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Abstract: A hybrid list scheduling algorithm is applied in fog computing with 

heterogeneity in available resources and incoming scheduling units. The scheduling 

units that need to be scheduled can be independent with no precedence constraints, 

so that tasks can be executed in parallel. On the other hand, precedence constraints 

can be present between tasks and represented by a Directed Acyclic Graph (DAG). 

Some scheduling algorithms are efficient for independent tasks, while others excel 

in handling dependency workflows. This paper proposes a Hybrid List Scheduling 

Algorithm (HLSA) for all scheduling unit types and examines the impact of 

incoming scheduling unit types on the performance of the proposed algorithm. 

HLSA assigns priority to sensitive time tasks in a cumulative way to achieve 

minimum latency for sensitive IoT applications in fog computing and to get 

minimum makespan, computation cost, and communication cost. Also, HLSA aims 

to achieve the highest utilization of the exploitation of gaps in processors.  

Keywords: Fog computing, Cloud computing, Internet of Things, List Scheduling 

Algorithm, Directed acyclic graph, Workflow. 

1. Introduction 

Fog computing is considered an extension of cloud computing, used to overcome 

the drawbacks of cloud computing, particularly in light of the massive data 

produced by IoT applications [1-6]. Fog computing shifts centralized processing in 

the cloud to the network edges [7-10]. Because of the limited resources in any 

computing environment and to satisfy different users’ requirements, a scheduling 

process is needed in fog computing. The scheduling process is considered the most 

significant NP-complete problem [11-13]. There are many scheduling algorithms 

used in fog environments with different classifications.  

In this paper, our focus will be on heuristic list scheduling algorithms. 

Heuristic list scheduling algorithms can be classified based on the types of 

scheduling units to batch, dependency, and batch-dependency algorithms [14]. 

Batch scheduling algorithms work with independent tasks. They cannot be applied 
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with precedence constraints between tasks. Dependency scheduling algorithms 

work with a dependency workflow that is represented by Directed Acyclic Graphs 

(DAG) and cannot deal efficiently with independent tasks. Batch-dependency 

scheduling algorithms work first as dependency algorithms with a dependency 

workflow and form groups of independent tasks, then work as a batch algorithm in 

each group. 

The proposed Hybrid List Scheduling Algorithm (HLSA) aims to efficiently 

work with different types of scheduling units without requiring assumptions or 

restrictions on the types of incoming tasks. It also takes into consideration the 

sensitive time tasks in some IoT applications, such as health care, intelligent traffic 

control, and monitoring applications [15-21]. The contributions of our work are 

summarized as follows. 

 First, the proposed algorithm is designed to accept any type of scheduling 

units without any restrictions, so there are three cases studied: first, when all the 

scheduling units are independent, second, when all the scheduling units are 

dependent on each other, and third, when the scheduling units are a combination of 

independent and dependent.    

 Second, the proposed algorithm relies on ranking value to schedule tasks, 

which is increased by increasing the sensitivity of time to tasks and increasing the 

number of successors to each task. That led to a decrease in the latency of sensitive 

tasks and reduced waiting time for all the tasks. 

 Third, the proposed algorithm intends to utilize the exploitation of gaps in 

the timing line that formed as a result of precedence constraints between tasks that 

cause waiting for certain task to its parent tasks to execute first, and transferring 

data between processors. 

 Finally, a complete comparison is applied between the proposed algorithm 

and other algorithms in the first two cases. In the third case, the changes in the 

behaviour of the proposed algorithm are declared when increasing the percentage of 

precedence constraints between tasks from 0% (all tasks are independent) to 20%, 

50%, 80% and 100% (all tasks are dependent on each other). 

The rest of the paper is organized as follows: Section 2 describes the previous 

related work used in fog computing and its classification. Section 3 highlights the 

steps of the proposed algorithm. Section 4 illustrates the performance metrics used 

to evaluate the proposed algorithm. Section 5 defines the simulation environment 

parameters. Section 6 shows the performance evaluation of the proposed algorithm 

compared to the HEFT, Min-Min, TS-QoS, and improved list-based task scheduling 

algorithms. Conclusion and future work are conducted in Section 7. 

2. Related work 

Scheduling algorithms used in fog computing can be classified based on how the 

problem is solved into heuristic, meta-heuristic, hybrid heuristic, and hyper-

heuristic algorithms [22]. Heuristic algorithms are used to solve a specific problem 

with known parameters [23] as in [24] proposed a Critical Task First Scheduler 

(CTFS), in [25] proposed a Priority and dependency-based DAG Tasks Offloading 
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Algorithm (PDAGTO Algorithm) and in [26] proposed Efficient Resource 

Allocation and Management strategies for Energy Efficiency (ERAM-EE). 

Meta-heuristic algorithms are used to solve problems in a wide range [27]. 

Most meta-heuristic algorithms are inspired by nature, classified as Swarm 

Intelligence (SI), bio-inspired, and physical and chemical algorithms [28]. SI 

algorithms are inspired by the behaviour of multi-agents, such as Particular Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), and Improved Particle 

Swarm Optimization (IPSO) [29]. Bio-inspired algorithms are inspired by 

biological systems like Genetic Algorithms (GA), Whale Optimization Algorithms 

(WOA) [30], improved genetic algorithms for permutation-based optimization 

problems (IGA-POP) [31], Multi-Agent System-based Genetic Algorithms  

(MAS-GA) [32], and Enhanced JellyFish Algorithm (IJFA) [33]. Physical and 

chemical algorithms are inspired by physical and chemical systems like harmony 

search, a simulated annealing algorithm, and an Electric Earthworm Optimization 

Algorithm (EEOA) [34]. Another type of meta-heuristic algorithm not inspired by 

natural systems, like Drawer Cosine Optimization (DCO) [35], which is inspired by 

choosing objects from various drawers to create perfect formations. 

Hybrid heuristic algorithms combine two or more of the heuristic algorithms to 

solve a predefined problem as a Hybrid Heuristic Algorithm (HH Algorithm) [36]. 

Hyper-heuristic algorithms combine more than one heuristic algorithm, like a 

hybrid heuristic, but use a selector to decide which one of the heuristic algorithms is 

best to be used at each iteration, as HH Algorithm [37]. All these scheduling 

algorithms can be used in fog computing based on the system’s requirements to 

achieve the best mapping between incoming tasks and available resources.  

On the other hand, some scheduling algorithms can only work with no prior 

information about available resources or the tasks that need to be executed. They 

are applied in real-time and are called dynamic/online algorithms, like dynamic 

scheduling algorithms [38]. While other algorithms need prior information about 

resources and tasks before starting scheduling, they are called static or offline 

algorithms, like come First-Come, First-Served Algorithm (FCFS Algorithm), the 

Round Robin Algorithm (RR Algorithm), and the Weighted Round Robin 

Algorithm (WRR Algorithm) [39]. Also, scheduling algorithms can be classified 

based on the types of incoming scheduling units, into batch, dependency, and batch-

dependency algorithms [8]. Batch algorithms work with independent tasks with no 

precedence constraints, like Min-Min [40] and TS-QoS algorithms [41]. 

Dependency algorithms work with a dependent workflow represented as DAGs, 

like Heterogeneous Early Finish Time algorithms (HEFT) [42]. The batch-

dependency algorithms work with dependent workflows first as a dependency 

mode, then divide all workflows into groups of independent tasks, and work as 

batch mode in each group, like an improved list-based task scheduling algorithm 

[43]. 
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Table 1. Scheduling algorithms in fog computing 
Algorithm Environment Scheduling Techniques Tasks Performance metrics 

DCO  
([35], 2024) 

Fog-cloud Dynamic 
Meta-

heuristic 
Independent 

Load, Energy, Makespan,  
Time, Memory. 

ERAM-EE  
([26], 2024) 

Fog Dynamic Heuristic Not mention 
Energy efficiency, 

Response time, 
Processing time 

EEOA  
([34], 2023) 

Fog-cloud Dynamic 
Meta-

heuristic 
Dependent 

Makespan, 
Total cost, 

Energy consumption 

IGA-POP  
([31], 2022) 

Fog-cloud 
Semi-

dynamic 
Meta-

heuristic 
Independent 

Makespan, 
Execution cost, 

Failure rate, 
Average latency 

IJFA  
([33], 2022) 

Fog-cloud Dynamic 
Meta-

heuristic 
Independent 

Completion time, 
Resource utilization 

Dynamic scheduling 
algorithm ([38],2022) 

Fog-cloud Dynamic Heuristic Not mention 
Throughput, 

Latency 
PDAGTO  

([25], 2021) 
Fog Static Heuristic Dependent 

Average latency, 
Energy consumption 

WOA  
([30], 2021) 

Fog-cloud Static 
Meta-

heuristic 
Dependent 

Energy consumption, 
Total cost 

MAS-GA  
([32], 2021) 

Fog-cloud Dynamic 
Meta-

heuristic 
Dependent 

Execution time, Response time, 
Makespan, Cost, Reliability, 

Availability 
WRR  

([39], 2021) 
Fog-cloud Static Heuristic Not mention 

Throughput, Latency, 
Complexity, Fairness 

Improved list-based  
([43], 2021) 

Fog Static Heuristic Dependent 
Average scheduling length ratio, 

Speedup, Makespan 
IPSO  

([29], 2019) 
Fog-cloud Static 

Meta-
heuristic 

Dependent 
Makespan, 
Total cost 

HH 
([36], 2019) 

Fog Static 
Hybrid 

Heuristic 
Independent 

Execution time, 
Energy consumption, 

Reliability 

HH  
([37], 2017) 

Fog Static 
Hyper-

heuristic 
Independent 

Execution time, Cost, 
Energy consumption, 

Network usage 
HEFT ([42], 2017) Fog-cloud Static Heuristic Dependent Makespan 

Proposed (HLSA) Fog Static Heuristic 
Dependent / 
Independent 

Makespan, Total cost, Latency 

 

The Heterogeneous Earliest Finished Time Algorithm (HEFT Algorithm) and 

improved list-based task scheduling algorithm are used with a dependency 

workflow that is represented by a Directed Acyclic Graph (DAG). However, 

different ways are used to schedule the workflow in both. HEFT [42] has two 

phases. In the first phase, it gets an upward ranking value for each task in the DAG 

based on the mean value of both computation and communication costs. Then, it 

sorts the tasks in descending order according to the ranking value of each task. In 

the second phase, it chooses a high-ranking task and assigns it to the processor with 

minimal execution time [44]. An improved list-based task-scheduling algorithm has 

three phases [43]. In the first phase, independent tasks are clustered in a DAG from 

up to down into groups so that the tasks in each group can be executed in parallel 

way. In the second phase, priorities are assigned to each task in each group based on 

three attributes: cumulative execution cost, data transfer cost, and rank of the 

predecessor task. Then, it sorts the tasks in each group based on the calculated 

priority and selects the task with high priority in the first group to be scheduled. The 

third phase is the processor selection process; if the processor with the earliest 

finished time has the minimum execution time, the selected task is assigned to that 

processor. Otherwise, if the processor with the earliest finished time does not have a 

minimum execution time, it will calculate the cross-over threshold. If the cross-over 
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threshold is between [0-3], it will assign the selected task to the processor with the 

earliest finished time; otherwise, it will assign the task to the processor with the 

minimum execution time. The improved list-based algorithm achieved better 

performance compared with HEFT, Predicted the Earliest Finish Time (PEFT), 

Minimal Optimistic Processing Time (MOPT), and the Standard Deviation-Based 

Algorithm for Task Scheduling (SDBATS). At the same time, the Min-Min and TS-

QoS algorithms are both used for independent tasks. Min-Min selects tasks with 

minimum execution time for all processors to be scheduled first [40]. The TS-QoS 

algorithm first selects the high-priority tasks to be scheduled based on quality of 

service driven [41]. Table 1 shows a classification of scheduling algorithms used in 

fog computing. 

3. Proposed scheduling algorithm 

The proposed algorithm is considered a static scheduling algorithm, so before 

starting the scheduling process, the tasks that need to be executed, the available 

resources (processors), the communication cost, the computation cost, and the 

precedence constraint between tasks should be known. Also, the proposed 

algorithm is considered a non-preemptive scheduling algorithm, so once the task is 

selected, it can’t be stopped or interrupted until it is completely executed [45]. 

If all the available resources are identical, the system is called homogeneous, 

which means that the same task can be executed on different machines with the 

same execution time. However, if the available resources have different 

architectures (capability, memory, computational speed), then the system is called 

heterogeneous, which means that the same task has different execution times for 

different machines [46]. Homogeneous systems are easy to manage compared to 

heterogeneous [47]. The proposed algorithm is considered for a heterogeneous 

system. It is not applied only to heterogeneity in resources but also to heterogeneity 

in incoming scheduling units. So it can deal with both dependent and independent 

workflows. 

3.1. Proposed scheduling algorithm parameters 

The proposed algorithm is considered as a heuristic list scheduling algorithm that 

can deal with groups of dependent workflows and independent tasks in a fog 

environment with size n, where   , i = 1, 2, 3,…, n, and assign them to a set of 

heterogeneous fully connected processors P with size m where   ,  j = 1, 2, 3,…, m. 

The groups of dependent workflow are represented by groups of Directed Acyclic 

Graphs (DAGs), whereas each DAG is represented as G= (T, E), where T is a set of 

executable tasks/nodes and E is a set of directed communication edges e(  ,   ) ϵ E, 

which represents the dependency or precedence constraint between two tasks    
and   . A task with no parent is called an entry task, while a task with no child is 

called an exit task. Each edge has non non-negative weight representing the amount 

of data needed to be exchanged between tasks. There are five defined metrics in the 

proposed algorithm. 
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First metric. The Expected Execution Matrix (EEM) is a matrix with order 

n×m, where the n rows are the number of tasks, and the m columns are the number 

of processors. Each element in the EEM matrix     represents the expected 

execution time of the task    in processor   . Matrix     for given task    is not the 

same for all processors because of the heterogeneous resources. 

Second metric. The Data Transfer Matrix (DTM) is a matrix of order n×n 

where n is the number of tasks. Each element in the DTM matrix (     represents 

the precedence constraint between two tasks     and   . Also,     defines the 

amount of data needed to be transferred from one processor to another if and only if 

the parent task     and child task     are executed in different processors; otherwise, 

    is neglected because no data needs to be transferred between processors.  

 If        
    and        

    then    is an entry task that has no 

parents and has at least one child. 

 If        
    and        

    then    is an exit task that has at least 

one parent and has no children. 

 If        
    and        

    then    is a task in an intermediate layer 

in the DAG that has at least one parent and one child. The exit and intermediate 

tasks cannot start execution until their parents have finished execution, and the 

required data is transmitted from the parent’s processors to their successors’ 

processors. 

 If        
    and        

    then    is an independent task that has 

no parent or child. 

Third metric. Communication Cost Matrix (CM) is a matrix with order m×m 

where m is the number of processors, each element in the CM matrix     defines the 

cost of transferring data between two processors    and   , if the parent task is 

executed in the processor    and the child task is executed in the processor   . 

Matrix CM is a symmetric matrix as          because the cost of transferring data 

from the processor    to    is equal to the cost of transferring data from the 

processor    to   . Also, the CM matrix has zero diagonal as       because the 

cost is neglected if parent and child tasks are executed on the same processor j. 

Fourth metric. Mapping List (ML) is considered the output of the proposed 

algorithm that is used to operate the evaluation process by recording the mapping of 

each task    to its assigned processor   , execution time for each task in the assigned 

processor    , Start execution Time      and Finished execution Time    . So ML 

is a matrix with order n×5, where n rows represent the number of tasks and 5 

represents the five outputs that are used as performance metrics. 

Fifth metric. Urgent vector    is a vector with length n; each element in the 

   vector     represents how sensitive task    is to time. Based on    and the types 

of scheduling units can define the priority of each task cumulatively and record it in 

a priority vector   . If the task is independent or an entry task and urgent, then it 

will increment its priority in   . If the task is an exit task or in the intermediate layer 

of DAGs and urgent, then it will increment its priority and increment the priority of 

its parent tasks until it reaches the entry task in   . 
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3.2. Proposed scheduling algorithm steps 

The proposed algorithm is divided into two phases. The first phase calculates the 

ranking value of each task based on its attributes. The second phase creates the list 

of tasks ready to be executed. The list is included in the first parent tasks and urgent 

independent tasks. Then, it selects the task with the highest-ranking value from the 

list, assigns it to the processor with the earliest finished time, and updates the ML 

matrix. If the assigned task has successors, then their successors will be added to 

the list after the parent task has finished its execution and the required data is 

transferred. After assigning the parent tasks, their successors, and the urgent 

independent tasks, the remaining normal independent tasks can be assigned to the 

processors in their waiting time for transferring the required data between the tasks 

and their successors (gaps), or it can select the task with the minimum execution 

time to schedule first. 

The first phase. The ranking value is calculated for each task based on three 

attributes: Average Execution Time (AET), Average Communication Cost (ACC), 

and Priority of tasks (  ). The AET is calculated from EEM by taking the average 

execution time of each task in all processors to determine the duration of the 

execution of each task [48].        for a given task    is defined as  

(1)         
    

 

   

 
,  

where:        is the average execution time of the task   ;     is the expected 

execution time of the task    in processor   ; m is the total number of available 

processors. 

ACC is evaluated by DTM and CM to determine the cost of transferring data 

for a given task to their successors, if the task and its successors are not executed in 

the same processor [49].        for given task    is defined as  

(2)                

 

 
 

         

 

   

 

   

  

 

 
 

, 

where:        is the maximum of the average communication cost of the task    
with all successors “  ”;     is the cost of transferring data from the processor    to 

processor   ;     is the amount of data needed to be transferred from the parent task 

   to its successors k ϵ S where S is the set of successors of task   . 
   is evaluated from the    vector and the type of scheduling unit to determine 

the priority of tasks.    is a binary vector; if        then    is a normal task, else if 

       then    is an urgent task.    is initialized first with zeros, if    is an 

independent task or an entry task, and      , then     will be incremented by one. 

If the    is an exit task or in the intermediate layer of DAGs and      , then    of 

    and    of its parents will be incremented until it reaches the entry task of the 

DAG. 

A normalization process will be applied to merge the three different attributes 

into one formula with a certain range and convert the dimensional data to non-
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dimensional data [41]. The linear conversion formula is used to get the normalized 

value as  

(3)       
             

                 
  

where:      is the attribute of a given task   ;      is the normalized value of     ; 
        ,          are the minimum and maximum values for all tasks to a given 

attribute. 

According to the normalized attributes NAET, NACC, and    , the ranking 

value of each task will be calculated as in [43], 
(4)                                , 

where:         is the ranking value of the task   ;         and          
and        are the normalized attributes of       ,         and        respectively, 

for a given task   . 
The second phase. First, create a list that includes urgent independent tasks 

and parent tasks, then sort them based on their ranking value. The task with a high 

rank will be scheduled first in the processor with the earliest finished time and 

recorded in the Mapping List (ML) matrix. If the scheduled task has successors, its 

successors will be added to the list after the scheduled task is finished and the 

required data is transferred. Then, apply the sorting process again after adding the 

successors to the list, and get the next high-priority task to be scheduled. Otherwise, 

if the scheduled task is independent, we only get the next high-priority task to be 

scheduled. After finishing all urgent independent tasks, the parent tasks and their 

successors, the normal independent tasks with low priority will remain. To schedule 

normal independent tasks, we first need to find gaps of free time with processors in 

ML from Equation (5). These gaps are formed due to the waiting time for 

transferring data between processors. If gaps are found, the normal tasks will be 

sorted in descending order to start with long tasks first, then check for each gap 

greater than or equal to the execution time of normal tasks. If that condition is met, 

the ML will be updated by adding the chosen task to be scheduled in the matched 

gap. After checking all gaps, if there are remaining normal tasks, then we will start 

to schedule the task with the minimum execution time first for all remaining tasks 

(use the Min-Min Algorithm),  
(5)                                 , 

where:             is the gap found in processor j;       is the start time of task 

  ;         is the finished time of the previous task     ; both tasks   ,      are 

scheduled in the processor   , while [  ,     ] ϵ R; R is the set of tasks scheduled in 

processor j. If the start of the task    is equal to the finish of the task     , then there 

is no gap between the two scheduled tasks   . Otherwise, it will check whether any 

remaining tasks can be executed in that gap.  

The proposed algorithm can be applied to different types of tasks. If all 

incoming tasks are independent (batch mode), then the proposed algorithm will give 

the urgent tasks the highest priority in scheduling. Then it schedules the tasks with 

the minimum execution time first. On the other hand, if all incoming tasks have 

precedence constraints (dependency mode), then it will cluster the parent tasks first 

and start with the urgent task in that cluster. After the execution of each task, it will 

add its successors to the cluster and sort them based on the ranking value, and then 
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it will choose the next urgent task. This leads to executing tasks in the critical path 

first, as these tasks have urgent priority. The detailed steps of the proposed 

algorithm are described in Algorithm 1. 

Algorithm 1. Hybrid List Scheduling Algorithm (HLSA) 

Initialize 

Task     with number n, Processor    with number m, Expected Execution 

Matrix     , Data Transfer Matrix     , Communication Cost Matrix 

    , Urgent vector      
Step 1. For each    ϵ Task (n) 

Step 2. Calculate the three attributes: Average Execution Time       , 
Average Communication Cost       , Priority Vector       of    according to 

Equations (1), (2) 

Step 3. Normalize three attributes                   to 

                     according to the Equation (3) 

Step 4. Compute the Ranking value of    according to the Equation (4) 

Step 5. End For 
Step 6. G0= {} 

Step 7. G1= {} 

Step 8. For all    ϵ Task (n) 

Step 9. If 
          

     &&          
     ||          

     &&         
      (       ] 

Step 10. Add    to G0 
Step 11. Else 
Step 12. Add    to G1 
Step 13. End if 
Step 14. End for 
Step 15. While G0 is not empty 
Step 16. Sort tasks in G0 descending based on their ranking value 
Step 17. Get first task    in G0 to assign to    with the earliest Finished Time 

     
Step 18. Record in ML: task   , processor   , execution time of    on   ,    , 

Start execution Time      , and Finished execution Time       

Step 19. Delete    from G0 

Step 20. if      
 
        

Step 21. Go to step 17 

Step 22. Else 

Step 23. Add successors of    after    finishes execution and transfer the 

required data needed between processors 

Step 24. Go to step 16 

Step 25. End if 

Step 26. End while 

Step 27. While G1 is not empty 

Step 28. For each    in ML 

Step 29. Get           according to the Equation (5) 
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Step 30. If                 

Step 31. Sort tasks in G1 descending based on      

Step 32. If (               ) 

Step 33. Record                       in ML 

Step 34. Delete    from G1 

Step 35. End if 

Step 36. End if 

Step 37. End for 

Step 38. Get minimum     for all tasks in G1 

Step 39. Record                       in ML 

Step 40. Delete    from G1 

Step 41. End while 

Step 42. Return ML 

The objective of the proposed algorithm is to get the best mapping between a 

set of tasks (dependent and independent tasks)    on available heterogeneous 

processors    to minimize the execution time and the overall cost and to achieve 

low latency for urgent tasks in sensitive applications. Also, HLSA aims to achieve 

the highest utilization of the exploitation of gaps in processors. 

4. Performance metrics 

Three performance metrics are evaluated for the proposed HLSA Algorithm and 

compared to the four algorithms HEFT, Min-Min, TS-QoS, and the improved list-

based task scheduling algorithms. 

1. Makespan is the duration of the execution time of all tasks and workflows 

[29]. It is also known as the finished execution time for the last executed task [31]. 

If all the incoming workflows are represented by one DAG, then the makespan will 

be defined as the finished execution time of the exit task [29], 
(6)                                        ,  

where    ,     are the finished and the start execution time of    in ML, 

respectively. 

2. Total cost is the summation of computation cost and communication cost. 

The computation cost is the cost of executing the given task    in processor     

[29, 31, 32]. The communication cost is the cost of transferring data between two 

tasks    and    having precedence constraints between them [32]. The 

communication cost will be neglected if two tasks    and    are independent, or they 

are mapped to the same processor, 
(7)                                                     , 

(8)                                           
 

   

 

   
, 

(9)                                      
                

                             , 

(10)                                           
 

   

 

   
, 

(11)                           , 
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where:    is the unit price (execution cost) of the processor    that executes task   ; 

   ,      and      are the finished execution time of   , start execution time of     

and execution time of    on    in ML, respectively;      is a binary variable,  

    ={0, 1}; if task    is scheduled on the processor     then       , otherwise, 

      ;      is the cost of transferring data between two processors    and    in the 

CM matrix;      is the amount of data needed to be transferred from    mapped to 

processor    to    mapped to    in the DTM matrix. 

3. Average latency for urgent tasks is measured as a ratio of the total waiting 

time for urgent tasks belonging to sensitive applications to all the incoming urgent 

tasks [41, 50], 
(12)                        , 

(13)                            
       

 
   

    
 
   

, 

where    ,     are the start execution time and the arrival time of   , respectively; 

    is a binary variable in an urgent vector   ,    ={0, 1}; if task    is urgent, then 

     , otherwise      . The nominator represents the summation of the latency 

of only urgent tasks. The summation in the dominator represents the number of 

urgent tasks in all incoming tasks. 

5. Simulation environment 

The proposed HLSA Algorithm, the old algorithms HEFT, Min-Min, TS-QoS, and 

the improved list-based task scheduling algorithms were simulated using the 

programming language Java. The type of incoming tasks is varied between 

independent, dependency workflows (DAGs), and a combination of both. DAGs 

workflow is generated randomly [47]. Simulation programs were applied using 

different numbers of tasks executed on 25 processors. All parameters used in the 

simulation environment are explained in Table 2. To achieve accurate results, each 

point in every chart is the average of ten simulation runs. 
 

Table 2.  Simulation parameters and values 
Simulation parameters Values 

n is the number of tasks [41] 200, 400, 600, 800, 1000 

m is the number of processors [41] 25 

    is the expected execution time of    in    in the 

Expected Execution Matrix (EEM) [29, 43]  
Generated randomly 

    is the amount of data needed to be transferred 
between processors in the Data Transfer Matrix 

(DTM) [43, 47] 

Independent tasks Dependency workflow 

     

 

   

          

 

   

    Generated randomly 

    is the cost of transferring between processors in the 

cost communication Cost Matrix (CM) [47] 

Generate randomly while taking into consideration that CM 

is a symmetric matrix with a zero diagonal 

    is a binary number in an urgent vector (  ) [41] 
Urgent task Normal task 

   = 1    = 0 

   is the unit cost of execution    in    [29] Constant number 

    is a binary number [31] 
   execute in       not execute in    

   = 1    = 0 
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6. Performance evaluation  

Three cases were examined to demonstrate that the proposed algorithm, HLSA, can 

be applied to heterogeneous scheduling units without restricting the types of 

incoming tasks. In the first case, all incoming scheduling units will be independent 

tasks; the HLSA will be compared with the Min-Min and TS-QoS algorithms. In 

the second case, all incoming scheduling units will be dependent workflows with 

precedence constraints, and the HLSA will be compared with HEFT and improved 

list-based task scheduling algorithms. In the third case, the incoming scheduling 

units will combine independent and dependent workflows. It will compare the 

performance of HLSA with different percentages of the combination. 

Case 1. If all the incoming tasks are independent, then the proposed algorithm 

HLSA, will be compared to the Min-Min and TS-QoS algorithms. As all the 

incoming tasks are independent, no data needs to be transferred between processors, 

so all the elements in the Data Transfer Matrix (DTM) are equal to zero. Also, the 

communication Cost Matrix (CM) will not be needed. The Expected Execution 

Matrix (EEM) and urgent vector (  ) will be generated randomly. 
 

    
                  (a) Makespan                       (b) Average latency of urgent tasks 

 

 
(c) Total cost 

Fig. 1. Case 1. Comparison between proposed algorithm, Min-Min, and TS-QoS algorithms 
 

Makespan. Fig. 1 shows that the proposed HLSA and Min-Min algorithms get 

almost the same minimum makespan. However, the TS-QoS algorithm achieves the 

highest one. This is because the Min-Min algorithm searches in the whole EEM for 
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the task with minimum execution time, but HLSA searches first for the tasks with 

high priority and then works as Min-Min with the remaining tasks. The TS-QoS 

Algorithm schedules the tasks based on their priority, so there is no search for tasks 

with minimum execution time in EEM. 

Total cost. The three algorithms achieve the same performance in cost as 

makespan. In that case, the total cost is equal to the computation cost only, as all 

tasks are independent, and the CM matrix equals zero. Thus, the total cost will 

depend on execution time as the makespan. 

Latency for urgent tasks. The proposed HLSA and TS-QoS algorithms achieve 

minimal latency regarding urgent tasks compared to the Min-Min algorithm. HLSA 

and TS-QoS prioritize scheduling urgent tasks first. On the other hand, the Min-Min 

algorithm gives the highest priority to tasks with minimal execution time. 

Case 2. If all the incoming tasks are dependency workflow, then the proposed 

HLSA Algorithm will be compared to HEFT and the improved list-based task 

scheduling algorithm. All the incoming tasks are dependent workflows represented 

by a DAG and generated randomly. Also, the Data Transfer Matrix (DTM), the 

communication Cost Matrix (CM), the Expected Execution Matrix (EEM), and the 

Urgent vector (  ) will be generated randomly. 
 

  
          (a) Makespan                            (b) Average latency of urgent tasks  

 

 
(c)Total cost 

Fig. 2. Case 2. Comparison between proposed algorithm, HEFT, and improved list-based algorithms 
 

Makespan. Fig. 2 shows that the proposed algorithm HLSA achieves better 

performance in makespan, followed by the improved list-based algorithm compared 



 136 

to HEFT because of the scheme used to evaluate the ranking value in each 

algorithm. In HLSA, the ranking value of each task increases with the number of 

successors to each task. That leads to lower waiting time for tasks till their parents 

are executed and the amount of precedence data is transferred. 

Total cost. The proposed algorithm, HLSA, achieves slightly better 

performance in total cost, followed by an improved list-based algorithm compared 

to HEFT. In that case, the total cost is the summation of the computation and 

communication costs. HLSA gets a minimum makespan, followed by the improved 

list-based algorithm, followed by HEFT, so the computation cost of HLSA will be 

the minimum, followed by the improved list-based algorithm, followed by HEFT. 

The three algorithms aim to get minimum communication costs, as it is considered 

when calculating the ranking value for each task. 

Latency to urgent tasks. The proposed algorithm, HLSA, achieves minimum 

latency to urgent tasks compared to HEFT and the improved list-based algorithm 

because HLSA considers the priority of the tasks when evaluating the ranking value 

for each task, while HEFT and the improved list-based algorithm do not. 

Case 3. The incoming tasks are a combination of both independent and 

dependent workflows. 20%, 50% and 80% of tasks are dependent on workflow and 

are used to evaluate the proposed algorithm according to these different 

percentages. 

Makespan and Latency. Fig. 3 shows that the proposed algorithm HLSA 

achieves better performance in makespan and latency with workflow consist of 

(20% of dependent workflow and 80% of independent tasks) compared to workflow 

consist of (50% of dependent workflow and 50% independent tasks, and 80% of 

dependent workflow and 20% independent tasks). The increase in dependency 

constraints justifies that, as it increases the waiting time between tasks until their 

parents are executed, and the delay in transferring precedence data between tasks. 

Total cost. Also, the HLSA with (20% of dependent workflow and 80% of 

independent tasks) achieves minimum total cost as it has a minimum number of 

tasks that need precedence data before starting execution, so the communication 

cost will be calculated only for 20% of tasks. By increasing the percentage of 

dependent workflow, the communication cost will increase, as well as the total cost. 

Exploitation of gaps. Using free scheduling gaps will increase with the 

increase in the number of independent tasks that fill up gaps. When using 20% of 

the dependent workflow, the percentage of the used time is 100%, then it decreases 

with the decrease of independent tasks, and vice versa. 

Table 3 summarizes the results obtained in the previous cases. It illustrates the 

percentage of improvement that HLSA achieves compared to Min-Min and TS-QoS 

algorithms in case all tasks are independent, and compared to HEFT and improved 

list-based algorithms in case all tasks are dependent. Also, it illustrates the changes 

accrued in the used metrics when the incoming tasks combine independent and 

dependent workflows with different percentages in Case 3. 
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          (a) Makespan                                        (b) Average latency of urgent tasks    

 

              
      (c) Total cost                                               (d) Percentage of free time 

Fig. 3. Case 3. Comparison when applying the proposed algorithm with different percentages of 

dependent workflow (20%, 50%, and 80%) 
 

As shown in Table 3, in the first case, all the incoming tasks are independent, 

and the proposed algorithm, HLSA, was compared to the Min-Min and TS-QoS 

algorithms. The proposed algorithm achieves almost the same performance in 

makespan and total cost, with differences of 4% and 5% of using the Min-Min 

Algorithm, while achieving better performance with percentages 14% and 16% of 

the TS-QoS Algorithm. The proposed algorithm achieves almost the same 

performance in latency to urgent tasks with a difference 3% of using the TS-QoS 

Algorithm, while achieving better performance with a percentage 45% of using the 

Min-Min Algorithm. 

In the second case, all the incoming tasks depend on each other. It was 

compared to HEFT and the improved list-based algorithm. The proposed algorithm 

performs better in makespan and total cost, with a difference of 7%, 9% in HEFT, 

and 3%, 6% in the improved list-based algorithm. In comparison, it performs better 

latency to urgent tasks with a percentage of 37% for the HEFT algorithm and 32% 

for the improved list-based algorithm. 

In the third case, the changes accrued in performance metrics when increasing 

the percentage of precedence constraints between tasks from 0% (all tasks are 

independent) to 20%, 50%, 80% and 100% (all tasks are dependent on each other) 

in the proposed algorithm are declared. The average of changes in makespan and 

latency increased with increasing precedence constraints because of the increasing 
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waiting time between tasks until their parents execute and the transfer of 

precedence data. Also, the average of changes in total cost increased due to an 

increase in communication cost that was calculated between dependency tasks. On 

the other hand, the proposed algorithm achieves low efficiency in utilizing gaps of 

free time by increasing dependency constraints. 

Table 3.  Summary of the results 

Case 1. All tasks are independent 

Performance 

metrics 

Percentage of differences between proposed HLSA Algorithm with 

Min-Min Algorithm TS-QoS Algorithm 

Makespan More by 4% More by 14% 

Total cost More by 5% More by 16% 

Latency More by 45% More by 3% 

Case2. All tasks are dependent on each other 

Performance 

metrics 

Percentage of differences between proposed HLSA Algorithm with 

HEFT Algorithm Improved List-Based Algorithm 

Makespan More by 7% More by 3% 

Total cost More by 9% More by 6% 

Latency More by 37% More by 32% 

Case 3. Combination of independent tasks and dependent workflow 

Performance 

metrics 

Average increase in performance metrics when increasing dependency percentage 

from 

0% to 20% 20% to 50% 
50% to 

80% 
20% to 80% 80% to100% 

Makespan (ms) 13 6 8 14 10 

Total cost 42 33 47 75 31 

Latency (ms) 2 15 17 31 16 

Used time of gaps - 1 21 22 80 

7. Conclusion and future work 

This paper proposes a hybrid list scheduling algorithm, HLSA, that aims to work 

with different types of scheduling units to avoid the need to add restrictions on the 

types of incoming tasks and schedule them in heterogeneous resources to get 

minimum execution time, total cost, and low latency for tasks that belong to 

sensitive IoT applications. To evaluate its performance, three cases were studied 

using simulation: all tasks are independent, all tasks are dependent on each other, 

and a combination of both. From the results of the three cases, we can see that the 

proposed algorithm HLSA gets minimum latency to urgent tasks that are needed in 

sensitive time applications in fog computing and utilizes gaps of free time in the 

scheduling timeline for each processor. It also achieves minimum makespan and 

total cost compared with other algorithms.  

HLSA can work with different types of incoming tasks and available resources 

that are defined before starting scheduling. Therefore, HLSA cannot be applied to 

dynamic scheduling as it is considered a static scheduling algorithm. The future 

work aims to apply this algorithm to dynamic scheduling. 
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