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Abstract: Direct Server Return (DSR) enables backend servers to send responses 

directly to clients, bypassing the load balancer on the return path. Removing that 

extra hop trims end-to-end latency and prevents the balancer from becoming a 

bottleneck at high request rates. This paper introduces a backward-compatible DSR 

variant that encodes each server’s load metric inside an Internet Protocol (IP) 

option, so the metric travels with ordinary data packets, and no polling traffic is 

needed. A Linux extended Berkeley Packet Filter (BPF) prototype adds only a small 

patch to the data path, yet yields up to 47% more requests per second than an 

explicit-polling baseline, requiring no changes to either the client or server. The 

proposed solution does not modify application logic and supports dynamic load 

balancing in heterogeneous and variable workloads, such as microservices, batch 

processing, or machine learning inference. It is fully deployable on commodity 

servers, runs entirely in kernel space, and eliminates separate metric-collection 

traffic. Performance evaluation demonstrates significant throughput and latency 

improvements needed for large-scale and low-overhead load balancing of real 

deployments. 
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1. Introduction 

Load balancing is crucial for effective and equitable distribution of workloads and 

is extensively utilized in computing environments, web server farms, or content 

delivery networks [9]. Its primary function is to ensure the continual delivery of 

services despite the failure of a portion of the services through the intelligent 

handling of applications to utilize resources. It reduces task execution delays and 

enhances overall resource utilization, cost-effectively enhancing system 

performance. In practice, server load can be characterized in terms of CPU, 

memory, disk, I/O, or network utilization, all of which affect how jobs must be 

distributed. Various load-balancing methods and technologies, the layer of the 

network where they operate, and the setting where they are deployed, apply to 

different systems and workloads [16], e.g., latency-constrained web queries, 
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throughput-constrained batch jobs, or compute-bound tasks. Various loads overload 

the system in multiple ways and require tailored balancing methods. 

Static methods like round-robin, weighted round-robin, and Internet Protocol 

(IP) hash divide the workload according to fixed rules, irrespective of the system’s 

state [10]. They are predictable, simple to build, and visually appealing for 

consistent and stable traffic flows. However, workloads are heterogeneous or time-

varying, so static schemes cannot adapt, leading to loaded servers and low 

performance. 

On the other hand, dynamic methods are more flexible and can be adjusted 

according to real-time performance indicators like the number of connections, 

response time, or utilization of resources [18]. As dynamic load balancers, reverse 

proxies route client requests judiciously based on real-time considerations like 

server load, response time, or active connections [13]. They run between client 

devices and backend servers and constantly check the health and performance of the 

backend servers. It enables adjusting to changing conditions to optimize resource 

utilization, reduce latency, and increase availability. Dynamic strategies are 

especially valuable in heterogeneous environments such as microservices, where 

services can degrade or scale asymmetrically, or exhibit bursty patterns in cloud 

environments. Unlike static approaches, they continuously adapt, prevent hotspots, 

and balance demand in near real time. The added smarts incur monitoring overhead 

and higher control complexity, which must be carefully maintained in check to 

avoid introducing new bottlenecks. Nonetheless, when server responses and client 

requests are passed through the load balancer, it can be a performance bottleneck  

[6, 7], especially under high-traffic conditions or resource-intensive applications. 

This is because the load balancer is a single mediation point, which adds latency, 

delay in packet processing, and lowered throughput, especially if the load balancer 

lacks resources. This is particularly problematic when responses are large or when 

many clients are active simultaneously. 

Direct Server Return (DSR) can prevent this, where client requests pass 

through the load balancer, but responses are sent directly from the backend servers 

to the clients [3]. This bypasses the load balancer for the outgoing traffic, 

significantly reducing its load and improving system responsiveness and scalability. 

This cuts down on the traffic that the load balancer has to handle. While DSR 

requires special network settings and adjustments to IP addresses and routing, it can 

significantly enhance performance in busy environments. Nevertheless, while DSR 

effectively reduces the load on the load balancer, it fails to solve the problem of 

distributing the traffic over heterogeneous or dynamically changing backend 

workloads. Backend servers in contemporary distributed systems typically exhibit 

high variance in processing capacity and workload dynamics. For instance, batch 

processing environments can be exposed to jobs of different sizes, microservices 

can be exposed to sudden spikes in some endpoints, and machine learning inference 

workloads can experience broad swings based on input data. Such workload 

volatility demands more advanced load-balancing mechanisms than connection 

routing or traffic direction. However, DSR alone lacks the means to include real-

time load metrics in routing, i.e., CPU, memory, or I/O usage. This makes it 
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suboptimal in heterogeneous environments where backend servers exhibit extreme 

resource utilization variability and dynamic performance variation. 

The article explores scaling network throughput in large installations by 

combining the merits of DSR and lightweight, in-band feedback mechanisms. The 

approach enables dynamic load balancing without additional request overhead, thus 

improving efficiency and scalability. To this purpose, a hardware-independent 

solution that does not rely on custom network interface cards or programmable 

switches is presented. The suggested environment can be integrated with 

commodity servers without altering application logic. The solution is tunable so that 

the balancing algorithm can be dynamically adjusted for varying workload 

characteristics, e.g., differentiating workloads with large requests and responses. 

Unlike existing DSR solutions that require additional specialized hardware or 

periodic inspection, ours includes in-band feedback into the data stream. Load-

aware decisions can then be made with minimal overhead at the cost of losing 

DSR's scalability benefits. The remainder of this paper is organized as follows: 

Section 2 reviews related work, Section 3 introduces the proposed methodology, 

Section 4 presents the evaluation, and Section 5 concludes the paper. 

2. Related work 

Load-balancing studies have primarily evolved along the foundational axes of 

hardware and software implementations using static or dynamic strategies  

[11, 12]. Complementary directions have explored enhancements through hardware 

acceleration, protocol-level specialization, and adaptive feedback mechanisms, 

offering distinct performance, flexibility, and deployment complexity tradeoffs. 

Hardware-accelerated systems exemplify the latency-performance tradeoff, 

inheriting limitations on memory and processor resources. Charon [17] 

demonstrates the potential of P4-programmable switches, achieving 10 million real-

time and load-aware decisions per second through SYN-ACK (synchronize-

acknowledge) packet instrumentation, avoiding additional control messages or 

instrumentation. Charon maintains a dynamic availability score table to guide server 

selection, reflecting each server’s current load. This score is calculated based on 

metrics like queue length or response delay. Using the power-of-two-choices 

algorithm and these scores, Charon selects the less loaded server while ensuring 

per-connection consistency through a covert channel that encodes server identifiers 

in packets. Commercial implementations like Amazon Web Services’ application 

load balancer [8] face similar limitations, as their reliance on centralized proxies 

creates throughput bottlenecks above 1 million connections per 1 s. Recent 

advances in data processing unit-based balancing, such as the NVIDIA Magnum 

input-output platform [4], show promise for homogeneous accelerator pools but 

cannot accommodate heterogeneous edge deployments mixing CPUs and GPUs. 

Protocol-specialized approaches optimize for specific transport layers at the 

cost of generality. Google’s QUIC (Quick UDP Internet Connections) load balancer 

[15] reduces connection establishment latency by 47% through HTTP/3 stream 

multiplexing. At the same time, QDSR (QUIC DSR) [21] achieves up to 12.2 times 
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higher throughput than traditional proxies for QUIC traffic. QDSR splits QUIC 

connections into multiple independent streams, distributing them across real 

servers. These servers then send data directly to the client, avoiding the load 

balancer on the return path. These systems fundamentally depend on protocol 

semantics – QDSR’s performance degrades to baseline HAProxy levels when 

handling legacy TCP traffic. The eBPF-based (extended Berkeley Packet Filter) 

solutions [19] like Istio Ambient Mesh bridge this gap through kernel-level L4 

routing [5]. However, while solutions like Cilium can operate in DSR mode, they 

primarily rely on health checks or out-of-band metrics for load balancing, rather 

than the fine-grained, in-band, low-overhead feedback mechanism proposed here. 

By residing in kernel space, eBPF code can make real-time decisions without 

incurring the overhead of frequent context switches between user and kernel, 

potentially enhancing performance for specific workloads. 

Cilium offers a similar solution to Istio; it is a networking platform that uses 

eBPF. It can be deployed in DSR mode, when it adds service IP and port info into 

an IPv4 option or IPv6 extension header. Servers then reply directly to the client, 

keeping the client’s original IP. Only the first packet (SYN) includes this extra info 

for TCP, allowing a mix of DSR for TCP and source network address translation for 

UDP. Feedback-driven architectures represent another opportunity to address 

dynamic workload adaptation. Cloudflare’s Unimog [22] achieves 100 μs decision 

latency through the eBPF-accelerated metric collection, though its inability to 

support DSR limits scalability for response-dominant workloads. More 

sophisticated systems like FaaSNet [20] employ remote direct memory access for 

cross-server state synchronization, which presupposes that InfiniBand infrastructure 

is unavailable in edge environments. A 2024 study by Z h a n g  et al. [23] 

demonstrates the security challenges of these approaches, showing how in-band 

telemetry channels can be exploited for DDoS amplification without proper 

cryptographic authentication. 

Functional load balancing suffers drawbacks despite these advances since most 

solutions support homogeneous server configurations or specialized hardware, with 

minimal application in edge-cloud or heterogeneous CPU/GPU environments. 

Traditional DSR solutions maximize throughput by bypassing the load balancer on 

return. Still, they cannot utilize real-time load metrics such as CPU, memory, or I/O 

utilization, which is crucial for dynamic workloads. Protocol-aware optimizations, 

like QUIC and HTTP/3 optimizations, provide excellent performance for the 

targeted traffic but drastically perform poorly when serving legacy TCP 

connections. Feedback-based solutions like eBPF-based routing reduce decision 

latency but usually assume ideal network conditions or, depending on high-end 

equipment, like Remote Direct Memory Access, curtailing deployment flexibility. 

Security is sometimes an afterthought, leaving in-band telemetry channels 

vulnerable to exploitation, like potential DDoS amplification. Most proposals also 

sacrifice low overhead and high-speed decision-making through increasing control 

traffic or limited scalability. Furthermore, existing approaches rarely integrate 

heterogeneous protocol support, dynamic load sensitivity, and low-latency decision-

making into a single framework. These constraints make the need for in-band, 
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lightweight signaling mechanisms more critical, as they offer real-time statistics 

without trading away DSR benefits. Unlike existing solutions, it supports TCP and 

QUIC traffic, operates entirely in commodity environments, and is secure by 

inserting metrics in a backward-compatible manner. This set of properties offers a 

scalable, low-overhead solution suitable for modern, heterogeneous workloads such 

as microservices, batch, and ML inference. 

From this analysis, three main gaps are identified. First, existing systems 

cannot jointly optimize QUIC streams and TCP connections without performance 

penalties. Second, the hardware dependencies (e.g., requiring P4 switches or remote 

direct memory access-capable NICs) prohibit the possibility of flexible deployment 

over heterogeneous environments. Third, security is often provided as an add-on 

rather than a built-in property, notably in DSR deployments that avoid middlebox 

probing. A lightweight, in-band signalling scheme paired with software-defined 

metric aggregation is introduced to address these limitations. The design achieves 

sub-100 μs latency while supporting heterogeneous protocols and deployment 

scenarios without sacrificing security. The proposed method explicitly addresses 

these gaps, providing a practical, secure, and deployable DSR extension for real-

world cloud and edge networks. 

3. Methodology 

The Layer 3 extension to the DSR method is proposed to manage routing decisions 

at the network level, allowing efficient handling of large-scale traffic without 

requiring changes to application-layer protocols or server configurations. The 

request rate, latency, and probe efficiency metrics are used to evaluate the 

effectiveness of this approach. Dynamic load balancing algorithms use server-side 

performance indicators based on a busyness score to make these decisions. These 

scores are commonly obtained through query/response probes or side-channel 

request/reply, causing redundant packet flows. To minimize the overhead, our 

approach embeds the load feedback directly in the standard return packets from 

Real Servers (RSs). These packets are then sent to the load balancer, which extracts 

and caches the embedded scores before relaying the response with the embedded 

scores to the client.  

In addition, this design uses routing-level awareness of the DSR construct 

natively, in that decisions are not only load-aware but also resilient to packet path 

asymmetries typical in large-scale deployments. The system can avoid control-

plane congestion and convergence delays by embedding the feedback in-band. 

The methodology operates in four stages to facilitate dynamic load-aware 

routing within a modified DSR framework: 

Step 1. Client tuple encoding. Upon receiving a client request, the load 

balancer encodes the client’s IP address and port into an IPv4 option field or an 

IPv6 extension header. This encoding is backward compatible with standard IP 

parsers. 
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Step 2. Backend selection. The balancer selects a target RS based on a locally 

maintained map of busyness scores, which reflect each server’s recent load 

conditions. 

Step 3. Metric triggering. If a new or updated load metric is needed, the 

balancer sets the score-request flag in the packet header to signal the RS to provide 

its current busyness score. 

Step 4. Feedback propagation. Upon receiving such a request, the RS caches 

the client tuple, processes the request, and – if the score-request flag is set – 

attaches its current busyness score to the next response packet. This response is 

routed back through the balancer, which extracts and updates the server’s score 

before forwarding the reply to the client. Responses without the flag follow the 

standard DSR return path and bypass the balancer. 

This four-step cycle is intentionally lightweight, with each step executed in-

line without the necessity of additional synchronization between data and control 

planes. The design’s modularity facilitates extension to other feedback metrics (e.g., 

GPU load, queue length) and the depicted busyness score. The platform is 

deployable and non-intrusive, with the following key properties: 

Preserves application transparency by implementing all logic within the 

eXpress data path or traffic control eBPF programs, requiring no modifications to 

client or server applications. 

Eliminates out-of-band polling for server load metrics by embedding feedback 

in in-band return traffic. 

It runs on commodity infrastructure and requires only a standard Linux kernel 

without requiring specialized NICs or programmable switches. 

Supports tunable feedback granularity, enabling operators to adjust the 

tradeoff between control-traffic overhead and metric freshness by configuring the 

sampling interval (e.g., every n-th packet). 

Remains protocol-agnostic above Layer 3, ensuring compatibility with diverse 

transport and application protocols without additional customization. 

Furthermore, using eBPF ensures packet-processing logic can be updated at 

run time, allowing operators to install evolving scheduling policies without kernel 

recompilation. This is a real-world advantage in experimental or multi-tenant 

environments where nimbleness is key.  

For IPv4, the options segment of the header is used to embed metadata, with 

each field identified by a one-byte type code (called kind). This option is required 

once per connection (e.g., TCP SYN) or handshake message (e.g., QUIC initial); 

subsequent packets rely on a cached state, avoiding repeated header overhead. For 

IPv6, three new extension headers are defined to serve a similar purpose. The 

suggested prototype marks every n-th packet to request a metric update, where the 

sampling interval is configurable at runtime. The busyness score can represent 

individual system-level metrics, such as CPU utilization, memory pressure, number 

of active requests, or mean response time, depending on the monitoring and load 

balancing strategy. This sampling mechanism strikes a balance between 

responsiveness and efficiency: more frequent sampling improves freshness at the 



 148 

expense of bandwidth, and infrequent sampling reduces control overhead but may 

under-react to short-duration computations in load. 

Custom IPv4 options (Table 1) are encoded using the standard 1-byte kind 

field, which includes a 1-bit copied flag (indicating fragment inheritance), a 2-bit 

class field (00: control, 10: monitoring/debug, 01 and 11: reserved), and a 5-bit 

option number. All options, except End-of-Options (0) and No-Operation (1), 

include a length byte and associated data. Each option must be aligned to a 32-bit 

boundary, with a minimum total size of 4 bytes. Such careful encoding structure 

ensures backward compatibility with existing IP parsers, with performance 

tradeoffs where choices direct slower packet-processing paths in hardware-

accelerated routers. 

 
Table 1. IPv4 options 

IPv4 

kind 
Copied Class Number 

Length 

(bytes) 
Data Purpose 

155 1 00 27 8 
4B client IP and 2B 

client port 
Encodes client tuple for DSR 

124 0 10 28 4 - 
Tells the server to refresh its 

busyness score 

125 0 10 29 4 
2B busyness score  

(0-65535) 

Sends the server’s load metric 

back to LB 

 

IPv6 conveys similar data via extension headers. Unassigned types 27-29 (per 

IANA) are internally repurposed. Each header must be a multiple of 8 bytes and 

include fields for the next header, length, and the option type. 
 

Table 2. IPv6 extension headers 

IPv6 extension header 

type 

Length 

(bytes) 
Data Purpose 

27 24 
16B source IP and 2B 

source port 
Encodes client tuple for DSR 

28 8 - 
Tells the server to refresh its 

busyness score 

29 8 
2 B busyness score  

(0-65535) 

Sends the server’s load metric back 

to LB 

 

Each packet carries at most one custom option. Type 27 encodes the client 

tuple for the DSR path, 28 requests a metric update from the server, and 29 returns 

the metric. Packets that do not need any of these functions omit the option entirely. 

The proposed system is implemented using eBPF technology, using IPv4 at the 

network layer and TCP at the transport layer. However, the architecture is not 

inherently limited to these protocols and can be extended to support IPv6 and QUIC 

with minor modifications. The number of active connections on each RS is tracked 

in real time using eBPF maps to compute the busyness score. There are two 

possible packet-processing flows, illustrated in Fig. 1. For clarity, the diagram 

shows Flow 1 on RS 1 and Flow 2 on RS 2, but both flows apply to any server. 
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Fig. 1. Packet flow in the implementation 

In the case of the first flow, the load balancer embeds the client’s IP address 

and port into a custom IPv4 option field and forwards the packet to a selected RS 

based on the current load-balancing decision. After dispatching the packet, the 

balancer immediately releases any associated state without waiting for a response. 

Upon receiving the packet, the RS’s ingress eBPF program parses the IPv4 options 

and stores the client tuple in an eBPF map using the key [source IP, destination IP, 

source port, destination port]. Later, when the server generates a response, the 

egress eBPF hook checks for a matching entry in the map using the reversed 4-tuple 

key. If found, it rewrites the packet’s destination fields to match the original client, 

enabling DSR. In the case of the second flow, the load balancer marks a packet with 

a metric request flag using the same IP option field. It forwards the packet to the 

selected RS, retaining a temporary state for a single return response. The RS’s 

ingress eBPF logic stores a “metrics requested” flag under the same 4-tuple key. 

When the response is sent, the egress eBPF logic checks for this flag and, if set, 

appends the server’s current busyness score, derived from the number of active 

connections, into the IPv4 options of the response packet. This packet is then routed 

back through the load balancer. Upon reception, the balancer extracts and records 

the metric, strips the custom option, and finally forwards the cleaned packet to the 

client. The load balancer controls the flow of packets. Applying the second flow to 

every nth packet gathers metrics for dynamic load balancing. 

Using eBPF on real servers enables dynamic, high-performance packet 

processing without modifying the existing service application code. Each TCP 

connection state is stored in an eBPF map. Each time a connection is established 

(SYN flag in TCP) in ingress, the program increments the busyness score, and when 

a connection is closed or reset (FIN or RST flags) on egress, it decrements it. 

Alternatively, the application can manage the busyness score via the 

bpf_map_update_elem system call. The load balancer selects the server with the 

lowest busyness score; if two servers have the same score, it selects randomly. 
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This architecture avoids separate metric-collection messages by carrying 

busyness data in the IP header. Therefore, no extra packets are exchanged. Merging 

DSR with on-path feedback achieves dynamic load balancing while keeping 

processing inside the kernel: eBPF parses the custom IP option, eXpress data path 

handles ingress for minimal overhead, and TC handles egress where XDP is 

unavailable. Because the load balancer chooses when to request an update, 

operators can tune the balance between control-traffic overhead and metric 

freshness. Despite its benefits, the scheme carries several limitations, such as 

adding custom IP options, which enlarges each packet and can lower the maximum 

transmission unit. This effect is more pronounced for IPv6. The prototype also 

requires eBPF support and runs only on recent Linux kernels, although early efforts 

exist to bring eBPF to Windows and to user-space VMs on other platforms. 

Compatibility is not guaranteed across the network path: certain middleboxes may 

strip or mis-handle non-standard options, and the extra header fields can complicate 

packet tracing and diagnosis. This approach is best suited for environments with 

variable server workloads. Such workloads include workflow or batch processing 

systems with uneven job sizes, microservices architectures where traffic can spike 

unpredictably for certain services, and machine learning deployments where 

processing time depends on input size or model complexity. 

In contrast, it is less effective in environments with predictable or static traffic 

patterns, such as content delivery networks serving cached static content or simple 

request-response services with uniform load. Only the load balancer is modified; 

real-server applications stay untouched, running an attached eBPF helper. The 

developed library [24] is compiled into eBPF byte-code with the target IP and port 

as constants, then loaded with xdp-loader (ingress) and tc (egress) tools. 

4. Evaluation 

All experiments were conducted using the Armenian national cloud infrastructure 

resource, providing IaaS and SaaS services to academia and universities [1, 2, 14]. 

In the test environment (Fig. 2), the load balancer runs on a Broadcom BCM2711 

SoC (1.5 GHz 64-bit quad-core ARM Cortex-A72) with 4 GB RAM, Debian 13, 

and Linux kernel 6.12. The RSs use Intel Core i7-9750H CPUs (2.60 GHz), 16 GB 

RAM, Ubuntu 22.04, and kernel 6.5. Each experiment was repeated multiple times, 

and averages were computed to minimize the effect of transient fluctuations. 

Standard deviation was also measured to quantify variance in response time and 

throughput. 

 
Fig. 2. Benchmark’s network topology 
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To isolate the impact of DSR and the probing strategy, the following four 

configurations are evaluated (see Table 3): 

Pass Through. Standard round-robin load balancing without DSR. 

DSR Round-Robin. DSR enabled with round-robin distribution. 

DSR Request Busyness. Load balancer queries server load before forwarding; 

with only two servers, power-of-two choices are unnecessary. 

DSR Dynamic. Proposed method; every 100th packet triggers a busyness 

probe by disabling DSR. The interval was empirically determined. 

Locust is an open-source, Python load-testing framework that models user 

workflows in code and spawns thousands of concurrent virtual clients to 

approximate production traffic. It scales transparently from a single node to a 

distributed cluster and reports live throughput, latency, and error metrics through a 

web interface. Script-defined scenarios remain reproducible, easily version-

controlled, and quick to refine, enabling performance studies with minimal 

instrumentation. Version 2.33.2 is used. 

These scenarios were selected to provide both a baseline (pass-through), a 

simple stateless policy (round-robin), a stateful but static policy (request busyness), 

and finally our adaptive dynamic policy. This layering of experiments allows for 

clear attribution of observed performance improvements. For the experiments, 

Locust runs a synthetic HTTP workload of 150 concurrent virtual users issuing 

back-to-back GET requests for 10 minutes (no inter-request delay) without a warm-

up or discard phase. This lets us stress the load-balancer and compare setups under 

a controlled, repeatable workload. The 90th, 95th, 98th, and 99th percentiles were 

computed over the complete set of requests for the run, with no binning applied. 

Dynamic load balancing is only valid when the processing time of requests is 

unpredictable, so servers can take from 500 ms to a few seconds to process one 

request when the server is not busy. The request is, on average, 1 KB, and the 

response is, on average, 46 KB. Each one is run for 10 min. 

Table 3. Benchmark results 

Name 

Median 

response 

time 

Average 

response 

time 

RPS 90% 95% 98% 99% 

Pass Through 3.8 s 5184 ms 23.24 8.6 s 12 s 18 s 27 s 

DSR Round-

Robin 
1.9 s 2693 ms 40.55 4.4 s 5.9 s 8.9 s 13 s 

DSR Request 

Busyness 
1.7 s 1945 ms 44.33 2.8 s 3.3 s 4.1 s 5 s 

Dynamic DSR 1.2 s 1611 ms 65.45 2.7 s 3.4 s 4.5 s 5.5 s 

 

Dynamic DSR improves average response time by 3.2 times over the baseline 

(Pass Through) and 20% over DSR with explicit busyness queries. Dynamic DSR 

increases throughput by +47.6% RPS versus DSR Request Busyness (65.45  

vs 44.33). Mean latency drops −17% (1.61 s vs 1.95 s) and median −29% (1.2 s vs 

1.7 s). At the tail, P95 is similar (+3%, 3.4 s vs 3.3 s), while P98–P99 are modestly 

higher (+9.8% and +10%). In short, Dynamic DSR mainly raises capacity while 

keeping P95 comparable and slightly increasing deepest tails. 



 152 

As shown in Fig. 3, both DSR variants maintain at least 1.5 times higher and 

more stable RPS than the baseline. The proposed method combines these gains to 

deliver 2.8 times higher RPS than Pass-Through. 

 

 
Fig. 3. Request-rate trace (10 min) for baseline and three DSR variants 

The RPS ordering appears immediately. Within 10 s, Dynamic DSR, DSR 

Request, DSR Round-Robin, and Pass-Through reach ~34.8, 22.1, 15.8, and 10.7 

RPS, about 53%, 50%, 39%, and 46% of their averages. By 30 s, they reach ~52.9, 

36.1, 26.8, and 16.6 RPS (81%, 81%, 66%, 72%). This shows that Dynamic DSR’s 

advantage is present from the start and persists throughout the run. 

 

 
 

Fig. 4. Cumulative distribution of tail latency  



 153 

Fig. 4 is the Complementary CDF (CCDF) of latency: for each latency t on the 

x-axis, the y-axis shows the fraction of requests slower than t (“tail” mass). The 

pass-through baseline (blue) has a heavy tail, stretching far to the right. Enabling 

DSR with round-robin (green) cuts that tail by orders of magnitude. Most 

importantly, the two adaptive methods: DSR Request Busyness (red) and Dynamic 

DSR (black), track each other almost exactly across the full range, showing no 

meaningful loss in latency, including the tail. Combined with the higher throughput 

(RPS) of Dynamic DSR, this figure shows the key result: we keep the latency 

profile while gaining a lot of capacity.  

Our testbed uses symmetric links – the client-to-LB and LB-to-server paths 

have the same hop count and RTT – so all nodes sit close in the network. This 

symmetry is uncommon in real deployments, so the latency gap between pass-

through and DSR is expected to shrink. The workload uses synthetic GETs on a 

small, symmetric testbed (low RTT, identical servers). Real deployments with 

WAN links or heterogeneous servers may shift absolute values; relative trends 

should hold. The examination demonstrates that incorporating busyness scores into 

in-band traffic allows the resulting DSR extension to outperform static and stateless 

baselines in terms of throughput, efficiency, and responsiveness without degrading 

latency properties. This offers more justification for deployment in actual 

heterogeneous and dynamic settings. 

5. Conclusion 

After examining several approaches and conducting benchmarks, this paper shows 

that feedback-driven architecture offers substantial benefits over standard setups. 

The presented method avoids separate metric-collection requests by allowing 

servers to return responses directly while carrying real-time load information. This 

feature proves especially useful for workloads that vary widely, such as 

microservices or machine learning tasks; in the test, it shows up to 47% improved 

throughput. Future work will focus on prototyping IPv6 extension headers and 

QUIC streams and will quantify the parsing overhead and header size impact on 

latency and throughput. The paper sketches the option layout but does not evaluate 

it in practice. Comparative wire size and response time measurements under both 

transports will reveal whether the added flexibility outweighs potential parsing 

overhead. 

Another open question is survivability on real paths. Many middleboxes still 

drop packets that carry unknown IP options. A systematic traverse of common 

enterprise firewalls, CGNATs, and cloud observability taps can quantify these 

losses. Fallback encodings – such as wrapping the flow in GRE/UDP, or co-

locating the score in a TCP option – can be benchmarked to identify the least 

intrusive workaround. 

Currently, the method only works with a Layer-4 balancer; adapting it to an 

upstream Layer-7 LB could create more adaptation advantages. 

Finally, sampling frequency is fixed in the current code. Allowing the balancer 

to expand or shrink the “every nth packet” window based on short-term variance in 
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server load would reduce overhead when traffic is stable and tighten reaction time 

during bursts. An adaptive controller – driven either by heuristic thresholds or a 

simple PID loop – could be implemented entirely in eBPF, making it lightweight 

and predictable. Overall, the novel dynamic DSR mechanism presents an effective, 

deployable, and useful load-aware packet routing mechanism, and the extensions 

presented here will further enhance its robustness, flexibility, and utility in highly 

variable and heterogeneous environments. 
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