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Abstract: This paper presents an efficient SAT-solving approach for addressing the 

NP-hard problem of non-preemptive task scheduling on multiple identical 

resources. This problem is relevant to various application domains, including 

automotive, avionics, and industrial automation where tasks compete for shared 

resources. The proposed approach, called CSE, incorporates several novel 

optimizations, including a Block encoding technique for efficient continuity 

constraint representation and specialized symmetry-breaking constraints to prune 

the search space. We evaluate the performance of CSE compared to state-of-the-art 

SAT encoding schemes and leading optimization solvers like Google OR-Tools, 

IBM CPLEX, and Gurobi through extensive experiments across diverse datasets. 

Our method achieves substantial reductions in solving time and exhibits superior 

scalability for large problem instances.  

Keywords: Non-preemptive scheduling, Identical resources, SAT encoding, SAT 

solving, Symmetry-breaking. 

1. Introduction 

Real-time systems in safety-critical applications require efficient scheduling 

algorithms to ensure tasks are completed within deadlines. Unlike preemptive 

scheduling [1], this paper addresses non-preemptive task scheduling on multiple 

identical resources, an NP-hard problem [2, 3] where tasks must execute 

continuously until completion once started. 

This scheduling problem appears in diverse applications, including home 

appliance scheduling [4], meeting room allocation [5, 6], classroom scheduling [7], 

timetable generation [8], faculty-course assignment [9], smart parking systems [10, 

11], and allocation of platforms to trains [12, 13]. These scenarios involve aperiodic 

tasks with known release times, execution durations, and deadlines. 

We propose a novel Compact SAT Encoding (CSE) scheme with three key 

contributions: 
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1. CSE scheme with refined constraint representations for improved 

efficiency. 

2. Block encoding technique (in Section 4) that achieves linear clause 

complexity for task execution continuity constraints, improving scalability over 

traditional quadratic approaches. 

3. Specialized optimization and symmetry-breaking constraints (in Section 5) 

that effectively prune the search space while maintaining completeness. 

Experimental evaluation on datasets with up to 200 tasks and 200 resources 

demonstrates that CSE significantly outperforms the state-of-the-art ES3 encoding 

[14] and leading optimization solvers (Google OR-Tools 

(https://developers.google.com/optimization), IBM CPLEX 

(www.ibm.com/products/ilog-cplex-optimization-studio), and Gurobi 

(www.gurobi.com)), achieving substantial reductions in solving time and superior 

scalability. 

The paper is organized as follows: Section 2 reviews related work; Section 3 

presents the CSE scheme; Section 4 details Block encoding; Section 5 describes 

symmetry breaking constraints; Section 6 presents experimental results; and  

Section 7 provides the conclusion. 

2. Related work 

Non-preemptive task scheduling on identical resources is an NP-hard problem [2, 3] 

addressed by exact methods, heuristics, and metaheuristics. Exact methods include 

Mixed Integer Programming (MIP) [15] and Constraint Programming (CP) [16], 

which guarantee optimality but struggle with scalability on larger instances due to 

combinatorial explosion. CP employs specialized propagation and search 

algorithms [17, 18] and has been applied to car sequencing [19]. However, 

traditional exact methods, such as branch-and-bound [20] or A* search [21], often 

become prohibitive for larger instances. 

Boolean Satisfiability (SAT) based techniques have emerged as powerful exact 

methods for combinatorial scheduling problems [22, 23]. The approach encodes 

scheduling problems as SAT instances, leveraging advances in SAT solver 

technology [24]. SAT-based encodings have been applied to diverse scheduling 

problems, including employee timetabling [8], tournament scheduling [25], job-

shop scheduling [26], minimizing latency in data-dependent tasks [27], mapping 

synchronous dataflow graphs [28, 29], and real-time system allocation [30, 31]. 

Heuristic approaches provide approximate solutions using techniques like genetic 

algorithms, simulated annealing, and tabu search [32, 33], though they cannot 

guarantee optimality. 

The ES3 scheme by M a y a n k  and M o n d a l  [14] represents a notable SAT 

encoding for non-preemptive task scheduling. ES3 utilizes Boolean variables for 

task-resource assignments and temporal execution, with constraints ensuring the 

validity of schedules. However, ES3’s scalability is limited by rapid growth in 

variables and clauses, particularly for task execution continuity constraints, making 

larger instances intractable. 

https://developers.google.com/optimization
http://www.ibm.com/products/ilog-cplex-optimization-studio
http://www.gurobi.com/
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Our Compact SAT Encoding (CSE) addresses these limitations through three 

main contributions: (1) refined constraint formulations based on ES3 [14] that 

improve efficiency; (2) a Block encoding technique described in Section 4 that 

achieves linear clause complexity for continuity constraints; (3) specialized 

symmetry-breaking constraints discussed in Section 5, which help reduce the search 

space while maintaining completeness. 

3. SAT encoding scheme 

This section presents the CSE scheme, which is an improvement over ES3 [14]. The 

integration of CSE encoding with the Block encoding technique and symmetry-

breaking constraint representations has resulted in significantly better solution 

outcomes compared to other methods. 

3.1. Problem formulation and variables 

We consider a system of 𝑛 independent, aperiodic tasks 𝜏 = {𝜏1,  𝜏2, … ,  𝜏𝑛} to be 

scheduled on 𝑚 identical, non-preemptive resources. Each task 𝜏𝑖 has triplet 

(𝑟𝑖,  𝑒𝑖,  𝑑𝑖) for release time, execution time, and deadline, with 𝑒𝑖 > 0 and  

𝑟𝑖 + 𝑒𝑖 ≤ 𝑑𝑖. All parameters are integers (continuous values require discretization). 

For task 𝜏𝑖 : 
• Task time window 𝑊𝑖 = 𝑑𝑖 − 𝑟𝑖 : Duration from release to deadline. 

• Execution window: Actual 𝑒𝑖 time units during execution. 

• Feasible start time window 𝑇𝑖 = {𝑡 ∣ 𝑟𝑖 ≤ 𝑡 ≤ 𝑑𝑖 − 𝑒𝑖}. 
The scheduling horizon extends to 𝑇max = max

𝑖
 (𝑑𝑖). To model this problem as 

a SAT instance, we define two primary sets of Boolean variables: 

• 𝑦𝑖𝑗 : True if task 𝜏𝑖 is assigned to resource 𝑗. 

• 𝑧𝑖
𝑡 : True if task 𝜏𝑖 is active at time 𝑡 ∈ [𝑟𝑖,  𝑑𝑖 − 1]. 

 
Fig. 1. Example of task execution: Task 𝜏𝑖 = (𝑟𝑖 = 0,  𝑒𝑖 = 3,  𝑑𝑖 = 4) starting at 𝑡 = 0 

Fig. 1 illustrates an example execution for task 𝜏𝑖 with parameters  

𝑟𝑖 = 0,  𝑒𝑖 = 3,  𝑑𝑖 = 4. In this scenario, the task starts at its earliest possible time, 

𝑡 = 0. It executes for 𝑒𝑖 = 3 time units, so 𝑧𝑖
0 = 1, 𝑧𝑖

1 = 1,   𝑧𝑖
2 = 1. It must be 

completed by its deadline 𝑑𝑖 = 4. The task is not running at 𝑡 = 3, so 𝑧𝑖
3 = 0. The 

set of feasible start times for this task is 𝑇𝑖 = {𝑡 ∣ 0 ≤ 𝑡 ≤ 4 − 3} = {0, 1}. This 

illustrates the general case where a task has a tight deadline relative to its execution 

time, constraining the feasible start time window 𝑇𝑖 to only two possible values. 

More generally, for any task 𝜏𝑖, the feasible start times are  

𝑇𝑖 = {𝑡 ∣ 𝑟𝑖 ≤ 𝑡 ≤ 𝑑𝑖 − 𝑒𝑖}, and the task must execute continuously for 𝑒𝑖 time units 

once started. 
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Fig. 2. Illustration of Boolean variables for a task 𝜏𝑖 (e.g., 𝑒𝑖 = 3, starting at 𝑡 = 0, assigned to 

resource 𝑗 = 1). The central grid entries visualize the states of 𝑧𝑖
𝑡 ∧ 𝑦𝑖𝑗 for each resource-time 

combination, where a value of 1 indicates that task 𝑖 uses resource 𝑗 at time 𝑡 

Fig. 2 illustrates Boolean variables 𝑧𝑖
𝑡 (time axis) and 𝑦𝑖𝑗 (resource axis) for 

task 𝜏𝑖. The example shows task 𝜏𝑖 with 𝑒𝑖 = 3 executing on resource 1 from 𝑡 = 0 

to 𝑡 = 2. 

The encoding uses three constraint types: 

• C1: Each task is assigned to exactly one resource. 

• C2: Each resource is assigned to at most one task at any time. 

• C3: Tasks execute continuously for 𝑒𝑖 time units within their feasible 

windows. 

3.2. Core constraints 

Constraint C1: One resource per task. This constraint ensures that each task 𝜏𝑖 is 

assigned to exactly one resource. This is achieved through two sets of clauses: 

• At most one resource per task: 

(1)    ¬𝑦𝑖𝑗 ∨ ¬𝑦𝑖𝑗′  ∀𝑖, 𝑗 ≠ 𝑗′. 

• At least one resource per task: 

(2)    ⋁ 𝑦𝑖𝑗
𝑚
𝑗=1  ∀𝑖. 

Constraint C2: At most one task per resource. This constraint ensures that a 

resource is not simultaneously used by more than one task. For any two distinct 

tasks 𝑖,  𝑖′, for any resource 𝑗, and for any time unit 𝑡 within the scheduling horizon 

where both tasks could potentially be active (i.e., 𝑡 ∈ [𝑟𝑖, min(𝑑𝑖,  𝑑𝑗)]), the 

condition (𝑧𝑖
𝑡 ∧ 𝑦𝑖𝑗) → ¬(𝑧𝑖′

𝑡 ∧ 𝑦𝑖′𝑗) must hold. This is equivalent to the following 

CNF clause: 

(3)    ¬𝑧𝑖
𝑡 ∨ ¬𝑦𝑖𝑗 ∨ ¬𝑧𝑖′

𝑡 ∨ ¬𝑦𝑖′𝑗  ∀𝑖 ≠ 𝑖′, ∀𝑗, ∀𝑡 ∈ [0, min(𝑑𝑖,  𝑑𝑗)]. 

Constraint C3: Task execution continuity. Constraint C3 ensures that tasks 

only access resources during their designated execution windows and maintain 

continuous, non-preemptive execution once started. It also enforces that once a task 

starts executing, it continues without interruption for its entire execution time 𝑒𝑖. 
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Firstly, constraint C3.1 ensures that each task starts within its feasible time window 

(i.e., is active at some point that can be a valid start). We have: 

(4)    ⋁ 𝑧𝑖
𝑡𝑑𝑖−𝑒𝑖

𝑡=𝑟𝑖
 ∀𝑖. 

Secondly, we enforce the continuity of execution by constraint C3.2. This 

requirement ensures that if a task starts at any time 𝑠, it must run continuously for 𝑒𝑖 
time units and not run outside this execution window. For each task 𝜏𝑖, this 

constraint consists of the following CNF clauses: 

• If the task starts at release time, ensure continuous execution: 

(5)    ¬𝑧𝑖
𝑟𝑖 ∨ 𝑧𝑖

𝑟𝑖+𝑘 ∀𝑘 ∈ [1, 𝑒𝑖 − 1]  ∀𝑖, 

¬𝑧𝑖
𝑟𝑖 ∨ ¬𝑧𝑖

𝑡 ∀𝑡 ∈ [𝑟𝑖 + 𝑒𝑖,  𝑑𝑖 − 1]  ∀𝑖. 

• If the task starts at time 𝑡 + 1 (transition from not running to running), 

ensure continuous execution: 

(6)   𝑧𝑖
𝑡 ∨ ¬𝑧𝑖

𝑡+1 ∨ 𝑧𝑖
𝑡+𝑘  ∀𝑡 ∈ [𝑟𝑖,  𝑑𝑖 − 𝑒𝑖 − 1], 𝑘 ∈ [1,  𝑒𝑖 − 1]  ∀𝑖, 

𝑧𝑖
𝑡 ∨ ¬𝑧𝑖

𝑡+1 ∨ ¬𝑧𝑖
𝑠 ∀𝑡 ∈ [𝑟𝑖,  𝑑𝑖 − 𝑒𝑖 − 1], 𝑠 ∈ [𝑡 + 𝑒𝑖 ,  𝑑𝑖 − 1]  ∀𝑖. 

The total variables 𝑉 = 𝑛𝑚 + ∑  𝑛
𝑖=1 𝑊𝑖 and total number of clauses 𝐶 is  

𝐶(1) + 𝐶(2) + 𝐶(3) + 𝐶(4) + 𝐶(5) + 𝐶(6): 

• 𝐶(1) = 𝑛 ⋅
𝑚(𝑚−1)

2
= 𝑂(𝑛𝑚2); 

• 𝐶(2) = 𝑛; 

• 𝐶(3) ≈
𝑛(𝑛−1)

2
⋅ 𝑚 ⋅ (𝑑𝑖 − 𝑒𝑖) = 𝑂(𝑛

2𝑚𝑊𝑖); 

• 𝐶(4) = 𝑛; 

• 𝐶(5) + 𝐶(6) = ∑𝑖=1
𝑛  

(𝑊𝑖−𝑒𝑖+1)(𝑊𝑖+𝑒𝑖−2)

2
= 𝑂(∑𝑖=1

𝑛  𝑊𝑖
2) (for large task 

windows where 𝑊𝑖 ≫ 𝑒𝑖). 
The quadratic 𝐶𝐶3.2 (𝐶(5) + 𝐶(6)) complexity motivates the Block encoding 

optimization in Section 4, which reduces this to 𝑂(𝑊𝑖) complexity. The 

effectiveness of shorter clauses in enhancing solver performance through unit 

propagation has been highlighted in seminal work [34], thereby enhancing 

computational efficiency. 

4. Block encoding for task execution continuity 

Constraint C3.2 enforces non-preemptive task execution continuity, generating a 

quadratic number of clauses, 𝑂(𝑊𝑖
2), for each task 𝜏𝑖 with time window  

𝑊𝑖 = 𝑑𝑖 − 𝑟𝑖 (as analyzed in Section 3). Block encoding reduces this to 𝑂(𝑊𝑖) 
complexity using auxiliary variables and reusable template structures (detailed in 

Section 4.5).  

4.1. Block encoding conceptual overview 

For clarity in the following descriptions, we define: 

• 𝑋𝑡
𝑖 ≡ 𝑧𝑖

𝑡 : Boolean variable indicating whether task 𝜏𝑖 is active at time 𝑡. 

• 𝑁mb = ⌈𝑊𝑖/(𝑒𝑖 − 1)⌉ : Number of mini blocks needed to cover the task 

window. 
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For each task 𝜏𝑖, we define pre-built template structures with auxiliary 

variables that efficiently encode C3.2 by representing: 

• All-Zero block: Ensures no execution in tail intervals [𝑠 + 𝑒𝑖,  𝑑𝑖 − 1] using 

auxiliary variables 𝑅𝑞
AZ. 

• All-One mini blocks: Ensure continuous execution for 𝑒𝑖 time units using 

Left sub-block (𝑅𝑞
L) and Right sub-block (𝑅𝑞

R) auxiliary variables. 

For each feasible start time 𝑠, merging clauses connect the original variables to 

auxiliary variables: 

𝑆𝑠
𝑖 → 𝑅L,𝑠

𝑖 ∧ 𝑅R,𝑠
𝑖 ∧ ¬𝑅AZ,𝑠

𝑖 , 

where 𝑆𝑠
𝑖 represents the start condition for task 𝜏𝑖 at time 𝑠. 

Fig. 3 illustrates the conceptual goal of C3.2: for different start times, specific 

sequences of 𝑧𝑖
𝑡 must be true (execution part) and others must be false 

(nonexecution part). In this figure, each row represents a different start time 

condition: if task 𝜏𝑖 starts at a specific time, then specific sequences of 𝑋 (i.e., 𝑧𝑖
𝑡) 

must be true for execution and false for tail non-execution. 
 

 
Fig. 3. Conceptual illustration of constraint C3.2 showing the staircase pattern for different start times 

of task 𝜏𝑖(𝑘 = 𝑒𝑖 , 𝑝 = 𝑑𝑖 − 1) 

Block encoding provides an efficient way to represent the consequences of 

these implications. It efficiently represents these patterns using: (1) All-Zero 

structures for tail non-execution segments, and (2) All-One mini blocks for 

continuous execution segments. 

To illustrate the transformation from original C3.2 to Block encoding, consider 

a task 𝜏𝑖 with (𝑟𝑖 = 1,  𝑒𝑖 = 3,  𝑑𝑖 = 6) having feasible start times 𝑇𝑖 = {1, 2, 3}. 
The original C3.2 constraint generates explicit implications for each start time: 

𝑆1
𝑖 → (𝑧𝑖

1 ∧ 𝑧𝑖
2 ∧ 𝑧𝑖

3) ∧ (¬𝑧𝑖
4 ∧ ¬𝑧𝑖

5),

𝑆2
𝑖 → (𝑧𝑖

2 ∧ 𝑧𝑖
3 ∧ 𝑧𝑖

4) ∧ (¬𝑧𝑖
5),

𝑆3
𝑖 → (𝑧𝑖

3 ∧ 𝑧𝑖
4 ∧ 𝑧𝑖

5).

 

Block encoding replaces explicit variable patterns with auxiliary variables 

representing reusable template structures: 

𝑆1
𝑖  → 𝑅L,1

𝑖 ∧ 𝑅R,1
𝑖 ∧ ¬𝑅AZ,1

𝑖 ,

𝑆2
𝑖  → 𝑅L,2

𝑖 ∧ 𝑅R,2
𝑖 ∧ ¬𝑅AZ,2

𝑖

𝑆3
𝑖  → 𝑅L,3

𝑖 ∧ 𝑅R,3
𝑖 ∧ ¬𝑅AZ,3

𝑖 ,

, 

where auxiliary variables represent: 

• 𝑅L,𝑠
𝑖  : Left sub-block template enforcing execution start patterns. 

• 𝑅R,𝑠
𝑖  : Right sub-block template enforcing execution continuation patterns. 

• 𝑅AZ,𝑠
𝑖  : All-Zero block template enforcing non-execution in tail intervals. 
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The key insight is that instead of enumerating every possible execution pattern 

explicitly, Block encoding uses prebuilt auxiliary variable structures that can be 

reused across different start times and tasks, achieving linear complexity while 

maintaining complete logical equivalence (proven in Appendix A). 

4.2. Template structure definitions 

Block encoding uses pre-built template structures with auxiliary variables that 

efficiently represent continuous execution and non-execution patterns. These 

templates are reusable across different tasks and start times, avoiding the quadratic 

clause explosion of the original C3.2 formulation. 

4.2.1. Left sub-block template 

The Left sub-block template handles the beginning portion of execution windows, 

creating a hierarchical structure of auxiliary variables that represent cumulative 

conjunctions. Each auxiliary variable 𝑅𝑞
L represents the conjunction 𝑋𝑠 ∧ 𝑋𝑠+1 ∧

…∧ 𝑋𝑠+𝑞, enabling efficient representation of continuous execution segments. 

For execution starting at time slot 𝑡, the Left sub-block covers variables from 

𝑋𝑠 to 𝑋𝑠+𝑒𝑖−3, using 𝑒𝑖 − 3 auxiliary variables 𝑅1
L, … , 𝑅𝑒𝑖−3

L . The hierarchical design 

allows any top-level auxiliary variable to enforce all required conjunctions below it, 

as illustrated in Fig. 4. 
 

 
Fig. 4. Left All-One sub-block template with auxiliary variables 𝑅𝑞

𝐿 enforcing conjunctions over 

execution variables 𝑋 

The CNF clauses enforce only the implication direction 𝑅𝑞
L⟹ conjunction. 

This suffices because merging clauses forces appropriate 𝑅𝑞
L variables to true when 

tasks start. For the Left sub-block with 𝑒𝑖 − 2 Boolean variables 𝑋𝑡 , … , 𝑋𝑡+𝑒𝑖−3 at 

starting position 𝑡, we have CNF clauses: 

(7)    For 𝑅1
L: (¬𝑅1

L ∨ 𝑋𝑡+𝑒𝑖−4), (¬𝑅1
L ∨ 𝑋𝑡+𝑒𝑖−3), 

For ≥ 2 : (¬𝑅𝑞
L ∨ 𝑅𝑞−1

L ),  (¬𝑅𝑞
L ∨ 𝑋𝑡+𝑒𝑖−3−𝑞). 

This template uses 𝑒𝑖 − 3 auxiliary variables and 2(𝑒𝑖 − 3) clauses. 

4.2.2. Right sub-block template 

The Right sub-block template provides overlapping coverage with the Left sub-

block to ensure complete execution continuity. For execution starting at time slot 𝑡, 
the Right sub-block covers variables from 𝑋𝑠+𝑒𝑖−2 to 𝑋𝑠+2𝑒𝑖−4, using 𝑒𝑖 − 2 

auxiliary variables 𝑅1
R, … , 𝑅𝑒𝑖−2

R  to create the necessary hierarchical structure. When 

combined with the Left sub-block through merging logic, the combination enforces 
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continuous execution for all 𝑒𝑖 time units. The hierarchical structure is shown in 

Fig. 5. 
 

 

Fig. 5. Right All-One sub-block template for 𝑒𝑖 − 1 variables using 𝑒𝑖 − 2 auxiliary variables 

Identical structure to the Left template, the CNF clauses enforce the 

implication direction 𝑅𝑞
R⟹ conjunction. This suffices because merging clauses 

forces appropriate 𝑅𝑞
R variables to true when tasks start. The CNF clauses are: 

(8)    For 𝑅1
R: (¬𝑅1

R ∨ 𝑋s+𝑒𝑖−2), (¬𝑅1
R ∨ 𝑋s+𝑒𝑖−1), 

For 𝑞 ≥ 2, 𝑅𝑞
R: (¬𝑅𝑞

R ∨ 𝑅𝑞−1
R ),  (¬𝑅𝑞

R ∨ 𝑋s+𝑒𝑖−2+𝑞). 

This template uses 𝑒𝑖 − 3 auxiliary variables and 2(𝑒𝑖 − 2) clauses. 

4.3. All-Zero block encoding template 

The All-Zero block ensures tasks don’t execute in tail intervals [𝑠 + 𝑒𝑖, 𝑑𝑖 − 1] 

after completing their designated execution. It uses auxiliary variables that represent 

disjunctions working backwards from the tail end, creating a hierarchical structure 

for efficient non-execution enforcement. 

For a task starting at time 𝑠, the tail interval has length 𝑁tail = 𝑑𝑖 − (𝑠 + 𝑒𝑖) =

𝑑𝑖 − 𝑠 − 𝑒𝑖. The template uses 𝑁tail − 1 auxiliary variables 𝑅𝑞
AZ,

 where each 

represents the disjunction of variables in successive tail segments. The auxiliary 

variable 𝑅𝑞
AZ becomes true if any execution variable in its corresponding tail 

segment is true. Fig. 6 illustrates this hierarchical structure. 

 

Fig. 6. All-Zero block template ensuring no execution in tail segments using auxiliary variables 

The CNF clauses for the All-Zero block template implement the disjunction 

logic where 𝑅𝑞
AZ is true if any of the relevant 𝑧𝑖

𝑡 variables are true: 

(9)    Base clauses for 𝑅1
AZ: (¬𝑋𝑑𝑖−2 ∨ 𝑅1

AZ), (¬𝑋𝑑𝑖−1 ∨ 𝑅1
AZ), 

For 𝑅𝑞
AZ(𝑞 ≥ 2): (¬𝑅𝑞−1

AZ ∨ 𝑅𝑞
AZ), (¬𝑋𝑑𝑖−1−𝑞 ∨ 𝑅𝑞

AZ). 

The CNF clauses enforce the implication direction 𝑅𝑞
AZ⟹ conjunction. This 

one-way encoding is sufficient because the merging clauses will force the 
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appropriate ¬𝑅𝑞
AZ variables to be true. For a tail of length 𝑁tail = 𝑊𝑖 − 𝑒𝑖, this uses 

𝑊𝑖 − 𝑒𝑖 − 1 auxiliary variables and 2(𝑊𝑖 − 𝑒𝑖 − 1) clauses. 

4.4. Block encoding merging 

The merging mechanism connects task start conditions to the appropriate auxiliary 

variables from pre-built template structures. For each feasible start time 𝑠 of task 𝜏𝑖, 
the start condition 𝑆𝑠

𝑖 is defined and linked to template auxiliary variables through 

merging clauses: 

𝑆𝑠
𝑖 = {

𝑧𝑖
𝑟𝑖  if 𝑠 = 𝑟𝑖,

¬𝑧𝑖
𝑠−1 ∧ 𝑧𝑖

𝑠  if 𝑠 > 𝑟𝑖.
 

The C3.2 constraint for task 𝜏𝑖 starting at time 𝑠 is then enforced by linking 𝑆𝑠
𝑖 

to the appropriate auxiliary variables from the pre-defined All-One and All-Zero 

block structures. Specifically, for task 𝜏𝑖 with feasible start time 𝑠, we enforce: 

(10)    (¬𝑆𝑠
𝑖 ∨ 𝑅L,𝑠

𝑖 ), (¬𝑆𝑠
𝑖 ∨ 𝑅R,𝑠

𝑖 ), (¬𝑆𝑠
𝑖 ∨ ¬𝑅AZ,𝑠

𝑖 ). 

The specific auxiliary variables are chosen based on start time 𝑠 and execution 

requirements: 

• 𝑅L,𝑠
𝑖  and 𝑅R,𝑠

𝑖 : Top-level auxiliary variables from Left and Right sub-block 

structures ensuring continuous execution in [𝑠, 𝑠 + 𝑒𝑖 − 1]. 

• 𝑅AZ,𝑠
𝑖 : Auxiliary variable from All-Zero structure representing disjunction 

of variables in tail interval [𝑠 + 𝑒𝑖,  𝑑𝑖 − 1]. 
For 𝑊𝑖 − 𝑒𝑖 + 1 feasible start times per task, this generates 3(𝑊𝑖 − 𝑒𝑖 + 1) 

merging clauses, providing an efficient encoding that maintains consistency with 

the block structure definitions. 

4.5. Efficiency evaluation of Block encoding 

The Block encoding scheme aims to reduce the C3.2 clause complexity for task 𝜏𝑖 
from 𝑂(𝑊𝑖

2) in the original encoding to 𝑂(𝑊𝑖) in the block-encoded version. 

For task 𝜏𝑖, the Block encoding introduces auxiliary variables for the template 

structures. The total number of auxiliary variables is 
𝑉aux ,𝑖 = (𝑒𝑖 − 3)⏟    

Left sub-block 

+ (𝑒𝑖 − 2)⏟    
Right sub-block 

+ (𝑊𝑖 − 𝑒𝑖 − 1)⏟        
All-Zero structure 

= 𝑊𝑖 + 𝑒𝑖 − 6.

 

 

The total number of clauses for the C3.2 constraint of task 𝜏𝑖 using Block 

encoding is 

𝐶3.2,𝑖
Block = 2(𝑒𝑖 − 3)⏟      

Left sub-block 

+ 2(𝑒𝑖 − 2)⏟      
Right sub-block 

+ 2(𝑊𝑖 − 𝑒𝑖 − 1)⏟          
All-Zero structure 

+ 3(𝑊𝑖 − 𝑒𝑖 + 1)⏟          
Merging clauses 

= 

= 2𝑒𝑖 − 6 + 2𝑒𝑖 − 4 + 2𝑊𝑖 − 2𝑒𝑖 − 2 + 3𝑊𝑖 − 3𝑒𝑖 + 3 = 5𝑊𝑖 − 𝑒𝑖 − 9. 
The Block encoding achieves 𝑂(𝑊𝑖) complexity because all terms in the 

formula scale linearly with 𝑊𝑖. This represents a significant asymptotic 

improvement over the quadratic growth of the original encoding. The trade-off is 

that Block encoding introduces 𝑂(𝑊𝑖) auxiliary variables, but empirical evidence 

shows that modern SAT solvers typically handle the increased variable count more 
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efficiently than the quadratic clause explosion, resulting in substantial performance 

improvements in practice. 

5. Optimization and Symmetry-breaking constraints 

Building upon the Block encoding improvements, we enhance SAT solver 

efficiency through optimization and symmetry-breaking constraints that prune the 

search space by eliminating redundant or infeasible solutions. These constraints 

target three key areas: resource conflict prevention, task ordering symmetries, and 

start time symmetries. 

5.1. Overlapping constraint (S0) 

This constraint prevents tasks with overlapping execution windows from being 

assigned to the same resource, directly targeting infeasible solutions: 

(11)    ⋀  𝑛−1
𝑖=1  ⋀  𝑛

𝑖′=𝑖+1  ⋀  𝑚
𝑗=1   (Overlap(𝑖,  𝑖

′) → (¬𝑦𝑖𝑗 ∨ ¬𝑦𝑖′𝑗)), 

where Overlap (𝑖,  𝑖′) evaluates to true if tasks 𝑖 and 𝑖′ have overlapping execution 

windows. This significantly reduces infeasible assignments the solver must 

consider, particularly in high resource contention scenarios. 

5.2. Symmetry-breaking constraint (S1) 

This constraint eliminates task-resource assignment symmetries by fixing tasks with 

early deadlines to ordered resources. This exploits the observation that tasks with 

limited scheduling flexibility (early deadlines, short execution times) can be 

assigned deterministically without losing completeness. Tasks with earliest 

completion times have limited flexibility and can be systematically assigned to 

resources in a predetermined order, eliminating permutation-based equivalent 

solutions.  

For the set of “fixed” tasks 𝐹 = {𝑖 ∣ 𝑑𝑖 − 𝑒𝑖 ≤ 𝑑min} where  

(12)    𝑑min =  min𝑖=1
𝑛 𝑑𝑖: ⋀  

min(|𝐹|,𝑚)
𝑗=1  𝑦𝐹𝑗𝑗. 

This ensures each fixed task 𝐹𝑗 is assigned to resource 𝑗 in strict ordering, 

preserving at least one representative from each class of symmetrically equivalent 

solutions. 

5.3. Time window constraint (S2) 

This constraint eliminates start time symmetries by forcing tasks to execute within 

specific time windows when their feasible windows have limited overlap. This 

prevents the solver from exploring symmetrically equivalent schedules. When 𝑑𝑖 −
𝑒𝑖 ≤ 𝑟𝑖 + 𝑒𝑖 − 1, constraint ensures task execution within the constrained window: 

(13)    ⋀  𝑛
𝑖=1   ((𝑑𝑖 − 𝑒𝑖 ≤ 𝑟𝑖 + 𝑒𝑖 − 1) → ⋀  

𝑟𝑖+𝑒𝑖−1
𝑑𝑖−𝑒𝑖

 𝑧𝑖
𝑡). 

This forces tasks to execute at all time slots within the overlap window 

between the earliest and latest possible execution intervals. When the latest start 

time 𝑑𝑖 − 𝑒𝑖 overlaps with or precedes the end of the earliest possible execution 
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𝑟𝑖 + 𝑒𝑖 − 1, the task must execute during this entire overlap period regardless of its 

actual start time. 

These constraints are designed for static task sets on identical resources and 

may require adaptation for dynamic task arrivals, preemption, or heterogeneous 

resources. They exploit specific symmetries inherent to the assumed model while 

maintaining solution completeness. 

The enhanced CSE encoding integrates the foundational constraints (C1-C3.2) 

with Block encoding optimization and symmetry-breaking constraints (S0-S2) to 

achieve both algorithmic efficiency and search space reduction. Block encoding 

provides linear complexity for continuity constraints, while optimization constraints 

eliminate infeasible and redundant solutions, collectively resulting in a more 

efficient and scalable SAT-based scheduling approach. 

6. Experimental results and analysis 

All experiments were conducted on a machine with an Intel(R) Core (TM) i7-6700 

CPU and 8GB of RAM. For our SAT-based approaches, we employed the high-

performance CaDiCaL solver (V1.0.3), a winner of recent SAT competitions [35]. 

For comparison, we also evaluated leading general-purpose optimization solvers, 

including Google OR-Tools Version 9.11, IBM CPLEX Version 22.1.1.0, and 

Gurobi Version 9.5.0, under a 600-second timeout per instance. For At-Most-One 

constraints, we used PBLib [36] with BDD encoding [37]. 

We generated three distinct datasets: Medium, Large, and Huge to assess 

performance across different problem scales. Each dataset contains 100 instances to 

ensure statistical significance of the experimental results. The parameters for each 

dataset, including task release times, deadlines, and execution times, are detailed in 

Table 1. 

 

Table 1. Range of parameter values 

Parameter Range I Range II Range III 

Release time [0, 7] [0, 10] [0, 10] 

Deadline [15, 35] [20, 50] [100, 120] 

Execution time [3, 7] [5, 10] [40, 70] 

6.1. Experiments on Medium dataset 

We first evaluated the baseline CSE scheme against the previous state-of-the-art 

ES3 [14] and general-purpose solvers on the Medium dataset (25-50 tasks).  
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Table 2. Models and configurations evaluated on the Medium dataset 

Name Description Model basis / Constraints 

ES3 
Original encoding scheme from the 

previous work [14] 

D1-D5 [14] (original ES3 

constraints) 

CSE Proposed enhanced encoding scheme 
(1)-(6) (proposed CSE constraints 

from Section 3) 

OR-Tools_MIP Using SCIP solver by Google MIP formulation 

OR-Tools_CP Using OR-Tools CP solver CP formulation 

CPLEX_MIP Using IBM CPLEX solver MIP formulation 

CPLEX_CP Using Decision Optimization CP solver CP formulation 

Gurobi_MIP Using Gurobi optimizer MIP formulation 

 

Table 2 lists evaluated configurations. SAT-based methods (ES3, CSE) are 

compared with MIP and CP solvers addressing equivalent scheduling problems. 

The performance results across all these configurations are then presented in  

Table 3. 

Table 3. Performance comparison on the Medium dataset 

Configuration Time (s) 

ES3 107.5 

CSE 43.7 

OR-Tools_MIP 365.1 

OR-Tools_CP 529.6 

CPLEX_MIP 8202 

CPLEX_CP 4640 

Gurobi_MIP 904.0 

 

Medium dataset results show CSE significantly outperforming ES3 and all 

optimization solvers (43.7 s vs 107.5 s). Table 3 demonstrates that CSE achieves 

the fastest solving times among all evaluated methods. CSE reduces variables by 

95.46% and clauses by 54.35% compared to ES3, as detailed in Table 4. 

Table 4. Performance comparison of ES3 vs CSE on Medium dataset 

Configuration Time (s) Number of variables 
Number of clauses 

(× 106) 

ES3 107.5 5,135,308 115.2 

CSE 43.7 232,174 526.3 
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6.2. Large and Huge dataset analysis 

The primary goal of our advanced techniques is to enhance scalability. We 

evaluated various configurations on the Large and Huge datasets detailed in  

Table 5, with results presented in Table 6. The data reveals a clear trend: each 

optimization contributes to a significant performance gain. Original ES3 failed on 

Huge instances due to memory limitations. While adding symmetry-breaking to the 

baseline ES3 provided a marginal improvement, applying it to our CSE scheme 

(CSESB) reduced solving time on Huge instances to 26,065 s. 

The most significant performance leap came from the introduction of the 

Block encoding technique. The CSESB_Block configuration further reduced the time to 

23,258 s, underscoring the profound impact of linearizing the continuity constraints. 

The final configuration, CSESB_Block_PBLib, which combines all optimizations, yielded 

the best overall performance, solving the Huge instances in 23,103 s with 

significant variable/clause reductions. Analysis shows that Block encoding 

consistently reduces solving times through optimized continuity constraint 

representation. Combined with PBLib cardinality encoding and symmetry-breaking, 

the approach demonstrates superior scalability on complex instances. 

Table 5. Configurations evaluated on Large and Huge datasets 
Configuration Description Constraints 

ES3 Original encoding scheme D1-D5 [14] 

ES3SB ES3 with Optimization and Symmetry-breaking D1-D5 [14], S0-S2 

CSE Our proposed encoding scheme C1.1-C3.2 

CSESB CSE with Optimization and Symmetry-breaking C1.1-C3.2, S0-S2 

CSESB_PBLib CSESB with PBLib C1PBLib, C2-C3.2, S0-S2 

CSESB_Block CSESB with Block encoding C1.1-C3.1, C3.2Block, S0-S2 

CSESB_Block_PBLib CSESB_Block with PBLib C1PBLib, C2-C3.1, C3.2Block, S0-S2 

 
Table 6. Performance comparison on Large and Huge datasets (“-”: Memory Out) 

Configuration 

Large dataset Huge dataset 

Time (s) 
Number of 

vars 
(× 106) 

Number of 
clauses 
(× 108) 

Time (s) 
Number 
of vars 
(× 106) 

Number of 
clauses 
(× 108) 

ES3 913 30.5 11.1 - 486.2 - 

ES3SB 870 30.5 11.1 45,341 486.2 17,882.7 

CSE 480 0.9 6.2 - 6.2 - 

CSESB 460 0.9 6.2 26,065 6.2 410.8 

CSESB_PBLib 474 1.0 5.9 25,731 7.1 406.9 

CSESB_Block 458 1.3 6.1 23,258 9.6 410.1 

CSESB_Block_PBLib 463 1.5 5.9 23,103 10.5 406.2 
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To further investigate performance on the most challenging instances, Fig. 7 

shows the top 15 longest solving times for different configurations on the Huge 

dataset. The plot clearly shows that the ES3SB configuration struggles significantly, 

while our CSESB offers a substantial improvement. The configurations 

incorporating Block encoding consistently occupy the lowest portion of the graph, 

confirming that this technique is particularly effective at simplifying the most 

computationally intensive instances. 

 

 

Fig. 7. Top 15 longest solving times for different configurations on Huge dataset 

6.3. Solver performance comparison across dataset sizes 

We meticulously analyzed the performance of leading SAT solvers-CaDiCaL, 

Glucose, Minisat, and MapleL-CMDistChronoBT our two most effective 

configurations: CSESB_PBLib, which integrates symmetry-breaking constraints and 

PBLib, and CSESB_PBLib_Block, which further incorporates Block encoding.  

Table 7 reveals that CaDiCaL with CSESB_PBLib_Block achieved the best total 

time (49,853.6 s), with performance advantages increasing on larger datasets. The 

2628-second improvement over CSESB_PBLib on the Huge dataset demonstrates 

Block encoding’s significant impact. This marked difference underscores the 

significant impact of Block encoding in streamlining the constraint representation, 

thus facilitating more efficient search space exploration by the solver. While the 

differences are noticeable on the smaller Large and Medium datasets, the 

performance gap widens significantly on the Huge dataset. This trend strongly 

suggests that our proposed approach, particularly with Block encoding, exhibits 

superior scalability compared to existing methods. 

Prior research [24, 34, 38, 39] has extensively demonstrated that the 

performance of SAT solvers is highly sensitive to both the encoding strategy and 

the problem’s inherent structure. In our experiments, we noted that solvers like 

Minisat, Glucose, which are known to utilize nonchronological backtracking  

[34, 40, 41], generally perform well on smaller instances. However, their 

performance tends to degrade more rapidly on larger datasets compared to solvers 
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like MLDC (MapleLCMDistChronoBT) and CaDiCaL, which employ 

chronological backtracking. This phenomenon aligns with the understanding that 

chronological backtracking, while potentially slower on smaller instances, often 

exhibits better scalability for larger, more complex problems. As [35] point out, 

chronological backtracking is often preferred when non-chronological back 

jumping would exceed a certain threshold, typically around 100 levels. The 

increased efficiency of chronological backtracking in such scenarios stems from its 

systematic exploration of the search space, which becomes increasingly 

advantageous as the problem’s complexity grows. MapleLCMDistChronoBT, the 

winner of the SAT Competition 2019 in the main track [42], was chosen for its 

exceptional performance on industrial instances, demonstrating its ability to handle 

complex, real-world problems. Also, this solver shows its strength when dealing 

with our proposed encodings. 

Table 7. Solver performance comparison 

Solver Configuration 
Dataset size 

Total time (s) 
Huge Large Medium 

CaDiCaL 
CSESB_PBLib_Block 23,103 462.5 41.7 23,607.2 

CSESB_PBLib 25,731 474.0 41.4 26,246.4 

CaDiCaL total 48,834 936.5 83.1 49,853.6 

Glucose 
CSESB_PBLib_Block 30,164 498.8 42.5 30,705.3 

CSESB_PBLib 30,775 497.2 45.4 31,317.6 

Glucose total 60,939 996.0 87.9 62,022.9 

Minisat 
CSESB_PBLib_Block 31,241 494.9 43.2 31,779.1 

CSESB_PBLib 31,763 490.8 43.8 32,297.6 

Minisat total 63,004 985.7 87.0 64,076.7 

MLDC 
CSESB_PBLib_Block 30,903 495.3 43.1 31,441.4 

CSESB_PBLib 31,171 519.6 45.1 31,735.7 

MLDC total 62,074 1014.9 88.2 63,177.1 

7. Conclusion 

Our research in this paper presents an effective approach to solving the non-

preemptive task scheduling problem using SAT solving. We demonstrate this 

through experimental results comparing the solving times of our method with those 

of powerful CP and MIP solvers, such as CPLEX, Gurobi, OR-Tools, and the 

previously proposed SAT-based ES3 scheme. Our encoding, called CSE, is more 

compact in terms of the number of variables and clauses when compared to ES3. 

The key contributions of the CSE encoding include several enhancements over ES3, 

the development of Block encoding for resource occupation constraints over 

continuous time intervals, aimed at reducing the number of clauses compared to 
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direct encoding, and the incorporation of symmetry-breaking constraints to narrow 

the search space. These improvements lead to significantly better solving times 

compared to ES3, and they even outperform strong solvers such as CPLEX, Gurobi, 

and OR-Tools. The detailed experimental configurations illustrate the progressive 

improvement in solving performance as we introduce the new SAT representation 

CSE, integrate Block encoding, and apply symmetry-breaking constraints step by 

step. 

Furthermore, the Block encoding representation proposed in this paper is not 

limited to the non-preemptive task scheduling problem; it also shows potential for 

broader applications in resource scheduling problems, such as the Resource-

Constrained Project Scheduling Problem (RCPSP), Job Shop Scheduling Problem 

(JSSP), and Assembly Line Balancing (ALB). These problems often require that 

each task continuously occupy a specific resource over a given time interval. 

The findings of this research carry significant implications for the design and 

implementation of real-time systems. The improved SAT encoding scheme 

introduced in this paper equips system designers with an effective tool to tackle the 

complexities of non-preemptive scheduling on systems with multiple identical 

resources. The ability to efficiently determine the schedulability of tasks, allocate 

them to resources, and optimize their start times is crucial for ensuring the temporal 

correctness and reliability of safety critical applications, paving the way for 

developing more reliable and responsive real-time systems. 
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Appendix A. Mathematical proof of block encoding equivalence 

Theorem. Let 𝜏𝑖 be a task with execution time 𝑒𝑖 and time window 𝑊𝑖 = 𝑑𝑖 − 𝑟𝑖. 
The constraint C3.2 and its Block encoding representation are logically equivalent. 

Original constraint C3.2: For any feasible start time 𝑠 ∈ [𝑟𝑖, 𝑑𝑖 − 𝑒𝑖] 

𝑆𝑠
𝑖 → (⋀  

𝑒𝑖−1
𝑘=0   𝑧𝑖

𝑠+𝑘 ∧ ⋀  
𝑑𝑖−1
𝑡=𝑠+𝑒𝑖

 ¬𝑧𝑖
𝑡). 

Block encoding representation: For the same start time 𝑠: 

𝑆𝑠
𝑖 → (𝑅L,𝑠

𝑖 ∧ 𝑅R,𝑠
𝑖 ∧ ¬𝑅AZ,𝑠

𝑖 ). 
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Lemma 1. The combination of Left and Right sub-blocks correctly 

represents the continuous execution requirement. 

Proof: For a task starting at time 𝑠, the Left sub-block generates auxiliary 

variables such that 𝑅𝐿,𝑠
𝑖 → ⋀  

𝑒𝑖−3
𝑘=0 𝑧𝑖

𝑠+𝑘 (covering [𝑠, 𝑠 + 𝑒𝑖 − 3] ) and the Right sub-

block ensures 𝑅𝑅,𝑠
𝑖 → ⋀  

𝑒𝑖−2
𝑘=0 𝑧𝑖

𝑠+𝑒𝑖−2+𝑘 (covering [𝑠 + 𝑒𝑖 − 2, 𝑠 + 2𝑒𝑖 − 4] ). 
The union of Left and Right sub-blocks enforces continuous execution over 

the range [𝑠, 𝑠 + 2𝑒𝑖 − 4], covering exactly 𝑒𝑖 − 1 time slots. Therefore, 𝑅𝐿,𝑠
𝑖 ∧ 𝑅𝑅,𝑠

𝑖  

enforces: 

⋀  

𝑒𝑖−1

𝑘=0

  𝑧𝑖
𝑠+𝑘 

which spans from 𝑧𝑖
𝑠 to 𝑧𝑖

𝑠+2𝑒𝑖−4 with width 𝑒𝑖 − 1. 

Lemma 2. The All-Zero block correctly represents the non-execution 

requirement. 

Proof: The All-Zero block generates auxiliary variables such that  

𝑅AZ,𝑠
𝑖 ↔ ⋁  

𝑑𝑖−1
𝑡=𝑠+𝑒𝑖

𝑧𝑖
𝑡. By de Morgan’s law: 

¬𝑅AZ,𝑠
𝑖  ↔ ¬( ⋁  

𝑑𝑖−1

𝑡=𝑠+𝑒𝑖

  𝑧𝑖
𝑡) ↔ ⋀  

𝑑𝑖−1

𝑡=𝑠+𝑒𝑖

 ¬𝑧𝑖
𝑡,  

Therefore, ¬𝑅AZ,𝑠
𝑖  correctly represents the non-execution requirement for the tail 

interval. We have theorem proof: 

Direction 1 (C3.2-Original ⟹ C3.2-Block): Assume the original constraint 

C3.2 is satisfied. Then for start time 𝑠, if 𝑆𝑠
𝑖 is true: 

1. ⋀  
𝑒𝑖−1
𝑘=0 𝑧𝑖

𝑠+𝑘 is true, which implies both 𝑅L,𝑠
𝑖  and 𝑅R,𝑠

𝑖  are true by Lemma 1. 

2. ⋀  
𝑑𝑖−1
𝑡=𝑠+𝑒𝑖

¬𝑧𝑖
𝑡 is true, which implies ¬𝑅AZ,𝑠

𝑖  is true by Lemma 2. 

3. Therefore, 𝑅L,𝑠
𝑖 ∧ 𝑅R,𝑠

𝑖 ∧ ¬𝑅AZ,𝑠
𝑖  is satisfied. 

Direction 2 (C3.2-Block ⟹ C3.2-Original): Assume the Block encoding 

constraint is satisfied. Then for start time 𝑠, if 𝑆𝑠
𝑖 is true: 

1. 𝑅L,𝑠
𝑖 ∧ 𝑅R,𝑠

𝑖  is true, which by the auxiliary variable definitions and Lemma 1 

implies ⋀  
𝑒𝑖−1
𝑘=0 𝑧𝑖

𝑠+𝑘 is true. 

2. ¬𝑅AZ,𝑠
𝑖  is true, which by Lemma 2 implies ⋀  

𝑑𝑖−1
𝑡=𝑠+𝑒𝑖

¬𝑧𝑖
𝑡 is true. 

3. Therefore, the original constraint C3.2 is satisfied. 

Since both directions hold, we have established that C3.2-Original ≡ C3.2-

Block, proving the logical equivalence between the original constraint and its Block 

encoding representation. This guarantees that the Block encoding optimization. 
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