
 123

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 25, No 3

Sofia  2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2025-0026

HLSA – A New Hybrid List Scheduling Algorithm for Fog

Computing

Hend Gamal El Din Hassan Ali, Imane Aly Saroit, Amira Mohamed

Kotb

Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt

E-mails: hendgamal@fci-cu.edu.eg a.kotb@fci-cu.edu.eg i.saroit@fci-cu.edu.eg

Abstract: A hybrid list scheduling algorithm is applied in fog computing with

heterogeneity in available resources and incoming scheduling units. The scheduling

units that need to be scheduled can be independent with no precedence constraints,

so that tasks can be executed in parallel. On the other hand, precedence constraints

can be present between tasks and represented by a Directed Acyclic Graph (DAG).

Some scheduling algorithms are efficient for independent tasks, while others excel

in handling dependency workflows. This paper proposes a Hybrid List Scheduling

Algorithm (HLSA) for all scheduling unit types and examines the impact of

incoming scheduling unit types on the performance of the proposed algorithm.

HLSA assigns priority to sensitive time tasks in a cumulative way to achieve

minimum latency for sensitive IoT applications in fog computing and to get

minimum makespan, computation cost, and communication cost. Also, HLSA aims

to achieve the highest utilization of the exploitation of gaps in processors.

Keywords: Fog computing, Cloud computing, Internet of Things, List Scheduling

Algorithm, Directed acyclic graph, Workflow.

1. Introduction

Fog computing is considered an extension of cloud computing, used to overcome

the drawbacks of cloud computing, particularly in light of the massive data

produced by IoT applications [1-6]. Fog computing shifts centralized processing in

the cloud to the network edges [7-10]. Because of the limited resources in any

computing environment and to satisfy different users’ requirements, a scheduling

process is needed in fog computing. The scheduling process is considered the most

significant NP-complete problem [11-13]. There are many scheduling algorithms

used in fog environments with different classifications.

In this paper, our focus will be on heuristic list scheduling algorithms.

Heuristic list scheduling algorithms can be classified based on the types of

scheduling units to batch, dependency, and batch-dependency algorithms [14].

Batch scheduling algorithms work with independent tasks. They cannot be applied

 124

with precedence constraints between tasks. Dependency scheduling algorithms

work with a dependency workflow that is represented by Directed Acyclic Graphs

(DAG) and cannot deal efficiently with independent tasks. Batch-dependency

scheduling algorithms work first as dependency algorithms with a dependency

workflow and form groups of independent tasks, then work as a batch algorithm in

each group.

The proposed Hybrid List Scheduling Algorithm (HLSA) aims to efficiently

work with different types of scheduling units without requiring assumptions or

restrictions on the types of incoming tasks. It also takes into consideration the

sensitive time tasks in some IoT applications, such as health care, intelligent traffic

control, and monitoring applications [15-21]. The contributions of our work are

summarized as follows.

 First, the proposed algorithm is designed to accept any type of scheduling

units without any restrictions, so there are three cases studied: first, when all the

scheduling units are independent, second, when all the scheduling units are

dependent on each other, and third, when the scheduling units are a combination of

independent and dependent.

 Second, the proposed algorithm relies on ranking value to schedule tasks,

which is increased by increasing the sensitivity of time to tasks and increasing the

number of successors to each task. That led to a decrease in the latency of sensitive

tasks and reduced waiting time for all the tasks.

 Third, the proposed algorithm intends to utilize the exploitation of gaps in

the timing line that formed as a result of precedence constraints between tasks that

cause waiting for certain task to its parent tasks to execute first, and transferring

data between processors.

 Finally, a complete comparison is applied between the proposed algorithm

and other algorithms in the first two cases. In the third case, the changes in the

behaviour of the proposed algorithm are declared when increasing the percentage of

precedence constraints between tasks from 0% (all tasks are independent) to 20%,

50%, 80% and 100% (all tasks are dependent on each other).

The rest of the paper is organized as follows: Section 2 describes the previous

related work used in fog computing and its classification. Section 3 highlights the

steps of the proposed algorithm. Section 4 illustrates the performance metrics used

to evaluate the proposed algorithm. Section 5 defines the simulation environment

parameters. Section 6 shows the performance evaluation of the proposed algorithm

compared to the HEFT, Min-Min, TS-QoS, and improved list-based task scheduling

algorithms. Conclusion and future work are conducted in Section 7.

2. Related work

Scheduling algorithms used in fog computing can be classified based on how the

problem is solved into heuristic, meta-heuristic, hybrid heuristic, and hyper-

heuristic algorithms [22]. Heuristic algorithms are used to solve a specific problem

with known parameters [23] as in [24] proposed a Critical Task First Scheduler

(CTFS), in [25] proposed a Priority and dependency-based DAG Tasks Offloading

 125

Algorithm (PDAGTO Algorithm) and in [26] proposed Efficient Resource

Allocation and Management strategies for Energy Efficiency (ERAM-EE).

Meta-heuristic algorithms are used to solve problems in a wide range [27].

Most meta-heuristic algorithms are inspired by nature, classified as Swarm

Intelligence (SI), bio-inspired, and physical and chemical algorithms [28]. SI

algorithms are inspired by the behaviour of multi-agents, such as Particular Swarm

Optimization (PSO), Ant Colony Optimization (ACO), and Improved Particle

Swarm Optimization (IPSO) [29]. Bio-inspired algorithms are inspired by

biological systems like Genetic Algorithms (GA), Whale Optimization Algorithms

(WOA) [30], improved genetic algorithms for permutation-based optimization

problems (IGA-POP) [31], Multi-Agent System-based Genetic Algorithms

(MAS-GA) [32], and Enhanced JellyFish Algorithm (IJFA) [33]. Physical and

chemical algorithms are inspired by physical and chemical systems like harmony

search, a simulated annealing algorithm, and an Electric Earthworm Optimization

Algorithm (EEOA) [34]. Another type of meta-heuristic algorithm not inspired by

natural systems, like Drawer Cosine Optimization (DCO) [35], which is inspired by

choosing objects from various drawers to create perfect formations.

Hybrid heuristic algorithms combine two or more of the heuristic algorithms to

solve a predefined problem as a Hybrid Heuristic Algorithm (HH Algorithm) [36].

Hyper-heuristic algorithms combine more than one heuristic algorithm, like a

hybrid heuristic, but use a selector to decide which one of the heuristic algorithms is

best to be used at each iteration, as HH Algorithm [37]. All these scheduling

algorithms can be used in fog computing based on the system’s requirements to

achieve the best mapping between incoming tasks and available resources.

On the other hand, some scheduling algorithms can only work with no prior

information about available resources or the tasks that need to be executed. They

are applied in real-time and are called dynamic/online algorithms, like dynamic

scheduling algorithms [38]. While other algorithms need prior information about

resources and tasks before starting scheduling, they are called static or offline

algorithms, like come First-Come, First-Served Algorithm (FCFS Algorithm), the

Round Robin Algorithm (RR Algorithm), and the Weighted Round Robin

Algorithm (WRR Algorithm) [39]. Also, scheduling algorithms can be classified

based on the types of incoming scheduling units, into batch, dependency, and batch-

dependency algorithms [8]. Batch algorithms work with independent tasks with no

precedence constraints, like Min-Min [40] and TS-QoS algorithms [41].

Dependency algorithms work with a dependent workflow represented as DAGs,

like Heterogeneous Early Finish Time algorithms (HEFT) [42]. The batch-

dependency algorithms work with dependent workflows first as a dependency

mode, then divide all workflows into groups of independent tasks, and work as

batch mode in each group, like an improved list-based task scheduling algorithm

[43].

 126

Table 1. Scheduling algorithms in fog computing
Algorithm Environment Scheduling Techniques Tasks Performance metrics

DCO
([35], 2024)

Fog-cloud Dynamic
Meta-

heuristic
Independent

Load, Energy, Makespan,
Time, Memory.

ERAM-EE
([26], 2024)

Fog Dynamic Heuristic Not mention
Energy efficiency,

Response time,
Processing time

EEOA
([34], 2023)

Fog-cloud Dynamic
Meta-

heuristic
Dependent

Makespan,
Total cost,

Energy consumption

IGA-POP
([31], 2022)

Fog-cloud
Semi-

dynamic
Meta-

heuristic
Independent

Makespan,
Execution cost,

Failure rate,
Average latency

IJFA
([33], 2022)

Fog-cloud Dynamic
Meta-

heuristic
Independent

Completion time,
Resource utilization

Dynamic scheduling
algorithm ([38],2022)

Fog-cloud Dynamic Heuristic Not mention
Throughput,

Latency
PDAGTO

([25], 2021)
Fog Static Heuristic Dependent

Average latency,
Energy consumption

WOA
([30], 2021)

Fog-cloud Static
Meta-

heuristic
Dependent

Energy consumption,
Total cost

MAS-GA
([32], 2021)

Fog-cloud Dynamic
Meta-

heuristic
Dependent

Execution time, Response time,
Makespan, Cost, Reliability,

Availability
WRR

([39], 2021)
Fog-cloud Static Heuristic Not mention

Throughput, Latency,
Complexity, Fairness

Improved list-based
([43], 2021)

Fog Static Heuristic Dependent
Average scheduling length ratio,

Speedup, Makespan
IPSO

([29], 2019)
Fog-cloud Static

Meta-
heuristic

Dependent
Makespan,
Total cost

HH
([36], 2019)

Fog Static
Hybrid

Heuristic
Independent

Execution time,
Energy consumption,

Reliability

HH
([37], 2017)

Fog Static
Hyper-

heuristic
Independent

Execution time, Cost,
Energy consumption,

Network usage
HEFT ([42], 2017) Fog-cloud Static Heuristic Dependent Makespan

Proposed (HLSA) Fog Static Heuristic
Dependent /
Independent

Makespan, Total cost, Latency

The Heterogeneous Earliest Finished Time Algorithm (HEFT Algorithm) and

improved list-based task scheduling algorithm are used with a dependency

workflow that is represented by a Directed Acyclic Graph (DAG). However,

different ways are used to schedule the workflow in both. HEFT [42] has two

phases. In the first phase, it gets an upward ranking value for each task in the DAG

based on the mean value of both computation and communication costs. Then, it

sorts the tasks in descending order according to the ranking value of each task. In

the second phase, it chooses a high-ranking task and assigns it to the processor with

minimal execution time [44]. An improved list-based task-scheduling algorithm has

three phases [43]. In the first phase, independent tasks are clustered in a DAG from

up to down into groups so that the tasks in each group can be executed in parallel

way. In the second phase, priorities are assigned to each task in each group based on

three attributes: cumulative execution cost, data transfer cost, and rank of the

predecessor task. Then, it sorts the tasks in each group based on the calculated

priority and selects the task with high priority in the first group to be scheduled. The

third phase is the processor selection process; if the processor with the earliest

finished time has the minimum execution time, the selected task is assigned to that

processor. Otherwise, if the processor with the earliest finished time does not have a

minimum execution time, it will calculate the cross-over threshold. If the cross-over

 127

threshold is between [0-3], it will assign the selected task to the processor with the

earliest finished time; otherwise, it will assign the task to the processor with the

minimum execution time. The improved list-based algorithm achieved better

performance compared with HEFT, Predicted the Earliest Finish Time (PEFT),

Minimal Optimistic Processing Time (MOPT), and the Standard Deviation-Based

Algorithm for Task Scheduling (SDBATS). At the same time, the Min-Min and TS-

QoS algorithms are both used for independent tasks. Min-Min selects tasks with

minimum execution time for all processors to be scheduled first [40]. The TS-QoS

algorithm first selects the high-priority tasks to be scheduled based on quality of

service driven [41]. Table 1 shows a classification of scheduling algorithms used in

fog computing.

3. Proposed scheduling algorithm

The proposed algorithm is considered a static scheduling algorithm, so before

starting the scheduling process, the tasks that need to be executed, the available

resources (processors), the communication cost, the computation cost, and the

precedence constraint between tasks should be known. Also, the proposed

algorithm is considered a non-preemptive scheduling algorithm, so once the task is

selected, it can’t be stopped or interrupted until it is completely executed [45].

If all the available resources are identical, the system is called homogeneous,

which means that the same task can be executed on different machines with the

same execution time. However, if the available resources have different

architectures (capability, memory, computational speed), then the system is called

heterogeneous, which means that the same task has different execution times for

different machines [46]. Homogeneous systems are easy to manage compared to

heterogeneous [47]. The proposed algorithm is considered for a heterogeneous

system. It is not applied only to heterogeneity in resources but also to heterogeneity

in incoming scheduling units. So it can deal with both dependent and independent

workflows.

3.1. Proposed scheduling algorithm parameters

The proposed algorithm is considered as a heuristic list scheduling algorithm that

can deal with groups of dependent workflows and independent tasks in a fog

environment with size n, where , i = 1, 2, 3,…, n, and assign them to a set of

heterogeneous fully connected processors P with size m where , j = 1, 2, 3,…, m.

The groups of dependent workflow are represented by groups of Directed Acyclic

Graphs (DAGs), whereas each DAG is represented as G= (T, E), where T is a set of

executable tasks/nodes and E is a set of directed communication edges e(,) ϵ E,

which represents the dependency or precedence constraint between two tasks
and . A task with no parent is called an entry task, while a task with no child is

called an exit task. Each edge has non non-negative weight representing the amount

of data needed to be exchanged between tasks. There are five defined metrics in the

proposed algorithm.

 128

First metric. The Expected Execution Matrix (EEM) is a matrix with order

n×m, where the n rows are the number of tasks, and the m columns are the number

of processors. Each element in the EEM matrix represents the expected

execution time of the task in processor . Matrix for given task is not the

same for all processors because of the heterogeneous resources.

Second metric. The Data Transfer Matrix (DTM) is a matrix of order n×n

where n is the number of tasks. Each element in the DTM matrix (represents

the precedence constraint between two tasks and . Also, defines the

amount of data needed to be transferred from one processor to another if and only if

the parent task and child task are executed in different processors; otherwise,

 is neglected because no data needs to be transferred between processors.

 If
 and

 then is an entry task that has no

parents and has at least one child.

 If
 and

 then is an exit task that has at least

one parent and has no children.

 If
 and

 then is a task in an intermediate layer

in the DAG that has at least one parent and one child. The exit and intermediate

tasks cannot start execution until their parents have finished execution, and the

required data is transmitted from the parent’s processors to their successors’

processors.

 If
 and

 then is an independent task that has

no parent or child.

Third metric. Communication Cost Matrix (CM) is a matrix with order m×m

where m is the number of processors, each element in the CM matrix defines the

cost of transferring data between two processors and , if the parent task is

executed in the processor and the child task is executed in the processor .

Matrix CM is a symmetric matrix as because the cost of transferring data

from the processor to is equal to the cost of transferring data from the

processor to . Also, the CM matrix has zero diagonal as because the

cost is neglected if parent and child tasks are executed on the same processor j.

Fourth metric. Mapping List (ML) is considered the output of the proposed

algorithm that is used to operate the evaluation process by recording the mapping of

each task to its assigned processor , execution time for each task in the assigned

processor , Start execution Time and Finished execution Time . So ML

is a matrix with order n×5, where n rows represent the number of tasks and 5

represents the five outputs that are used as performance metrics.

Fifth metric. Urgent vector is a vector with length n; each element in the

 vector represents how sensitive task is to time. Based on and the types

of scheduling units can define the priority of each task cumulatively and record it in

a priority vector . If the task is independent or an entry task and urgent, then it

will increment its priority in . If the task is an exit task or in the intermediate layer

of DAGs and urgent, then it will increment its priority and increment the priority of

its parent tasks until it reaches the entry task in .

 129

3.2. Proposed scheduling algorithm steps

The proposed algorithm is divided into two phases. The first phase calculates the

ranking value of each task based on its attributes. The second phase creates the list

of tasks ready to be executed. The list is included in the first parent tasks and urgent

independent tasks. Then, it selects the task with the highest-ranking value from the

list, assigns it to the processor with the earliest finished time, and updates the ML

matrix. If the assigned task has successors, then their successors will be added to

the list after the parent task has finished its execution and the required data is

transferred. After assigning the parent tasks, their successors, and the urgent

independent tasks, the remaining normal independent tasks can be assigned to the

processors in their waiting time for transferring the required data between the tasks

and their successors (gaps), or it can select the task with the minimum execution

time to schedule first.

The first phase. The ranking value is calculated for each task based on three

attributes: Average Execution Time (AET), Average Communication Cost (ACC),

and Priority of tasks (). The AET is calculated from EEM by taking the average

execution time of each task in all processors to determine the duration of the

execution of each task [48]. for a given task is defined as

(1)

,

where: is the average execution time of the task ; is the expected

execution time of the task in processor ; m is the total number of available

processors.

ACC is evaluated by DTM and CM to determine the cost of transferring data

for a given task to their successors, if the task and its successors are not executed in

the same processor [49]. for given task is defined as

(2)

,

where: is the maximum of the average communication cost of the task
with all successors “ ”; is the cost of transferring data from the processor to

processor ; is the amount of data needed to be transferred from the parent task

 to its successors k ϵ S where S is the set of successors of task .
 is evaluated from the vector and the type of scheduling unit to determine

the priority of tasks. is a binary vector; if then is a normal task, else if

 then is an urgent task. is initialized first with zeros, if is an

independent task or an entry task, and , then will be incremented by one.

If the is an exit task or in the intermediate layer of DAGs and , then of

 and of its parents will be incremented until it reaches the entry task of the

DAG.

A normalization process will be applied to merge the three different attributes

into one formula with a certain range and convert the dimensional data to non-

 130

dimensional data [41]. The linear conversion formula is used to get the normalized

value as

(3)

where: is the attribute of a given task ; is the normalized value of ;
 , are the minimum and maximum values for all tasks to a given

attribute.

According to the normalized attributes NAET, NACC, and , the ranking

value of each task will be calculated as in [43],
(4) ,

where: is the ranking value of the task ; and
and are the normalized attributes of , and respectively,

for a given task .
The second phase. First, create a list that includes urgent independent tasks

and parent tasks, then sort them based on their ranking value. The task with a high

rank will be scheduled first in the processor with the earliest finished time and

recorded in the Mapping List (ML) matrix. If the scheduled task has successors, its

successors will be added to the list after the scheduled task is finished and the

required data is transferred. Then, apply the sorting process again after adding the

successors to the list, and get the next high-priority task to be scheduled. Otherwise,

if the scheduled task is independent, we only get the next high-priority task to be

scheduled. After finishing all urgent independent tasks, the parent tasks and their

successors, the normal independent tasks with low priority will remain. To schedule

normal independent tasks, we first need to find gaps of free time with processors in

ML from Equation (5). These gaps are formed due to the waiting time for

transferring data between processors. If gaps are found, the normal tasks will be

sorted in descending order to start with long tasks first, then check for each gap

greater than or equal to the execution time of normal tasks. If that condition is met,

the ML will be updated by adding the chosen task to be scheduled in the matched

gap. After checking all gaps, if there are remaining normal tasks, then we will start

to schedule the task with the minimum execution time first for all remaining tasks

(use the Min-Min Algorithm),
(5) ,

where: is the gap found in processor j; is the start time of task

 ; is the finished time of the previous task ; both tasks , are

scheduled in the processor , while [,] ϵ R; R is the set of tasks scheduled in

processor j. If the start of the task is equal to the finish of the task , then there

is no gap between the two scheduled tasks . Otherwise, it will check whether any

remaining tasks can be executed in that gap.

The proposed algorithm can be applied to different types of tasks. If all

incoming tasks are independent (batch mode), then the proposed algorithm will give

the urgent tasks the highest priority in scheduling. Then it schedules the tasks with

the minimum execution time first. On the other hand, if all incoming tasks have

precedence constraints (dependency mode), then it will cluster the parent tasks first

and start with the urgent task in that cluster. After the execution of each task, it will

add its successors to the cluster and sort them based on the ranking value, and then

 131

it will choose the next urgent task. This leads to executing tasks in the critical path

first, as these tasks have urgent priority. The detailed steps of the proposed

algorithm are described in Algorithm 1.

Algorithm 1. Hybrid List Scheduling Algorithm (HLSA)

Initialize

Task with number n, Processor with number m, Expected Execution

Matrix , Data Transfer Matrix , Communication Cost Matrix

 , Urgent vector
Step 1. For each ϵ Task (n)

Step 2. Calculate the three attributes: Average Execution Time ,
Average Communication Cost , Priority Vector of according to

Equations (1), (2)

Step 3. Normalize three attributes to

 according to the Equation (3)

Step 4. Compute the Ranking value of according to the Equation (4)

Step 5. End For
Step 6. G0= {}

Step 7. G1= {}

Step 8. For all ϵ Task (n)

Step 9. If

 &&
 ||

 &&
 (]

Step 10. Add to G0
Step 11. Else
Step 12. Add to G1
Step 13. End if
Step 14. End for
Step 15. While G0 is not empty
Step 16. Sort tasks in G0 descending based on their ranking value
Step 17. Get first task in G0 to assign to with the earliest Finished Time

Step 18. Record in ML: task , processor , execution time of on , ,

Start execution Time , and Finished execution Time

Step 19. Delete from G0

Step 20. if

Step 21. Go to step 17

Step 22. Else

Step 23. Add successors of after finishes execution and transfer the

required data needed between processors

Step 24. Go to step 16

Step 25. End if

Step 26. End while

Step 27. While G1 is not empty

Step 28. For each in ML

Step 29. Get according to the Equation (5)

 132

Step 30. If

Step 31. Sort tasks in G1 descending based on

Step 32. If ()

Step 33. Record in ML

Step 34. Delete from G1

Step 35. End if

Step 36. End if

Step 37. End for

Step 38. Get minimum for all tasks in G1

Step 39. Record in ML

Step 40. Delete from G1

Step 41. End while

Step 42. Return ML

The objective of the proposed algorithm is to get the best mapping between a

set of tasks (dependent and independent tasks) on available heterogeneous

processors to minimize the execution time and the overall cost and to achieve

low latency for urgent tasks in sensitive applications. Also, HLSA aims to achieve

the highest utilization of the exploitation of gaps in processors.

4. Performance metrics

Three performance metrics are evaluated for the proposed HLSA Algorithm and

compared to the four algorithms HEFT, Min-Min, TS-QoS, and the improved list-

based task scheduling algorithms.

1. Makespan is the duration of the execution time of all tasks and workflows

[29]. It is also known as the finished execution time for the last executed task [31].

If all the incoming workflows are represented by one DAG, then the makespan will

be defined as the finished execution time of the exit task [29],
(6) ,

where , are the finished and the start execution time of in ML,

respectively.

2. Total cost is the summation of computation cost and communication cost.

The computation cost is the cost of executing the given task in processor

[29, 31, 32]. The communication cost is the cost of transferring data between two

tasks and having precedence constraints between them [32]. The

communication cost will be neglected if two tasks and are independent, or they

are mapped to the same processor,
(7) ,

(8)

,

(9)

 ,

(10)

,

(11) ,

 133

where: is the unit price (execution cost) of the processor that executes task ;

 , and are the finished execution time of , start execution time of

and execution time of on in ML, respectively; is a binary variable,

 ={0, 1}; if task is scheduled on the processor then , otherwise,

 ; is the cost of transferring data between two processors and in the

CM matrix; is the amount of data needed to be transferred from mapped to

processor to mapped to in the DTM matrix.

3. Average latency for urgent tasks is measured as a ratio of the total waiting

time for urgent tasks belonging to sensitive applications to all the incoming urgent

tasks [41, 50],
(12) ,

(13)

,

where , are the start execution time and the arrival time of , respectively;

 is a binary variable in an urgent vector , ={0, 1}; if task is urgent, then

 , otherwise . The nominator represents the summation of the latency

of only urgent tasks. The summation in the dominator represents the number of

urgent tasks in all incoming tasks.

5. Simulation environment

The proposed HLSA Algorithm, the old algorithms HEFT, Min-Min, TS-QoS, and

the improved list-based task scheduling algorithms were simulated using the

programming language Java. The type of incoming tasks is varied between

independent, dependency workflows (DAGs), and a combination of both. DAGs

workflow is generated randomly [47]. Simulation programs were applied using

different numbers of tasks executed on 25 processors. All parameters used in the

simulation environment are explained in Table 2. To achieve accurate results, each

point in every chart is the average of ten simulation runs.

Table 2. Simulation parameters and values
Simulation parameters Values

n is the number of tasks [41] 200, 400, 600, 800, 1000

m is the number of processors [41] 25

 is the expected execution time of in in the

Expected Execution Matrix (EEM) [29, 43]
Generated randomly

 is the amount of data needed to be transferred
between processors in the Data Transfer Matrix

(DTM) [43, 47]

Independent tasks Dependency workflow

 Generated randomly

 is the cost of transferring between processors in the

cost communication Cost Matrix (CM) [47]

Generate randomly while taking into consideration that CM

is a symmetric matrix with a zero diagonal

 is a binary number in an urgent vector () [41]
Urgent task Normal task

 = 1 = 0

 is the unit cost of execution in [29] Constant number

 is a binary number [31]
 execute in not execute in

 = 1 = 0

 134

6. Performance evaluation

Three cases were examined to demonstrate that the proposed algorithm, HLSA, can

be applied to heterogeneous scheduling units without restricting the types of

incoming tasks. In the first case, all incoming scheduling units will be independent

tasks; the HLSA will be compared with the Min-Min and TS-QoS algorithms. In

the second case, all incoming scheduling units will be dependent workflows with

precedence constraints, and the HLSA will be compared with HEFT and improved

list-based task scheduling algorithms. In the third case, the incoming scheduling

units will combine independent and dependent workflows. It will compare the

performance of HLSA with different percentages of the combination.

Case 1. If all the incoming tasks are independent, then the proposed algorithm

HLSA, will be compared to the Min-Min and TS-QoS algorithms. As all the

incoming tasks are independent, no data needs to be transferred between processors,

so all the elements in the Data Transfer Matrix (DTM) are equal to zero. Also, the

communication Cost Matrix (CM) will not be needed. The Expected Execution

Matrix (EEM) and urgent vector () will be generated randomly.

 (a) Makespan (b) Average latency of urgent tasks

(c) Total cost

Fig. 1. Case 1. Comparison between proposed algorithm, Min-Min, and TS-QoS algorithms

Makespan. Fig. 1 shows that the proposed HLSA and Min-Min algorithms get

almost the same minimum makespan. However, the TS-QoS algorithm achieves the

highest one. This is because the Min-Min algorithm searches in the whole EEM for

 135

the task with minimum execution time, but HLSA searches first for the tasks with

high priority and then works as Min-Min with the remaining tasks. The TS-QoS

Algorithm schedules the tasks based on their priority, so there is no search for tasks

with minimum execution time in EEM.

Total cost. The three algorithms achieve the same performance in cost as

makespan. In that case, the total cost is equal to the computation cost only, as all

tasks are independent, and the CM matrix equals zero. Thus, the total cost will

depend on execution time as the makespan.

Latency for urgent tasks. The proposed HLSA and TS-QoS algorithms achieve

minimal latency regarding urgent tasks compared to the Min-Min algorithm. HLSA

and TS-QoS prioritize scheduling urgent tasks first. On the other hand, the Min-Min

algorithm gives the highest priority to tasks with minimal execution time.

Case 2. If all the incoming tasks are dependency workflow, then the proposed

HLSA Algorithm will be compared to HEFT and the improved list-based task

scheduling algorithm. All the incoming tasks are dependent workflows represented

by a DAG and generated randomly. Also, the Data Transfer Matrix (DTM), the

communication Cost Matrix (CM), the Expected Execution Matrix (EEM), and the

Urgent vector () will be generated randomly.

 (a) Makespan (b) Average latency of urgent tasks

(c)Total cost

Fig. 2. Case 2. Comparison between proposed algorithm, HEFT, and improved list-based algorithms

Makespan. Fig. 2 shows that the proposed algorithm HLSA achieves better

performance in makespan, followed by the improved list-based algorithm compared

 136

to HEFT because of the scheme used to evaluate the ranking value in each

algorithm. In HLSA, the ranking value of each task increases with the number of

successors to each task. That leads to lower waiting time for tasks till their parents

are executed and the amount of precedence data is transferred.

Total cost. The proposed algorithm, HLSA, achieves slightly better

performance in total cost, followed by an improved list-based algorithm compared

to HEFT. In that case, the total cost is the summation of the computation and

communication costs. HLSA gets a minimum makespan, followed by the improved

list-based algorithm, followed by HEFT, so the computation cost of HLSA will be

the minimum, followed by the improved list-based algorithm, followed by HEFT.

The three algorithms aim to get minimum communication costs, as it is considered

when calculating the ranking value for each task.

Latency to urgent tasks. The proposed algorithm, HLSA, achieves minimum

latency to urgent tasks compared to HEFT and the improved list-based algorithm

because HLSA considers the priority of the tasks when evaluating the ranking value

for each task, while HEFT and the improved list-based algorithm do not.

Case 3. The incoming tasks are a combination of both independent and

dependent workflows. 20%, 50% and 80% of tasks are dependent on workflow and

are used to evaluate the proposed algorithm according to these different

percentages.

Makespan and Latency. Fig. 3 shows that the proposed algorithm HLSA

achieves better performance in makespan and latency with workflow consist of

(20% of dependent workflow and 80% of independent tasks) compared to workflow

consist of (50% of dependent workflow and 50% independent tasks, and 80% of

dependent workflow and 20% independent tasks). The increase in dependency

constraints justifies that, as it increases the waiting time between tasks until their

parents are executed, and the delay in transferring precedence data between tasks.

Total cost. Also, the HLSA with (20% of dependent workflow and 80% of

independent tasks) achieves minimum total cost as it has a minimum number of

tasks that need precedence data before starting execution, so the communication

cost will be calculated only for 20% of tasks. By increasing the percentage of

dependent workflow, the communication cost will increase, as well as the total cost.

Exploitation of gaps. Using free scheduling gaps will increase with the

increase in the number of independent tasks that fill up gaps. When using 20% of

the dependent workflow, the percentage of the used time is 100%, then it decreases

with the decrease of independent tasks, and vice versa.

Table 3 summarizes the results obtained in the previous cases. It illustrates the

percentage of improvement that HLSA achieves compared to Min-Min and TS-QoS

algorithms in case all tasks are independent, and compared to HEFT and improved

list-based algorithms in case all tasks are dependent. Also, it illustrates the changes

accrued in the used metrics when the incoming tasks combine independent and

dependent workflows with different percentages in Case 3.

 137

 (a) Makespan (b) Average latency of urgent tasks

 (c) Total cost (d) Percentage of free time

Fig. 3. Case 3. Comparison when applying the proposed algorithm with different percentages of

dependent workflow (20%, 50%, and 80%)

As shown in Table 3, in the first case, all the incoming tasks are independent,

and the proposed algorithm, HLSA, was compared to the Min-Min and TS-QoS

algorithms. The proposed algorithm achieves almost the same performance in

makespan and total cost, with differences of 4% and 5% of using the Min-Min

Algorithm, while achieving better performance with percentages 14% and 16% of

the TS-QoS Algorithm. The proposed algorithm achieves almost the same

performance in latency to urgent tasks with a difference 3% of using the TS-QoS

Algorithm, while achieving better performance with a percentage 45% of using the

Min-Min Algorithm.

In the second case, all the incoming tasks depend on each other. It was

compared to HEFT and the improved list-based algorithm. The proposed algorithm

performs better in makespan and total cost, with a difference of 7%, 9% in HEFT,

and 3%, 6% in the improved list-based algorithm. In comparison, it performs better

latency to urgent tasks with a percentage of 37% for the HEFT algorithm and 32%

for the improved list-based algorithm.

In the third case, the changes accrued in performance metrics when increasing

the percentage of precedence constraints between tasks from 0% (all tasks are

independent) to 20%, 50%, 80% and 100% (all tasks are dependent on each other)

in the proposed algorithm are declared. The average of changes in makespan and

latency increased with increasing precedence constraints because of the increasing

 138

waiting time between tasks until their parents execute and the transfer of

precedence data. Also, the average of changes in total cost increased due to an

increase in communication cost that was calculated between dependency tasks. On

the other hand, the proposed algorithm achieves low efficiency in utilizing gaps of

free time by increasing dependency constraints.

Table 3. Summary of the results

Case 1. All tasks are independent

Performance

metrics

Percentage of differences between proposed HLSA Algorithm with

Min-Min Algorithm TS-QoS Algorithm

Makespan More by 4% More by 14%

Total cost More by 5% More by 16%

Latency More by 45% More by 3%

Case2. All tasks are dependent on each other

Performance

metrics

Percentage of differences between proposed HLSA Algorithm with

HEFT Algorithm Improved List-Based Algorithm

Makespan More by 7% More by 3%

Total cost More by 9% More by 6%

Latency More by 37% More by 32%

Case 3. Combination of independent tasks and dependent workflow

Performance

metrics

Average increase in performance metrics when increasing dependency percentage

from

0% to 20% 20% to 50%
50% to

80%
20% to 80% 80% to100%

Makespan (ms) 13 6 8 14 10

Total cost 42 33 47 75 31

Latency (ms) 2 15 17 31 16

Used time of gaps - 1 21 22 80

7. Conclusion and future work

This paper proposes a hybrid list scheduling algorithm, HLSA, that aims to work

with different types of scheduling units to avoid the need to add restrictions on the

types of incoming tasks and schedule them in heterogeneous resources to get

minimum execution time, total cost, and low latency for tasks that belong to

sensitive IoT applications. To evaluate its performance, three cases were studied

using simulation: all tasks are independent, all tasks are dependent on each other,

and a combination of both. From the results of the three cases, we can see that the

proposed algorithm HLSA gets minimum latency to urgent tasks that are needed in

sensitive time applications in fog computing and utilizes gaps of free time in the

scheduling timeline for each processor. It also achieves minimum makespan and

total cost compared with other algorithms.

HLSA can work with different types of incoming tasks and available resources

that are defined before starting scheduling. Therefore, HLSA cannot be applied to

dynamic scheduling as it is considered a static scheduling algorithm. The future

work aims to apply this algorithm to dynamic scheduling.

 139

R e f e r e n c e s

1. A l a d w a n i, T. Scheduling IoT Healthcare Tasks in Fog Computing Based on Their Importance.

– In: Proc. of International Learning and Technology Conference, 2019, pp. 560-569.

DOI: 10.1016/j.procs.2019.12.138

2. D o l u i, K., S. K. D a t t a. Comparison of Edge Computing Implementations: Fog Computing,

Cloudlet, and Mobile Edge Computing. – In: Proc. of IEEE Global Internet of Things

Summit Conference (GIoTS’17), 2017. DOI: 10.1109/GIOTS.2017.8016213.

3. M a t r o u k, K., K. A l a t o u n. Scheduling Algorithms in Fog Computing: A Survey. –

International Journal of Networked and Distributed Computing, Vol. 9, 2021, pp. 59-74.

DOI: 10.2991/ijndc.k.210111.001.

4. K u m a r, K. D., E. U m a m a h e s w a r i. HPCWMF: A Hybrid Predictive Cloud Workload

Management Framework Using Improved LSTM Neural Network. – Cybernetics and

Information Technologies, Vol. 20, 2020, No 4, pp. 55-73.

5. M a d h u m a l a, B. R., H. T i w a r i, D. V e r m a. Virtual Machine Placement Using Energy-

Efficient Particle Swarm Optimization in Cloud Datacenter. – Cybernetics and Information

Technologies, Vol. 21, 2021, No 1, pp. 62-72.

6. S a t v e e r, M., S. A s w a l. VM Consolidation Plan for Improving the Energy Efficiency of

Cloud. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 145-159.

7. B o n o m i, F., R. M i l i t o, P. N a t a r a j a n, J. Z h u. Fog Computing: A Platform for Internet of

Things and Analytics. – Big Data and Internet of Things: A Roadmap for Smart

Environments. – In: Studies in Computational Intelligence. Vol. 546. Springer, 2014,

pp. 169-186. DOI: 10.1007/978-3-319-05029-4_7.

8. M o h a m m a d, S., N. R a j e s w a r i. Overview of Cloud Computing and Its Types. – SSNR

Electronic Journal, Vol. 6, 2019, pp. 61-67.

http://www.jetir.org/papers/JETIRAT06008.pdf
9. A l z o u b i, Y. I., A. A l j a a f r e h. Blockchain-Fog Computing Integration Applications:

A Systematic Review. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1,

pp. 3-37.

10. B h a r g a v i, K., S. B a b u, S. G. S h i v a. Type-2-Soft-Set-Based Uncertainty Aware Task

Offloading Framework for Fog Computing Using Apprenticeship Learning. – Cybernetics

and Information Technologies, Vol. 23, 2023, No 1, pp. 38-58.

11. C h u, H., S. Y a n g, P. P i l l a i, Y. C h e n. Scheduling in Visual Fog Computing: NP-

Completeness and Practical Efficient Solutions. – In: Proc. of AAAI Conference on Artificial

Intelligence, Vol. 32, 2018. DOI: 10.1609/aaai.v32i1.12080.

12. M. E. A Survey of Various Scheduling Algorithms in a Cloud Computing Environment. – Journal

of Emerging Technologies and Innovative Research (JETIR), Vol. 2, 2013, pp. 131-135.

DOI:10.15623/IJRET.2013.0202008.

13. B h u t t o, A., A. A. C h a n d i o, K. K. L u h a n o, I. A. K o r e j o. Analysis of Energy and

Network Cost Effectiveness of Scheduling Strategies in Datacentre. – Cybernetics and

Information Technologies, Vol. 23, 2023, No 3, pp. 56-69.

14. V a r s h n e y, P., Y. S i m m h a n. Characterizing Application Scheduling on Edge, Fog, and

Cloud Computing Resources. – Software Practice and Experience Journal, Vol. 50, 2019.

DOI: 10.1002/spe.2699.

15. K h o d a d a d i, F., A. V a h i d, R. B u y y a. Internet of Things: An Overview. 2017.

DOI: 10.4550/arXiv.1703.06409.

16. S l o w, E., T. T i r o p a n i s, W. H a l l. Analytics for the Internet of Things: A Survey. – ACM

Computing Surveys, Vol. 1, 2018, No 1. DOI: 10.1145/3204947.

17. D a n g, L. M., M. J. P i r a n, D. H a n, K. M i n, H. M o o n. A Survey on the Internet of Things

and Cloud Computing for Healthcare. – Journal of Electronics, Vol. 8, 2019.

DOI: 10.3390/electronics8070768.

18. Y u, W., F. L i a n g, X. H e, W. G. H a t c h e r, G. L u, J. L i n, X. Y a n g. A Survey on Edge

Computing for the Internet of Things. – IEEE Access Journal, Vol. 6, 2018.

DOI: 10.1109/ACCESS.2017.2778504.

 140

19. B a r o t, V., V. K a p a d i a, S. P a n d y a. QoS-Enabled IoT-Based Low-Cost Air Quality

Monitoring System with Power Consumption Optimization. – Cybernetics and Information

Technologies, Vol. 20, 2020, No 2, pp. 122-140.

20. S u d h a, K. S., N. J e y a n t h i. A Review on Privacy Requirements and Application Layer

Security in Internet of Things (IoT). – Cybernetics and Information Technologies, Vol. 21,

2021, No 3, pp. 50-72.

21. S a r i t h a, S a r a s v a t h i V. Reliability Analysis of an IoT-Based Air Pollution Monitoring

System Using Machine Learning Algorithm-BDBN. – Cybernetics and Information

Technologies, Vol. 23, 2023, No 4, pp. 233-250.

22. T s a i, C., W. H u a n g, M. C h i a n g, M. C h i a n g, C. Y a n g. A Hyper-Heuristic Scheduling

Algorithm for Cloud. – IEEE Transactions on Cloud Computing, Vol. 2, 2014, pp. 236-250.

DOI: 10.1109/TCC.2014.2315797.

23. R e z a, M., V. K h a j e h v a n d, A. M a s o u d, E. A k b a r i. A Task Scheduling Approach in Fog

Computing: A Systematic Review. – International Journal of Communication Systemic,

Vol. 33, 2020. DOI: 10.1002/dac.4583.

24. K h a n, A., A. A b b a s, H. A. K h a t t a k, F. R e h m a n, I. U d D i n, S. A l i. Effective Task

Scheduling in Critical Fog Applications. – In: Scientific Programming. 2022.

DOI: 10.1155/2022/9208066.

25. F u, X., B. T a n g, F. G u o, L. K a n g. Priority and Dependency-Based DAG Tasks Offloading in

Fog/Edge Collaborative Environment. – In: Proc. of 24th IEEE International Conference on

Computer Supported Cooperative Work in Design, Dalian, China, 2021.

DOI: 10.1109/CSCWD49262.2021.9437784.

26. P e r i a s a m y, P., R. U j w a l a, K. S r i k a r, Y. V. D. S a i, K. S. P r e e t h a, D. S u m a t h i,

M. S. S a y e e d. ERAM-EE: Efficient Resource Allocation and Management Strategies with

Energy Efficiency under Fog-Internet of Things Environments. – Connection Science

Journal, Vol. 36, 2024. DOI: 10.1080/09540091.2024.2350755.

27. F i s t e r, I., X. Y a n g, I. F i s t e r, J. B r e s t, D. F i s t e r. Brief Review of Nature-Inspired

Algorithms for Optimization. – Elektrotehniski Vestnik/Electrotechnical Review Journal,

Vol. 3, 2013. DOI: 10.48550/arXiv.1307.4186.

28. S a l e m, A. H., G. A l-G a p h a r i. Meta-Heuristic Algorithms for Resource Allocation in Fog

Computing. – International Journal for Modern Trends in Science and Technology, Vol. 8,

2022, pp. 134-143. DOI: 10.46501/IJMTST0802022.

29. X u, R., Y. W a n g, Y. C h e n g, Y. Z h u, Y. X i e, A. S a d i q, D. Y u a n. Improved Particle

Swarm Optimization-Based Workflow Scheduling in Cloud-Fog Environment. – Springer

Nature Switzerland, Vol. 342, 2019, pp. 337-347. DOI: 10.1007/978-3-030-11641-5_27.

30. L i n, Y., C. C h e n g, F. X i a o, K. A l s u b h i, H. M o a i t e q. A DAG-Based Cloud-Fog Layer

Architecture for Distributed Energy Management in Smart Power Grids in the Presence of

PHEVs. – Journal of Sustainable Cities and Society, Vol. 75, 2021.

DOI: 10.1016/j.scs.2021.103335.

31. A b o h a m a m a, A. S., A. E l‑G h a m r y, E. H a m o u d a. Real‑Time Task Scheduling

Algorithm for IoT‑Based Applications in the Cloud-Fog Environment. – Journal of Network

and Systems Management, Vol. 30, 2022. DOI: 10.1007/s10922-022-09664-6.

32. M o k n i, M., S. Y a s s a, J. E d d i n e, R. C h e l o u a h, M. N a z i h. Cooperative Agents-

Based Approach for Workflow Scheduling on Fog Cloud Computing. – Springer

Journal of Ambient Intelligence and Humanized Computing, Vol. 13, 2021.

DOI: 10.1007/s12652-021-03187-9.

33. J a n g u, N., Z. R a z a. Improved Jellyfish Algorithm-Based Multi-Aspect Task Scheduling Model

for IoT Tasks over Fog-Integrated Cloud Environment. – Journal of Cloud Computing:

Advances, Systems and Applications, Vol. 11, 2022. DOI: 10.1186/s13677-022-00376-5.

34. K u m a r, M. S., G. R. K a r r i. EEOA: Cost and Energy Efficient Task Scheduling in a Cloud-Fog

Framework. – Journal of Sensors, Vol. 23, 2023. DOI: 10.3390/s23052445.

35. A m e e n a, B., L. R a m a s a m y. Drawer Cosine Optimization Enabled Task Offloading in Fog

Computing. – Expert Systems with Applications Journal, Vol. 259, 2025.

DOI: 10.1016/j.eswa.2024.125212.

36. W a n g, J., D. L i. Task Scheduling Based on a Hybrid Heuristic Algorithm for Smart Production

Line with Fog Computing. – Journal of Sensors, Vol. 19, 2019. DOI: 10.3390/s19051023.

https://cit.iict.bas.bg/CIT-2023/v-23-4/10341-Volume23_Issue_4-14_paper.pdf
http://dx.doi.org/10.3390/s19051023

 141

37. K a b i r z a d e h, S., D. R a h b a r i, M. N i c k r a y. A Hyper-Heuristic Algorithm for Scheduling

of Fog Networks. – In: Proc. of IEEE Open Innovations Association FRUCT Conference,

Vol. 562, Finland, 2017, pp. 148-155. DOI: 10.23919/FRUCT.2017.8250177.

38. K r i v i c, P., M. K u s e k, I. C a v r a k, P. S k o c. Dynamic Scheduling of Contextually

Categorized Internet of Things Services in a Fog Computing Environment. – Journal of

Sensors, Vol. 22, 2022. DOI: 10.3390/s22020465.

39. M o h a m m a d, A., R. M a h m o u d, N. J a m a l, A. A l S m a d i, M. A l s h a b a n a h,

D. A l r a j h i, H. A l k h a l d i, M. K. A l s m a d i. Fog Computing Scheduling Algorithm for

a Smart City. – International Journal of Electrical and Computer Engineering (IJECE),

Vol. 11, 2021, pp. 2219-2228. DOI: 10.11591/ijece.v11i3.pp2219-2228.

40. Y u, J., R. B u y y a, K. R a m a m o h a n a r a o. Workflow Scheduling Algorithms for Grid

Computing, Metaheuristics for Scheduling in Distributed Computing Environments. –

Springer, Vol. 146, 2008, pp. 173-214. DOI: 10.1007/978-3-540-69277-5_7.

41. W u, X., M. D e n g, R. Z h a n g, B. Z e n g, S. Z h o u. A Task Scheduling Algorithm Based on

QOS-Driven in Cloud Computing. – In: Proc. of International Conference on Information

Technology and Quantitative Management, China, Vol. 17, 2013, pp. 1162-1169.

DOI: 10.1016/j.procs.2013.05.148.

42. P h a m, X., N. D o a n, N. D a o, N. Q u a n g, E. H u h. A Cost and Performance-Effective

Approach for Task Scheduling Based on Collaboration between Cloud and Fog Computing.

– International Journal of Distributed Sensor Networks, Vol. 13, 2017.

DOI: 10.1177/1550147717742073.

43. M a d h u r a, R., L. E l i z a b e t h, R. U t h a r i a r a j. An Improved List-Based Task Scheduling

Algorithm for a Fog Computing Environment. – Computing Journal, Vol. 103, 2021.

DOI: 10.1007/s00607-021-00935-9.

44. T a r i q, R., F. A a d i l, M. F. M a l i k, S. E j a z, M. U. K h a n, M. F. K h a n. Directed

Acyclic Graph-Based Task Scheduling Algorithm for Heterogeneous Systems. – In:

Proc. of Intelligent Systems Conference, London, Vol. 2, 2019, pp. 936-947.

DOI: 10.1007/978-3-030-01057-7_69.

45. G o e l, H., N. C h a m o l i. Job Scheduling Algorithms in Cloud Computing: A Survey. –

International Journal of Computer Applications, Vol. 95, 2014, No 23, pp.19-22.

DOI: 10.5120/16735-6981.

46. V i j a y a, C., P. S r i n i v a s a n. A Hybrid Technique for Server Consolidation in Cloud

Computing Environment. – Cybernetics and Information Technologies, Vol. 20, 2020, No 1,

pp. 36-52.

47. S a k e l l a r i o u, R., H. Z h a o. A Hybrid Heuristic for DAG Scheduling on Heterogeneous

Systems. – In: Proc. of IEEE International Parallel and Distributed Processing Symposium

Conference, USA, 2004. DOI: 10.1109/IPDPS.2004.1303065.

48. A h m a d, W., B. A l a m, S. M a l i k. Performance Analysis of List Scheduling Algorithms by

Random Synthetic DAGs. – SSRN Electronic Journal, 2019. DOI: 10.2139/ssrn.3349016.

49. Z h a o, H., R. S a k e l l a r i o u. An Experimental Investigation into the Rank Function of

the Heterogeneous Earliest Finish Time Scheduling Algorithm. – In: Proc. of

Conference of Parallel Processing. Vol. 2790. Springer, 2003, pp. 189-194.

DOI: 10.1007/978-3-540-45209-6_28.

50. A l i, H. G. E. H., I. A. S a r o i t, A. M. K o t b. Grouped Tasks Scheduling Algorithm Based on

QoS in Cloud Computing Network. – Egyptian Informatics Journal, Vol. 18, 2016.

DOI: 10.1016/j.eij.2016.07.002.

Fast-track. Received: 07.07.2025. First Revision: 06.08.2025. Accepted: 12.08.2025

http://dx.doi.org/10.3390/s22020465

