as shown in Fig. 4, as it is the most widespread variant. 

 

 
Fig. 4. Phishing attacks scheme 

 

Regarding the creation of phishing text, two actors are identified: a human or a 

bot that manually alters text using computer programs or generates it automatically 

using AI.  AI significantly extends these capabilities: frameworks like SNAP_R 

[41] automatically generate spear-phishing emails tailored to specific users, while 

advanced natural language models create highly convincing phishing messages. 

Automated phishing generators, originally developed for defensive dataset creation 

[36, 39], can also be misused for malicious purposes. The combination of PhaaS 

platforms and AI text generators increases the scalability and success rate of 

phishing campaigns. 

5.3. Defence strategies 

5.3.1. Traditional methods of phishing detection 

There are traditional computerised anti-phishing techniques and AI-based methods 

of non-computerised and computerised anti-phishing techniques [30, 34], yet these 

are insufficient against AI-enhanced phishing. The primary focus in phishing 

detection is classifying objects, such as websites, emails, links, and messages, to 

determine whether they are phishing or legitimate. ML trains models that learn to 

distinguish phishing from unknown or legitimate objects [35]. 

Current defences increasingly rely on AI-based techniques: 
• Machine learning models (logistic regression, SVM, random forest, 

gradient boosting) classify emails, websites, and URLs using features such as 

HTML content, hyperlinks, or lexical cues [35, 36, 39]. 

• Deep learning approaches (CNNs, LSTMs, hybrid ensembles) enable 

detection of previously unseen phishing samples and adapt to new attack patterns  

[37, 40]. 



 167 

• Generative approaches (e.g., Adversarial Autoencoders) are employed to 

augment training datasets with realistic phishing samples, improving resilience 

against novel attacks [38]. 

• Explainable AI methods improve trust and usability by highlighting which 

features lead to classification decisions. 

5.3.2. Attacks on AI 

The success of AI in a wide range of applications heavily relies on the availability 

of computational resources and large datasets for training. However, the 

fundamental assumption that “training datasets are representative and adequately 

reflect the conditions encountered during real-world testing of AI systems, and the 

basic parameters and structure of AI models are considered secure by default”, upon 

which training is based, creates vulnerabilities. However, this assumption is invalid 

in data poisoning attacks, model component theft, or adversarial attacks. The main 

challenges include the complexity and cost of data collection and labelling, as well 

as the setup and deployment of custom AI models. In such cases, these tasks are 

often delegated to third parties and services, which can lead to potentially negative 

and risky consequences.  

AI system vulnerabilities stem from: (1) using unreliable external data sources 

[42, 45]; (2) reliance on third-party training platforms that attackers can alter during 

execution [45]; (3) retraining with feedback, which enables poisoning through false 

or biased inputs; (4) employing third-party pre-trained models, where infected 

networks may be distributed via APIs, limiting defender control [49];  

(5) manipulation of local models or parameters in federated learning, allowing 

adversaries to compromise clients or upload malicious models [47]; and (6) model 

memorisation of training data, enabling reconstruction of sensitive information [51]. 

Attacks on AI are becoming increasingly common and must be factored into 

risk assessments. They can be categorised as [42]: (1) integrity violations – evasion 

without disrupting normal operations; (2) availability violations – denial of service 

by impairing functionality; (3) confidentiality violations – extraction of private 

system or user data. 

In summary, while phishing has long been a significant cyber threat, the 

introduction of AI both intensifies the threat (through automation and 

personalisation) and provides the most promising countermeasures for detection and 

prevention. 

6. Poisoning attacks 

6.1. State-of-the-art 

Poisoning attacks manipulate training data or the training process to degrade model 

performance. They are commonly classified as indiscriminate, targeted, and 

backdoor attacks [42]. Studies propose taxonomies of attacks, defence methods, and 

analyse transferability issues. For example, [43] compares the impact of poisoning 

across multiple ML and NN models. 
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Surveys [44, 45] address backdoor attacks, their creation, detection, and 

defence, with [45] comparing them to adversarial and data poisoning, while [44] 

reviews attacks across the ML pipeline. Federated learning is also vulnerable, as 

shown in [46-48], which details attack mechanisms and possible defences. A 

conditional taxonomy of poisoning attacks based on various classification criteria is 

provided in Fig. 5 [42, 43]. 

 

 

Fig. 5. Taxonomy of poisoning-based attacks with different categorisation criteria 

6.2. Attack mechanism 

6.2.1. Indiscriminate poisoning attacks 

In indiscriminate poisoning attacks, the attacker’s goal is to misclassify benign test 

samples by adding new malicious samples or modifying existing ones in the 

training dataset, as shown in Fig. 6a. Existing methods are based on different 

assumptions about the attacker’s knowledge and capabilities [49]: (1) the attacker 

has access to both training and test data, the target model, and the training 

procedure; (2) the attacker has access only to the training data, the target model, and 

the training procedure; (3) the attacker has access only to the training data. 
One of the key factors for the success of a data poisoning attack is the ratio of 

malicious participants (for FL) and the volume of data they corrupt, which applies 

to both ML and federated learning. According to [48], the success of a poisoning 

attack increases linearly with the number of corrupted samples (both FL and ML).  

[49] analyses the efficacy of adding a few corrupted data points to the primary 

training dataset, although some works consider the possibility of modifying the 

entire primary dataset. Currently, examples of indiscriminate poisoning include 

Label-flip Poisoning, Bilevel Poisoning, Bilevel Poisoning (Clean-label), and Dirty 

Label Attack [42, 46]. 
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6.2.2. Targeted poisoning attacks 

In targeted poisoning attacks, the attacker again manipulates a subset of the training 

data, but this time to misclassify a specific set of test samples, as shown in Fig. 6b. 

The difference from indiscriminate poisoning is that targeted attacks aim to 

preserve the availability, functionality, and behaviour of the system for legitimate 

users while causing misclassification of specific target samples. These attacks do 

not require changes to the test data but manipulate the training data. The review 

[42] discusses various attack strategies: (1) Bilevel Poisoning, that involves the 

attacker creating targeted attacks aimed at specific goals by manipulating the 

training data. The main idea is that the attack is optimised on a set of validation 

samples and evaluated on a separate set of test samples; (2) Feature Collision 

(Clean-label), thatemploys a heuristic approach aimed at influencing models by 

poisoning the training data. The limitation of this approach is the requirement for a 

precise understanding of the feature function and its stability during training. 

6.2.3. Backdoor attack 

During a backdoor attack, the training data is manipulated by adding poisoned 

samples that contain a specific pattern, known as a backdoor trigger, which is 

labelled with a class selected by the attacker. This is illustrated in Fig. 6c. This 

typically causes the model to learn a strong correlation between the backdoor 

trigger and the class label selected by the attacker.  

 

 

Fig. 6. Scheme of poisoning attack in machine learning [42] 

Studies examine multiple methods for creating backdoor attacks. Key concepts 

include benign and infected models, triggers, and attack samples [45]. Backdoor 

poisoning is based on embedding triggers into poisoned data, with subtypes 

including Invisible, Static, Dynamic, and Semantic Attacks [44, 45]. 

The main challenge is optimising adversarial data. Techniques include multi-

level optimisation to maximise trigger impact and generating universal 

perturbations that affect models across datasets [45]. Effectiveness is usually 

measured by Clean Accuracy (CA), the accuracy of benign samples, and Attack 

Success Rate (ASR), the proportion of poisoned samples classified as the attacker’s 

target. 

Attacks on model poisoning, as illustrated in Fig. 7a, involve directly 

influencing the model updates that clients send to the server. These attacks can 

employ various methods, such as random weight generation, Optimisation methods, 
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or Information leakage, to modify these weights. The backdoor attack, as illustrated 

in Fig. 7c, aims primarily to embed a secondary task within the model. In other 

words, a successful backdoor attack ensures the performance of the primary task 

while adding a secondary task to it. 

Data poisoning in any learning faces two key challenges: High computational 

complexity of optimisation attacks and unrealistic threat models [42]. Some attack 

models assume complete control over the entire training dataset, which is unlikely 

in real-world scenarios. 

 

 
Fig. 7. Scheme of poisoning attack during federated training [47]  

6.3. Defence strategies 

6.3.1. Training data sanitisation 

Training data sanitisation aims to detect and remove poisoned samples before 

training the model, thereby reducing their impact on the training process [42]. The 

primary concept of this defence is to distinguish poisoned samples from the rest of 

the training data, as they exhibit anomalous behaviour in the context of the data 

distribution. Such defences require access to the training data, and in some cases, 

clean validation data, to effectively identify the poisoned samples. Examples 

include the creation of micromodels and RONI [50], as well as blind removal 

strategies for backdoors [44]. 

Micromodel-based Defence. This approach involves training classifiers on 

non-overlapping epochs of the training set (micromodels) and evaluating them on 

the training set. By using majority voting from the micromodels, training data 

instances are marked as safe or suspicious. 

Reject On Negative Impact (RONI). This method measures the impact of 

each suspicious training data instance individually and rejects those that have a 

significant negative impact on the overall model performance. RONI sets a 

threshold by observing the average negative impact of each instance in the training 

set and flags an instance if its impact exceeds this threshold. This threshold 

determines RONI’s final effectiveness and its ability to identify poisoned samples. 

6.3.2. Robust training 

There are also approaches to mitigate the impact of poisoning attacks during model 

training.  

The following defence strategies are to be highlighted [42]:  

(1) Model Inspection aims to determine whether the model contains a hidden 

trap. It involves methods for analysing the model’s output data, detecting atypical 

properties, or using interpretative techniques.  
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(2) Model Sanitisation involves removing its impact on the model.  

(3) Trigger Reconstruction consists of attempting to reconstruct the hidden 

trap in the model for further analysis.  

In summary, poisoning attacks exploit vulnerabilities in training data and 

processes, threatening the integrity, availability, and confidentiality of AI systems. 

While attackers increasingly use advanced optimisation and adaptive methods, AI 

also plays a crucial role in defence. Techniques such as data sanitisation, robust 

training, and model inspection leverage AI to detect anomalies, resist malicious 

data, and maintain trustworthy learning, reinforcing the resilience of AI-based 

cybersecurity. 

7. Model extraction theft/extraction attacks 

7.1. State-of-the-art 

Model Theft Technique (also known as “model extraction”) aims to obtain 

confidential data, such as training hyperparameters, model architecture, training 

data, or approximation of the model’s behaviour, belonging to the legitimate owner 

of the model. These attacks expand privacy risks and can be used for the unlawful 

leakage of confidential information in the field of ML. 

In the case of privacy attacks, vulnerabilities are identified by the models’ 

tendency to memorise their training data [51], making them susceptible to both 

passive and active inference attacks, as well as the possibility of accidental data 

leakage, which can lead to the successful reconstruction of other clients’ data. 

Studies [52-54] provide a categorisation and comparison of model extraction 

attacks, evaluate their effectiveness, and consider appropriate defence methods 

under various conditions. It is also analysed in [52] that specific defence measures 

lose effectiveness under current attack strategies. The authors [53] propose, in 

addition to a taxonomy of attacks and defences, a threat model for privacy and 

confidentiality attacks against machine learning systems. The study [56] proposes a 

methodology called ML-Based Stealing Attack (MLBSA) for stealing controlled 

information using ML methods based on the cyber kill chain. Besides model theft 

attacks on ML, privacy threats to federated learning are also considered [48]. 

Conditionally, privacy attacks can be categorised as shown in Fig. 8. 
 

 
Fig. 8. Stealing/extraction attacks classification 

According to [48], federated learning can be targeted by Feature inference 

attacks, Membership inference attacks, and Property inference attacks. These 

attacks aim to infer sensitive information about the training data used in federated 

learning scenarios. 
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7.2. Attack mechanism 

Successful attacks focus on analysing the functionality of ML services, such as 

MLaaS, by giving specific input queries that exploit vulnerabilities. ML models, 

especially those hosted in MLaaS systems, are vulnerable to attacks because the 

confidentiality of ML models can be breached through pay-per-query systems in 

cloud services [56]. One strategy involves parameter extraction attacks using the 

witness identification method [52]. Another approach is to train a surrogate model, 

as shown in Fig. 9, using data labelled by the target model. The surrogate model is 

used to study the internal structure and behaviour of the target model, as well as for 

adversarial attacks. This approach is applicable across various types of ML models 

[52-54]. 
 

 
Fig. 9. Stealing/extraction attacks scheme 

In addition to query-based and response analysis attacks, another mechanism 

considered is side-channel attacks on the privacy of ML models [52].  

Access to the device’s hardware opens possibilities for more sophisticated 

side-channel attacks. These attacks can lead to unintended physical leaks, as 

illustrated in Fig. 10. The emanations manifest as physical signatures of timing 

reactions, power consumption, or electromagnetic emissions during data 

manipulation. 
 

 
Fig. 10. Scheme of Side-channel attacks against a neural network [57] 
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7.3. Defence strategies 

To protect models from attacks, defences can be reactive (detecting or confirming 

attacks) or proactive (preventing anticipated attacks). Reactive methods involve 

proof of ownership to establish ownership over a stolen model and attack detection 

to identify current threats. Reactive methods do not prevent theft itself, but rather 

notify the owner of the event (e.g., Watermarking, Unique Model Identifier) [52]. 

Proactive methods aim to prevent future attacks by modifying aspects of the model. 

Model extraction attacks typically require the attacker to make a series of queries to 

the target model. Therefore, protective measures are explored to detect these queries 

(Differential Privacy, Obfuscation, Prediction Vector Tampering, Regularisation). 

Sources also mention the use of encryption to ensure confidentiality [55] (e.g., 

Encrypting training data and the ML model). 

WaterMarking (WM) for models involves embedding hidden information 

directly into the model as a method of proof of ownership. The Unique Model 

Identifier (UMI) is an approach used to confirm ownership of a model by defining a 

unique property of the model that is transmitted to a surrogate model during its 

theft. This approach can protect against model theft while maintaining 

confidentiality and ensuring data security. Differential Privacy (DP) defines a 

concept of confidentiality that limits how much an attacker, having access to the 

output of an algorithm, can learn about each record in a dataset. The original 

definition of DP includes a privacy parameter (budget) that restricts the probability 

that an attacker, with access to the algorithm’s output, can determine whether a 

specific record was included in the dataset [51]. Methods to protect models also 

employ obfuscation strategies [52, 53], which involve adding perturbations to 

input/output/training data to complicate the process of extracting parameters from 

trained ML models. Encryption-based protection methods involve encrypting either 

training data or models, with homomorphic encryption being a key technique [55].  

8. Evasion attacks (adversarial) 

8.1. State-of-the-art 

It is currently impossible to determine for which data or under which conditions the 

model will work reliably and correctly. This technological limitation forms the 

basis for adversarial attacks. The main goal of evasion attacks is to create 

adversarial examples – test samples whose classification can be altered during 

deployment. Additionally, deep neural networks also demonstrate vulnerability to 

adversarial interventions [59], which poses new challenges in the reliability and 

security of such models. Adversarial attacks lead to AI system malfunctions by 

altering the input data fed into the system, thereby compromising its performance 

and accuracy. Considering that decision-making systems based on AI are used in 

Autonomous Vehicles (AV), even small adversarial examples can cause disasters. 

Suppose evasion attacks are successfully used against AV. In such cases, attackers 

can easily manipulate data and the environment to create traffic accidents, thereby 

posing a threat to the personal safety of individuals [60]. 
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Adversarial attacks can be carried out against various types of systems, 

including image analysis, sound, text, video, executable files, and language models, 

making them one of the most significant threats. Evasion attacks can be 

conditionally classified by criteria as shown in Fig. 11. 

 

 

Fig. 11. Taxonomy of adversarial-based attacks with different categorisation criteria 

8.2. Attack mechanism 

The feasibility of implementing adversarial attacks in the physical world opens up a 

wide range of possibilities that can be used to mislead ML models. Scientific 

research has utilised and demonstrated various applications of adversarial examples 

in real-world scenarios [59, 62, 63]. The implementation of adversarial attacks in 

the digital realm requires specific algorithms that generate perturbations (digital 

noise).  

 

 
Fig. 12. Adversarial attacks scheme [62] 

In modern ML and DL systems, adversarial attacks exploit the exact 

mechanism used for training algorithms, namely, gradient descent, to minimise the 

loss function. However, in the case of creating adversarial perturbations, this 

process is inverted. Instead of minimising the system’s errors, the attacker focuses 
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on maximising the likelihood of incorrect classification on specific data samples, as 

shown in Fig. 12. This is referred to as loss maximisation. Using the Projected 

Gradient Descent (PGD) method in the context of adversarial attacks leverages the 

model’s gradient to determine the direction of changes that can be made to the input 

data to disrupt the model’s predictions. The primary objective of using PGD is to 

identify the optimal modifications to the input data to cause the most significant 

disruption to the model's predictions. A perturbation budget is assumed, which 

defines the limit on the amount of changes that can be made. Other modern 

techniques/algorithms for creating adversarial examples are described in [51, 62, 

64, 65]. 

8.3. Defence strategies 

Mitigating adversarial examples remains a significant challenge, as defences that 

are often effective against weak attacks are later bypassed by stronger ones. 

Therefore, countermeasures must be tested against strong adaptive attacks, and 

guidelines exist for thorough evaluation. Common approaches include adversarial 

training, randomised smoothing, and formal verification [51]. Other methods are 

applied in specific cases, such as adversarial example detection, input 

reconstruction, gradient masking, and defensive distillation [61]. 

One effective method is adversarial training, a general technique that extends 

the training data with adversarial examples generated iteratively during the training 

process. The more powerful the attacks used on adversarial examples, the more 

robust the trained model becomes. The primary drawback of this approach is that it 

requires substantial resources due to the iterative generation of adversarial examples 

during training, thereby increasing both time and resource consumption.  

Another relatively reliable method is the rejection/detection of adversarial 

examples. Defence systems aimed at detecting and rejecting adversarial examples 

rely on a thorough analysis of input samples to identify potentially harmful 

modifications. This can include analysing sample characteristics, such as gradients 

or deviations from normal ranges, or using the internal structure of the model to 

detect anomalies.  

An expanded set of attack scenarios and defences against them for traditional 

IT systems (without AI) and AI-based systems, as protected assets, is provided in 

Appendix A and Appendix B, respectively. 

9. IMECA analysis 

As previously highlighted, an effective framework is required for risk management 

and assessment to identify, evaluate, and manage risks systematically. This chapter 

outlines the development of an IMECA analysis [2], as shown in Table 3, and the 

risk matrix, as illustrated in Fig. 15, providing a structured approach to managing 

risks associated with phishing attacks and Stealing Model Behaviour (SMB) 

attacks. 

By creating criticality matrices, we can assess the potential impact and 

likelihood of these attacks, thereby gaining a better understanding of their 
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respective risks. The matrices highlighted that Phishing Attacks had a medium 

likelihood due to the proliferation of Phishing-as-a-Service platforms, automation 

through AI, and the use of effective social engineering techniques, all of which 

lower the barrier to entry and increase the efficiency of phishing campaigns, and 

high severity due to their potential to compromise sensitive information and cause 

financial losses. While Stealing Model Behaviour Attacks posed a medium 

likelihood and seriousness due to the extensive time, specialised knowledge, and 

significant resources required to execute them. Currently, there are no automated, 

low-cost solutions available for defending against attacks on AI. The temporary 

absence of concepts like “Adversarial-Attacks-as-a-Service” or “Stealing-Model 

Behaviour-as-a-Service” is because these types of attacks require a deep 

understanding of machine learning, access to specialised equipment, and substantial 

computational resources and time. This high level of complexity makes these 

methods less accessible to a broad range of malicious actors, setting them apart 

from more common and automated phishing attacks. The results of the cut version 

of IMECA analysis of cyberattacks are presented in Table 3. 

Table 3. Extraction of the IMECA analysis of cyberattacks (Phishing Attack, Stealing Model 

Behaviour Attack) to ensure system security 
Attack Threat Vulnerability Effects Countermeasures 

Phishing 
attack 

Emails, information 

on social networks, 

phishing landing 

pages, pop-ups, and 

targeted advertising 

that contain a 
phishing link. 

Phishing text 

messages. Phone 
calls from spoofed 

numbers. Rogue 

mobile applications 

Lack of awareness 

about phishing 

methods, absence or 

low effectiveness of 

technical security 

measures (e.g., anti-
phishing filters), 

human factors, or lack 

of cybersecurity 
policies and training 

within the 

organisation 

Potential effects of 
falling victim to a 

phishing attack 

include compromised 
accounts, financial 

losses, identity theft, 

malware infections, 
reputational damage, 

and legal and 

regulatory 
repercussions 

Detection using AI: Utilise machine 
learning models for phishing 

classification and employ deep 

learning models to generate training 
data. Detection by traditional 

methods: improving user awareness 

about phishing, implementing 
proper legal protections, 

maintaining blacklists and 

whitelists, and implementing visual 
similarity detection for resources 

Stealing 
model 

behaviour 

attack 

Requests to the 

target model and 

collection of results 
for surrogate 

training 

The propensity of 

models to memorise 
their training data and 

the potential for 

accidental data 
leakage lead to the 

successful 

reconstruction of 

other private data 

Stealing model 

behaviour to replicate 

the successes of the 
original model or 

creating a surrogate 

to perform attacks. 
Using model 

predictions to 

disclose the 

confidentiality of 

sensitive records 

Detection of requests and blocking. 

Differential privacy. 
Unique Model Identifier (UMI). 

Avoidance/obfuscation of score 

provisioning as part of classifier 
output 

 

The analysis demonstrates that the systematic identification of attacks and the 

implementation of appropriate countermeasures enable a quantitative risk reduction 

assessment following specific mitigation strategies. After identifying these risks, we 

calculated the risk reduction that would result from implementing targeted 

countermeasures. For Phishing Attacks, countermeasures contributed to a 

significant decrease in likelihood by avoiding and blocking phishing sources. 

Similarly, Behaviour Attacks, implementing secure model training practices, 



 177 

monitoring for anomalous behaviour, and restricting access to sensitive model data 

resulted in a notable decrease in risk, as shown in Figs 13 and 14. 

 

 

Fig. 13. Criticality matrix of cyber risks of systems before implementation of countermeasures 

 

 

Fig. 14. Criticality matrix of cyber risks of systems after implementation of countermeasures 

Thus, by examining a case study that applied the IMECA framework, we 

observed how risk-oriented analysis could be effectively utilised within a cyber-

physical context. The case study’s findings suggest that structured risk assessment 

enables targeted mitigation strategies, thereby significantly enhancing security. This 

approach serves as a blueprint for other applications involving AI and advanced 

technology, where risk assessment is crucial. The insights gained from this case 

study offer a comprehensive understanding of how to protect complex systems from 

emerging cyber threats, and they demonstrate the practical value of risk assessment 

methodologies, such as IMECA. 

10. AI challenges & limitations in critical systems 

Finalising the analysis of AI security, it is crucial to focus on a wide range of 

challenges and constraints associated with deploying modern AI in critical systems. 

This section comprehensively defines both the technical and non-technical aspects 

of AI integration and deployment, along with an overview of issues related to its 

application in various fields, such as medicine and military affairs. 

Highlighting real challenges and constraints lead to a deeper understanding of 

potential risks and limitations, thereby ensuring the effective and secure 

development of this technology in the future. Based on the AI quality model [69], 

challenges and risks have been classified according to fundamental characteristics. 

Special attention is given to explainability, lawfulness, and ethics. 

10.1. Explainability 

The finance and healthcare sectors have increasingly adopted AI technologies to 

tackle complex tasks and decision-making processes in recent years. For these 

critical systems, understanding the outcomes and ensuring the confidentiality of 

information are paramount. Addressing the “black box problem” through 
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Explainable Artificial Intelligence (XAI) is a significant step towards achieving this 

goal, as people tend to trust AI more when they can understand its reasoning. 

One of the critical challenges in the context of AI is assessing its 

explainability. Evaluating AI explainability involves developing methods and 

metrics that gauge how effectively and understandably the system can explain its 

actions and decisions across different levels [70], balancing explainability with 

accuracy or performance, particularly in healthcare, where precision is crucial. It’s 

essential to uphold the confidentiality rights of other users. Authors of [71] provide 

a taxonomy of trends related to explainability techniques for different ML models. 

Additionally, commercial interests play a significant role in the market. The 

detailed workings of some of the most widely used machine learning systems, such 

as Google’s search algorithms or language models like ChatGPT, are not publicly 

accessible to protect competitiveness and intellectual property. 

Therefore, the main challenges include defining metrics and methods for 

assessing AI model explainability to cater to diverse audiences, maintaining a 

balance between explainability and accuracy, along with the associated costs of 

ensuring explainability, and ensuring the truthfulness of explanations. 

11.2. Lawfulness 

Regulating AI presents numerous challenges and risks due to its rapid development 

and the potential societal implications it poses. One of the primary challenges is 

safeguarding public interests amidst the AI race. The speed of AI advancements 

often outpaces existing governmental expertise and regulatory structures, which 

may not be sufficiently flexible to keep pace with the rapid development of AI. 

Additionally, regulatory efforts must strike a balanced approach because AI is a 

multifunctional tool where universal regulations may be excessive or insufficient 

depending on the use context. 

Consideration must also be given to the environmental and climate impacts of 

AI usage [72]. Machine learning requires vast amounts of data, and the processing 

and storage of this data consume significant amounts of energy, which in turn 

impacts the environment and climate. While companies like Google, Amazon, and 

Microsoft invest in renewable energy and utilise AI to enhance energy efficiency, it 

remains uncertain whether these investments will sufficiently mitigate the overall 

global environmental and climate impact of these technologies [72]. 

Furthermore, the use of AI in military affairs poses significant challenges and 

risks regarding international law and security. Developing autonomous weapon 

systems based on AI could potentially violate principles of International 

Humanitarian Law (LOAC or IHL) [73]. Therefore, key challenges include defining 

effective mechanisms for monitoring and regulating AI, determining the responsible 

entities for oversight, and establishing the appropriate levels of control and 

accountability.  

11.3. Ethics 

Ethics is defined as that part of philosophy that deals with the prerequisites and 

evaluation of human action and is the systematic reflection on morality. Ethics is 
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crucial in cases that have a direct impact on human lives. AI discrimination, 

highlighted by many researchers and governments, refers to preventing bias and 

injustice caused by AI systems [74]. When AI algorithms process information 

crucial for human decisions, such as hiring, loan applications, or mortgages, biased 

data can lead to societal discrimination. Additionally, moral dilemmas arise when 

AI systems must choose between actions conflicting with moral or ethical values. 

Authors [75] provide an AI and ethics positioning matrix, indicating that for some 

AI tools, ethical considerations may be low (e.g., in malware detection). In contrast, 

for others, it's critical (e.g., intelligent decision support systems in eHealth). They 

also adapt the PESTEL analysis, where each dimension holds a premise influencing 

AI’s theoretical and hypothetical potential.  

Work [76] examines the classification of algorithmic biases, identifying 

different variants: (1) training data bias could emerge if AI systems are designed 

with poor, limited, or biased data sets; (2) transfer context bias could emerge when 

AI systems are designed for one ecological, climate, or social-ecological context 

and then incorrectly transferred to another; (3) even if the training data and the 

context in which the algorithm is used are appropriate, their application can still 

lead to interpretation bias. In this type of bias, an AI system might work as its 

designer intended. Still, the user does not fully understand its utility or tries to infer 

different meanings the system might not support. 
Therefore, the main challenges include algorithmic biases, discrimination, 

prejudices, and moral dilemmas [77]. Big data can lead to violations of individual 

rights and differential treatment, indirectly discriminating against groups with 

similar characteristics [78, 79]. Thus, the ethics issue involves navigating the trade-

off between efficiency and bias.  

11. Conclusions 

This paper introduces a triadic principle to systematically analyse the roles of AI in 

cybersecurity, examining it as both an attack tool and a defence mechanism, as well 

as a system under threat. By mapping out eight distinct scenarios involving 

combinations of traditional and AI-powered systems, attacks, and protections, the 

study provides a structured taxonomy for evaluating cyber threats and defence 

strategies in AI-augmented environments. Through detailed categorisation and 

analysis of attack types, the study demonstrated that AI not only enhances the 

sophistication and scale of attacks but also significantly improves detection, 

prevention, and mitigation capabilities. For each attack, AI-based countermeasures 

were contrasted with traditional methods, highlighting the superior adaptability and 

efficiency of ML and DL learning approaches when appropriately designed. 

The paper also emphasised the unique vulnerabilities of AI systems 

themselves, including adversarial manipulation, data poisoning, and model 

extraction, showing that these systems require dedicated protection mechanisms. 

The integration of the IMECA methodology for scenario-based risk assessment 

added a quantitative layer to the evaluation of AI-powered threats, aiding in the 

prioritisation of risks and the development of mitigation strategies. Despite its 
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comprehensive scope, the study acknowledges that real-world validation and 

continuous evolution of both attacks and defences remain open challenges. The 

dynamic nature of AI models and the lack of explainability in some AI-based 

defences also raise issues for trust and regulatory compliance. 

Future research will focus on extending this triadic principle to include 

adaptive and proactive cyber defence mechanisms, integrating real-time threat 

intelligence, and addressing the explainability and resilience of AI-driven 

countermeasures in dynamic environments. Besides, another challenging direction 

is developing this principle for analysing LLM-systems cybersecurity [80] and 

sociotechnical attacks [81].  
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Appendix A. Classification of Countermeasures against Various 

Attack Scenarios Based on Their Impact on Availability (Red), 

Integrity (Blue), and Confidentiality (Green) on Traditional Systems 
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