
 54 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 25, No 3 

Sofia • 2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2025-0022 

 

 

Unification of Semantic and Instance Segmentation  

with BoundaryX 

Teodor Boyadzhiev, Krassimira Ivanova 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria 

E-mails: t.boyadzhiev@math.bas.bg   kivanova@math.bas.bg 

Abstract: Semantic segmentation is a field of image content recognition in which 

each pixel is classified according to the type of object it belongs to, while instance 

segmentation distinguishes individual object instances. A novel method, 

BoundaryX, is proposed to unify both tasks without relying on bounding boxes. 

Each pixel is classified, and boundaries are drawn around separate instances, 

enabling easy bounding box calculation without shape constraints or region 

proposals. Both instanced objects (like people) and non-instanced ones (like the 

sky) are handled by BoundaryX, without hardcoded exceptions. The quality of the 

method was evaluated on the COCO dataset for the class “people” by measuring 

Intersection over Union (IoU) for the semantic segmentation and bounding boxes 

recall and precision. The method achieved 0.774 IoU for semantic segmentation, 

75% recall, and 83% precision for bounding box quality. Segmentation pipelines 

are simplified through the unified solution and flexible boundary-based 

representation provided by BoundaryX. 

Keywords: Semantic segmentation, Instance segmentation. 

2020 Mathematics Subject Classification: 68T07, 68T45. 

1. Introduction 

Image content recognition remains a challenging task, yet advances in machine 

learning have enabled effective solutions across a wide range of applications, 

including medical imaging, traffic surveillance, infrastructure monitoring, and scene 

understanding. Recognition can be performed at several levels: image classification 

provides a global label; semantic segmentation assigns a class to each pixel; 

instance segmentation identifies and distinguishes individual object instances by 

their type, location, and boundaries. Combining instance and semantic segmentation 

offers a richer scene understanding, capturing both distinguishable objects and 

amorphous regions like sky or grass. The result is a detailed representation where 

each object is outlined and each pixel is semantically labeled. 

Instance segmentation has gained significant interest in recent years, driven by 

deep learning techniques such as reinforcement learning and transformers [18], with 

mailto:t.boyadzhiev@math.bas.bg


 55 

CNN-based solutions continuing to show strong performance [5]. UNet [17] has 

been a dominant architecture for the purposes of semantic segmentation in many 

fields such as remote sensing [1] and medicine [14], and has been enhanced with 

self-attention mechanisms [15, 21]. Meanwhile, two-stream networks using high- 

and low-resolution paths have also shown promise [13, 19]. Instance segmentation 

is commonly tackled using bounding box regression (e.g., YOLO [16]) or region 

proposal methods [3, 4, 6]. Our work is inspired by the Discriminative Feature 

Network (DFN) [20], which addresses intra-class inconsistency and inter-class 

confusion in semantic segmentation by combining a Smooth Network for masks 

and a Border Network for boundaries. 

In this paper, BoundaryX is proposed as a novel instance segmentation 

framework that uses semantic masks in combination with object boundaries, 

predicted via a fully convolutional network. Our contributions are twofold: 

• A new approach to instance segmentation that leverages object boundaries; 

• A demonstration that semantic segmentation models can be easily extended 

for instance-level tasks. 

By incorporating boundaries, precise object localization and shape 

representation are enabled, while remaining adaptable to any semantic segmentation 

backbone. We illustrate this approach using the basic UNet architecture. 

The rest of this paper is organized as follows. Related works that catalyse 

ideas for the proposed approach and its architectural solutions are reviewed in 

Section 2. The proposed framework, BoundaryX, is introduced in Section 3. The 

components used in the pipeline are explained in Section 4. The methods employed 

in the pipeline are detailed in Section 5. Experimental results are presented in 

Section 6, and the findings and future research directions are discussed in Section 7. 

2. Related works 

In image segmentation tasks, capturing both fine-grained details and global context 

is very important. A widely used architecture, UNet, achieves this through an 

encoder–decoder structure with skip connections: the encoder extracts features, 

while the decoder restores spatial information. The encoder is a sequence of 

encoder blocks, typically containing two convolutional layers with some activation, 

such as ReLU. Each encoder block is followed by a resolution-reducing operation 

such as max-pool. After the last max-pool operation, there is a block, which here is 

called “bottom”, followed by the decoder. The decoder is a sequence of resolution-

increasing operations, each of which is followed by a decoder block, typically two 

convolutions. After the last decoder block, a 1 × 1 convolution acts as a pixel 

classifier. In this paper, the overall architecture of all the networks is structured like 

UNet; however, two decoders are used – one to derive the object boundaries and 

another to derive the semantic labels. 

Although UNet provides a solid foundation for image segmentation, recent 

work has shown that extending the backbone with specialized modules can 

significantly improve performance and reduce computational burden. The goal is to 

include mechanisms that better capture semantic context or adaptively focus on 



 56 

informative regions of an image. In this direction, parallel convolutions with 

different dilation factors [2] are proposed, which increase the receptive field and 

allow multiple levels in the UNet architecture to be replaced with a single Atrous 

pyramid level. Recent research [11] also demonstrates that applying of channel 

attention mechanism [8] that adaptively recalibrates channel-wise features by 

modelling inter-channel dependencies enables channels to be emphasized or 

suppressed via learned weights. Architectures with different types of blocks for the 

encoder-decoder architecture are explored, based on Atrous and Channel attention 

mechanisms, and a new type of block, called Weighted Channel Attention, is 

proposed, which is inspired by the gates in the Long-Short-Term Memory (LSTM) 

networks. This block contains a convolutional feature map transformation, for 

example, two convolutional layers, and has a skip connection. Then a weight is 

extracted for each channel, which is used as a soft switch between the same channel 

before and after the transformation. This way, each block can “choose” for each 

channel to what extent to pass down the old features or the newly derived ones.  

3. Our approach: BoundaryX 

In the method presented here, the problem of instance segmentation is addressed by 

classifying each pixel of an image according to the object it belongs to, and 

semantic segmentation is achieved by drawing a boundary around each object. 

Firstly, the boundaries are drawn around each segment, regardless of whether they 

are part of the same object or not, and later it is determined whether they belong to 

the same object. The method consists of three steps: 

• Boundary and semantic mask generation. A convolutional neural 

network, called Boundary Generator, is used to predict the semantic masks for each 

object class, and the boundaries around each object segment are drawn.  

• Morphologic analysis. Semantic masks and boundaries are used to extract 

the individual segments of each object by class. 

• Segment association. The convolutional network, called Segment 

Associator, is used for determining whether individual segments belong to the same 

object. An equivalence relation is used for optimization, reducing the number of 

necessary comparisons. 

3.1. Boundary and semantic mask generation 

The boundaries and the semantic mask generation are approached as a pixel 

classification task. For an input image, 𝑥 ∈  ℝ𝐻×𝑊×𝐶, where 𝐻, 𝑊, and 𝐶 are the 

height, width, and the number of channels, respectively, a semantic probability 

mask, 𝑠̂ ∈ [0, 1]𝐻×𝑊×𝐾, where 𝐾 is the number of semantic categories, and 

boundary probabilities 𝑏̂ ∈ [0, 1]𝐻×𝑊 are generated. For example,  
𝑠̂ℎ𝑤𝑘 = 𝑃(𝑥ℎ𝑤 is class 𝑘| 𝑥) is the probability of pixel 𝑥ℎ𝑤 to be part of an object 

of class 𝑘 and 𝑏̂ℎ𝑤 = 𝑃(𝑥ℎ𝑤  is the boundary|𝑥) is the probability of pixel 𝑥ℎ𝑤 to 

be part of the boundary of an object. 



 57 

These conditional probabilities are modelled by a fully convolutional neural 

network, which has one encoder, followed by a convolutional block called bottom, 

and two decoders, Fig. 1. 

 

 
Fig. 1. Generic architecture of Boundary Generator 

Each encoder or decoder is a series of convolutional blocks, block𝑙 , 
 𝑙 = 0, . . ., 𝐷 − 1, where 𝐷 is the depth of the network. The bottom is considered 

to be at level 𝐷. Each block in the encoder has a skip connection to each block of 

the decoder at the same level.  

After each encoder block, there is a max-pool operation, which halves the 

height and the width. Before each decoder block, there is an upsize operation that 

doubles the height and the width. Each block consists of several convolutional 

layers, and each convolutional layer has min(𝑓2𝑙 , 𝑚) filters, where 𝑓 is the number 

of filters in the level 𝑙 = 0, and 𝑚 is the maximum number of filters. 

The effects of different types of convolutional blocks are explored in the 

paper. Details of these blocks can be found in Section 4. 

Data representation and error functions  

The training data consists of triplets 𝒟 = {(𝑥, 𝑠, 𝑏)}, where  

𝑥 ∈ {0, 1, . . ., 255}𝐻×𝑊×3 is the input RGB image, 𝑠 ∈ {1, . . . , 𝐾}𝐻×𝑊 is the 

semantic label, and 𝑏 ∈ {0, 1}𝐻×𝑊 is the boundary label. A boundary pixel has label 

1 – otherwise 0. The semantic label is one-hot encoded, with an additional 

background category. If there are three categories (e.g., “person”, “cat”, “dog”), 

then 𝐾 = 4. The boundary pixels do not overlap with the segment pixels, avoiding 

issues during morphological analysis with segments that are just several pixels thin. 

The boundary loss b is calculated using binary cross-entropy: 

ℇb =  −
1

𝐻𝑊
∑ ∑ 𝑏ℎ𝑤 ln 𝑏̂ℎ𝑤 + (1 −  𝑏ℎ𝑤 ) ln(1 − 𝑏̂ℎ𝑤).

𝑊

𝑤=1

𝐻

ℎ=1

 

The semantic loss s is computed using categorical cross-entropy 

ℇs =  −
1

𝐻𝑊𝐾
∑ ∑ ∑ 𝑠ℎ𝑤𝑘 ln 𝑠̂ℎ𝑤𝑘

𝐾

𝑘=1

𝑊

𝑤=1

𝐻

ℎ=1

. 



 58 

The total error is the sum of both: 

ℇ =  ℇb + ℇs. 

3.2. Morphological analysis 

This step uses boundary and semantic information to derive object segments for 

each class. A semantic mask is computed from the semantic probability map: 

𝑚(s)
ℎ𝑤𝑘 =  𝑓(𝑥) = {

1  if 𝑠̂ℎ𝑤𝑘 > 0.5
0 otherwise

, 

and a boundary mask from the boundary probability map 

𝑚(b)
ℎ𝑤 =  𝑓(𝑥) = {

0  if 𝑏̂ℎ𝑤 > τbg

1  otherwise
. 

For each class 𝑘, the segment regions are calculated as 

𝑟(𝑘)ℎ𝑤 =  𝑚(s)
ℎ𝑤𝑘 × 𝑚(b)

ℎ𝑤. 

The multiplication separates segments from the semantic maps, where 

boundaries are 0 and non-boundaries are 1. Finally, each connected region of class 

𝑘, denoted as seg(𝑘)(𝑖), is extracted from the segment region map 𝑟(𝑘). 

3.3. Segment Association 

After identifying the segments of each object, they are grouped based on whether 

they belong to the same object. This is done using the Segment Associator network, 

which classifies pairs of segments as “same object” or “different objects”. The input 

to the network is the elementwise sum of the two segments: 

seg(𝑘)(𝑖𝑗)
ℎ𝑤

=  seg(𝑘)(𝑖)
ℎ𝑤

+ seg(𝑘)(𝑗)
ℎ𝑤

. 

In addition to the merged segments seg(𝑘)𝑖𝑗, the original image 𝑥 is also used 

as input. These inputs are concatenated, resulting in a network input of shape 

𝐻 × 𝑊 × 4. 

 

 
Fig. 2. The principal architecture of Segment Associator 

The encoder is composed of convolutional blocks followed by max-pooling, 

and a fully connected layer with a weighted sum and sigmoid activation (Fig. 2). 

The encoder blocks use min(𝑓2𝑙 , 𝑚) filters, where 𝑓 is the number of filters at 

level 𝑙 = 0, and 𝑚 is the maximum number of filters. The effects of different 

convolutional blocks are explored experimentally. A separate Segment Associator 

network, SA(𝑘), is trained for each category 𝑘. 

This network is computationally expensive to use; therefore, it is desirable to 

apply an algorithm for reducing the number of comparisons. The algorithm 

represents the set of segments as 𝑆(𝑘) = {seg(𝑘)𝑖}, 𝑖 = 1, . . . , 𝑁, and defines an 



 59 

equivalence relation Ε ⊆ 𝑆 × 𝑆, where two segments are related if their similarity 

score 𝛦 = {(seg
𝑖
, seg

𝑗
)|  SA (seg

𝑖𝑗
, 𝑥)} exceeds a threshold τSA. Each equivalence 

class 𝑒p ⊆ 𝑆 corresponds to a separate object, and their total number equals the 

number of detected objects in the image. 

The algorithm operates on two undirected graphs, 𝑅(𝐸𝑅 , 𝑉𝑅,) and 𝑇(𝐸𝑇 , 𝑉𝑇), 

where each vertex represents a segment, and both graphs have 𝑁 vertices. Initially, 

𝑅 has no edges, and 𝑇 is fully connected. The algorithm iteratively removes a 

random edge from 𝑇 and tests whether the corresponding segments belong to the 

same object. If they do, it adds the edge (and transitive connections) to 𝑅 and 

removes these from 𝑇. Otherwise, it removes from 𝑇 all edges between the 

connected components containing the segments. The number of comparisons ranges 

from 𝑂(𝑛) when all segments form one object, to 𝑂(𝑛2) when each segment is 

separate. 

4. Encoder and decoder block types 

We explore four types of encoder-decoder blocks: UNet, Atrous, Channel Attention 

(CA), and Weighted Channel Attention (WCA), shown in Fig. 3. 

• UNet block follows the classic structure with 3×3 convolution followed by 

BatchNormalization and ReLU activation twice. 

• Atrous block has 4 parallel 3×3 convolutions with dilations of 1 px, 3 px,  

5 px, and 7 px. Each of these convolutions is followed by BatchNormalization and 

ReLU activation. In parallel to these four convolutions, there is a global average 

pool followed by fully connected layers, batch normalization with ReLU activation, 

and a replicate operation. Finally, the results of all the parallel operations are 

concatenated over the channels and linearly projected with a 1 × 1 convolutional 

layer. 

• CA block uses a Squeeze-and-Excitation style channel attention 

mechanism: global average pooling followed by two fully connected layers 

generates channel-wise weights, which modulate the output of the convolutional 

layers. In encoder blocks, this output is downsampled; in decoder blocks, it is 

upsampled and concatenated with the corresponding encoder feature map. 

• WCA block extends CA by combining the input and transformed feature 

maps via a learned convex combination with channel-specific weights, inspired by 

residual learning. Since the two inputs may differ in channel size, a 1×1 convolution 

is used to match dimensions before fusion. 

• The experiments explore the effects of all four types of blocks. When using 

the UNet, CA, and WCA, the corresponding type is used for every convolutional 

block. However, when using the Atrous block, it is used only for the bottom block 

while the rest blocks in the encoder and decoder are of type UNet. In this case, the 

network has fewer levels. 

• The experiments with Segment Associator only explore the effects of the 

blocks UNet and WCA. In these experiments, all the corresponding block type is 

used for each block in the encoder part. 



 60 

 
Fig. 3. Architectures of different types of blocks 

5. Methods 

This section shows implementation details for Boundary Generator and Segment 

Associator.  

All experiments, data preprocessing, model training, and evaluation 

were conducted using Wolfram Mathematica 13.0. The source code and 

scripts are available upon request. 

5.1. Boundary Generator 

All networks in this study were trained on the COCO dataset [10], using only 

images labelled under the class “people”. A total of 59,420 images were extracted 

and resized to 256×256 pixels. The input resolution of 256×256 pixels was selected 

as a compromise to enable faster training and evaluation across multiple 

architectures and parameter settings. The primary objective of the experiments was 

to compare the proposed methods against each other under consistent conditions, 

rather than to achieve direct comparability with external benchmarks. This 

resolution was found sufficient to demonstrate the functional viability of the models 

and to observe their relative performance differences. 

In addition to resizing, further preprocessing steps were applied to refine the 

dataset and ensure data consistency. Objects smaller than 256 pixels in area were 

removed, and the resulting gaps were filled using image in-painting. If the removed 

objects covered less than 25% of the image, the “Texture Synthesis” function was 



 61 

used; otherwise, the “Fast Matching” method was applied. As COCO labels 

neckties as a separate class, the neckties were reassigned to the “people” class to 

avoid segmentation gaps. 

Boundary masks were generated using morphological 1 px dilation, edge 

detection, and additional 2 px dilation.  

The training set was augmented using random zoom (scale between 1 and 1.2), 

horizontal and vertical flips, and rotations within ±90º, each applied with a 

probability of 0.25. When zoom or rotation was applied, special care was taken to 

recover object boundaries at the image edges.  

The dataset was randomly split into training and testing subsets using a fixed 

random seed to ensure reproducibility. 80% of the images were used for training, 

and 20% for testing. 

The research in this work is mainly focused on the development and 

comparison of different architectural variants of the model, where the 

hyperparameters (including regularization and thresholds) were optimized 

empirically. Several architectures were evaluated for the boundary generation 

network, with the best-performing one selected and regularized to reduce overfitting 

in the final pipeline. All architectures were configured to perform roughly the same 

number of multiplications – approximately 16 billion for a 256×256 image. The 

hyperparameters of the networks are summarised in 0.  
 

Table 1. Hyperparameters of the networks for Boundary Generator 

Architecture Levels 𝑓 𝑚 𝑟 

UNet 6 24 512  

Atrous 4 26 512  

CA 6 23 512 2 

WCA 6 23 512 2 
 

The quality of the semantic segmentation is measured using the Intersection 

Over Union (IoU) using the derived semantic mask, 𝑚(s), and the label, 𝑠. The 

quality of the boundary generation is measured by IoU using the reversed boundary 

mask, 1 −  𝑚(b), and the label, 𝑏. For the boundary IoU, a threshold of 𝜏bg = 0.5 

was used. 

The networks were initialized using the Xavier method, with the weights 

drawn from a normal distribution, and trained using the ADAM Algorithm with a 

learning rate of 10−3, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 =  10−5 for 200 iterations. 

Training was performed with a batch size of 32 images. When comparing the 

different architectures, no regularization or dropout was applied. However, L2 

regularization was used when training the best-performing architecture. 

5.2. Segment Associator 

The Segment Associator network has 7 encoder blocks, where each block has two 

convolutions with BatchNormalization and ReLU activation. Each encoder block, 𝑙, 
has min(𝑓2𝑙 , 𝑚) filters, where 𝑓 is the number of filters in level 0, and 𝑚 is the 

maximum number of filters. The encoder blocks are followed by a classifier, which 



 62 

is a fully connected network with two layers, where the hidden layer has 𝑑 units 

with ReLU activation and the second layer has one unit and sigmoid activation.  

The Segment Associator networks are trained with the ADAM Algorithm, with a 

learning rate of 10−3, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 =  10−5 for 100 iterations. The 

batch size is 128 samples. Each network is initialized with the Xavier method. The 

used hyperparameters for Segment Associator are levels = 7, 𝑓 = 16, 𝑑 = 256, 

𝑟 = 2 (for WCA). 

The data was split randomly, with 70% used for training and 30% for testing. 

The same augmentation is used as the one used for training the Boundary 

Generator. The batch size is 128 images, where each image is selected randomly 

from the training data. When an image is selected, it may contain multiple 

segments. Therefore, from each image, two random segment masks are selected and 

merged. Then the label of the sample would depend on whether the two randomly 

selected segments are part of the same object or not. When calculating the accuracy 

of the F1 score, a threshold τSA = 0.5 was used. 

6. Results 

This section shows the results from the experiments, including training the 

Boundary Generator, Segment Associator, adding regularization, and the complete 

pipeline. 

6.1. Boundary Generator 

The training and testing semantic IoU (left) and the boundary IoU (right) for the 

four architectures used for the Boundary Generator, trained without regularization, 

are presented in Fig. 4. The results are smoothed by a moving average with a 

window of 20 epochs. Inspection of the semantic IoU shows that the worst-

performing architecture is Atrous, while the best performance is achieved by the 

WCA. A similar pattern is observed when inspecting the boundary IoU. The CA 

architecture is found to perform better than Atrous due to less overfitting. 

 
Fig. 4. Semantic and Boundary training IoU (solid lines) and testing IoU (dashed lines) of four 

architectures for Boundary Generator 

0 50 100 150
0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Epoch

S
e
m
a
n
ti
c
Io
U

Semantic

UNet Atrous Channel Attention

Weighted Channel Attention

0 50 100 150
0.50

0.52

0.54

0.56

0.58

0.60

Epoch

B
o
u
n
d
a
ry
Io
U

Boundary

UNet Atrous Channel Attention

Weighted Channel Attention



 63 

6.2. Segment associator 

The training and testing F1 score (left) and Accuracy (right) for the two 

architectures used for the Segment Associator are illustrated in Fig. 5. The results 

are smoothed with a moving average with 20-epoch window. The plots indicate 

slightly better training results for the WCA blocks. However, the difference 

becomes negligible for the testing results, which are around 0.85 F1 Score and 0.95 

Accuracy. 
 

 
Fig. 5. Training (solid lines) and testing (dashed line) F1 Score and Accuracy for Segment Associator 

6.3. Avoiding overfitting 

The comparison of the different architectures for Boundary Generator and Segment 

Associator showed an advantage for WCA. However, all the architectures overfitted 

the training data, and therefore, L2 regularization was used. The regularization 

coefficients were chosen through the process of trial and error.  

 
Fig. 6. Semantic IoU, Boundary IoU, and Loss with no regularization and L2 regularization with a 

coefficient of 10−6 for Boundary Generator 

Box plots of training and testing metrics over the last 20 epochs for the 

Boundary Generator are presented in Fig. 6. Both the semantic and boundary IoU 

showed a notable reduction in overfitting when L2 regularization with a coefficient 

0 20 40 60 80
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Epoch

F
1
S
c
o
re

UNet WCA

0 20 40 60 80
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Epoch

A
c
c
u
ra
c
y

UNet WCA

Train Test Train Test

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Semantic IoU

Train Test Train Test

0.52

0.54

0.56

0.58

0.60

Boundary IoU

Train Test Train Test

0.12

0.14

0.16

0.18

0.20

0.22

Loss

λ = 0

λ = 10- 6



 64 

of 10−6 was applied. Additionally, testing performance saw a slight improvement. 

Although the increase in testing IoU was modest, the testing loss dropped 

significantly with regularization. This discrepancy might be due to IoU being a 

discretized approximation of the loss function. Given the substantial loss 

improvement, the regularized model was selected for the final pipeline. 
 

 
Fig. 7. F1-score, Accuracy, and Loss with no regularization and L2 regularization with a coefficient of 

5 × 10−5 for Segment Associator 

Training and testing results over the last 20 epochs for the Segment Associator 

are displayed in Fig. 7. The regularization L2 with a coefficient of 5 × 10−5 led to a 

clear reduction in overfitting across all metrics. However, F1 score and accuracy 

remained largely unchanged. A noticeable decrease in testing loss was observed, 

supporting the decision to use the regularized model in the final system. 

6.4. Recall and Precision of the Pipeline 

During boundary generation, each pixel is classified into a class “boundary” or 

“background”. Therefore, the boundary generator is a binary classifier at the pixel 

level. To determine whether a pixel is categorized as boundary, the probability 

𝑃(𝑥ℎ𝑤  is boundary|𝑥) is compared to the threshold of boundary generator 𝜏bg. 

Similarly, the segment associator is also a binary classifier, which uses a threshold 

𝜏SA to determine if two segments are part of the same object. 

The quality measurements shown in the experiments in this paper are derived 

assuming thresholds of 0.5; however, this may not be the most optimal value. To 

find good values for the thresholds, 𝜏bg and 𝜏SA, the complete pipeline was 

evaluated on all the samples from the testing data used during the training of 

Segment Associator. For each sample, bounding boxes were derived from each 

object. Then the COCO annotations of the same samples were used to calculate 

precision, P, and recall, R, for bounding boxes [12]. Two bounding boxes are 

determined to match if their IoU is larger than 0.5. 
 

Train Test Train Test

0.82

0.84

0.86

0.88

0.90

0.92

F1 Score

Train Test Train Test

0.945

0.950

0.955

0.960

0.965

0.970

0.975

Accuracy

Train Test Train Test

0.10

0.15

0.20

Loss

λ = 0

λ = 10- 6



 65 

 
Fig. 8. The Recall (on the left) and the Precision (on the right) of the pipeline for different values of 

the thresholds 𝜏bg and 𝜏SA, calculated on test data extracted from COCO 

The precision and recall for different values of the thresholds are shown in  

Fig. 8. The results show that the increase of 𝜏SA causes an increase in the recall and 

a decrease in the precision, which is an expected behaviour. The behaviour of the 

measurements is different when 𝜏bg varies. The larger values do not result in higher 

recall, because a missing boundary would merge two segments, resulting in larger 

bounding boxes.  
 

  
1 2 3 1 2 3 

Fig. 9. Examples of successful segmentation and 

object detection 

Fig. 10. Examples of failures of semantic 

segmentation and segment association 

Examples of successful segmentation and object detection are provided in  

Fig. 9. In the first image, the focus gradually decreases, but the segmentation 

algorithm correctly delineates the figures, and the Segment Associator has correctly 

merged the segments belonging to the fourth person in the column. In the second 

image, the objects are correctly recognized, even though one of the people is only 

partially visible and faces the camera with their back. In the third image, there is 

one small false positive segment, but two big segments are correctly associated with 

one person. 

Examples of mistakes made by the BoundaryNet are presented in Fig. 10. In 

the first image, the tree and the boy are wrongly recognized as one segment. In the 

second image, the father and the kid are recognized as one segment from one side, 

and the segment corresponding to the hand of a woman is wrongly associated with 

the father. In the third image, a phantom person, consisting of two segments, is 

extracted from the background; also, the first and second figures are wrongly 

associated with one person. 

 



 66 

7. Conclusion 

In this work, BoundaryX, a novel instance segmentation framework, was introduced 

that combines semantic masks and object boundaries to identify individual 

instances within an image. The architecture includes Boundary Generator, 

Morphologic Analyzer, and Segment Associator. The Boundary Generator, based 

on a modified UNet with dual decoders, showed best performance when using a 

newly developed WCA module, which applies channel attention as a soft switch 

between input and transformed features. The Segment Associator, implemented as a 

convolutional classifier, achieved high accuracy but struggled with class imbalance, 

particularly in distinguishing between segments from the same object. Addressing 

this through data augmentation may improve performance. Effective instance 

segmentation for the class “people” was demonstrated by the method, with potential 

applicability to other classes. Future work includes improving the Segment 

Associator, training on higher-resolution and multi-class data, and exploring the use 

of large pre-trained encoders like DenseNet [9] or ResNet [7]. 

Acknowledgements: The research is supported by “NGIC – National Geoinformation Center for 

monitoring, assessment and prediction of natural and anthropogenic risks and disasters” under the 

Program “National Roadmap for Scientific Infrastructure 2017-2027”, financed by the Bulgarian 

Ministry of Education and Science. The authors acknowledge access to the e-infrastructure “National 

Centre for High Performance and Distributed Computing”, funded by the same program. 

References 

1. B r a n d, A., A. M a n a n d h a r. Semantic Segmentation of Burned Areas in Satellite Images 

Using a U-Net-Based Convolutional Neural Network. – Int. Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 43, 2021, No B3, 

pp. 47-53. 

2. C h e n, L.-C., G. P a p a n d r e o u, I. K o k k i n o s, K. M u r p h y, A. L. Y u i l l e. Semantic 

Image Segmentation with Deep Convolutional Nets and Fully Connected Crfs. 2014, arXiv, 

1412.7062. 

3. G i r s h i c k, R., J. D o n a h u e, T. D a r r e l l, J. M a l i k. Rich Feature Hierarchies for Accurate 

Object Detection and Semantic Segmentation. – In: Proc. of IEEE Conference on Computer 

Vision and Pattern Recognition, 2014, pp. 580-587. 

4. G k i o x a r i, G., J. M a l i k, J. J o h n s o n. Mesh r-cnn. – In: Proc. of IEEE/CVF Int. Conference 

on Computer Vision, 2019, pp. 9785-9795. 

5. H a f i z, A. M., G. M. B h a t. A Survey on Instance Segmentation: State of the Art. – 

International Journal of Multimedia Information Retrieval, Vol. 9, 2020, pp. 171-189.  

6. H e, K., G. G k i o x a r i, P. D o l l á r, R. G i r s h i c k. Mask r-cnn. – In: Proc. of IEEE Int. 

Conference on Computer Vision, 2017, pp. 2961-2969. 

7. H e, K., X. Z h a n g, S. R e n, J. S u n. Deep Residual Learning for Image Recognition. – In: Proc. 

of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778. 

8. H u, J., L. S h e n, G. S u n. Squeeze-and-Excitation Networks. – In: Proc. of 2018 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. 

9. H u a n g, G., Z. L i u, L. V a n  D e r  M a a t e n, K. W e i n b e r g e r. Densely Connected 

Convolutional Networks. – In: Proc. of IEEE Conference on Computer Vision and Pattern 

Recognition, 2017, pp. 4700-4708. 



 67 

10. L i n, T. Y., M. M a i r e, , S. B e l o n g i e, J. H a y s, P. P e r o n a, D. R a m a n a n, P. D o l l á r, 

C. L. Z i t n i c k. Microsoft Coco: Common Objects in Context. – In: Lecture Notes in 

Computer Science. Vol. 8693. 2014, pp. 740-755. 

11. L o n g, D. T. Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial 

Expression Recognition. – Cybernetics and Information Technologies, Vol. 24, 2024, No 1, 

pp. 171-189. 

12. P a d i l l a, R., S. L. N e t t o, E. A. B. d a  S i l v a. A Survey on Performance Metrics for Object-

Detection Algorithms. – In: Proc. of 2020 Int. Conference on Systems, Signals and Image 

Processing, 2020, pp. 237-242. 

13. P a n, H., Y. H o n g, W. S u n, Y. J i a. Deep Dual-Resolution Networks for Real-Time and 

Accurate Semantic Segmentation of Traffic Scenes. – IEEE Transactions on Intelligent 

Transportation Systems, Vol. 24, 2023, pp. 3448-3460. 

14. P a n c h a l, S., M. K o k a r e. Resmu-Net: Residual Multi-Kernel u-Net for Blood Vessel 

Segmentation in Retinal Fundus Images. – Biomedical Signal Processing and Control, 2024, 

90:105859.  

15. P e n g, L., C. Z h u, L. B i a n. U-Shape Transformer for Underwater Image Enhancement. – IEEE 

Transactions on Image Processing, Vol. 32, 2021, pp.3066-3079.  

16. R e d m o n, J., S. D i v v a l a, R. G i r s h i c k, A. F a r h a d i. You Only Look Once: Unified, 

Real-Time Object Detection. – In: Proc. of IEEE Conference on Computer Vision and 

Pattern Recognition, 2016, pp. 779-788. 

17. R o n n e b e r g e r, O., P. F i s c h e r, T. B r o x. U-Net: Convolutional Networks for Biomedical 

Image Segmentation. – In: Lecture Notes in Computer Sciences. Vol. 9351. 2015,  

pp. 234-241. 

18. S h a r m a, R., M. S a q i b, C. L i n, M. B l u m e n s t e i n. A Survey on Object Instance 

Segmentation. – SN Computer Science, Vol. 3, 2022, No 499.  

19. X u, J., Z. X i o n g, S. B h a t t a c h a r y y a. Pidnet: A Real-Time Semantic Segmentation 

Network Inspired by Pid Controllers. – In: Proc. of 2023 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2023, pp. 19529-19539.  

20. Y u, C., J. W a n g, C. P e n g, C. G a o, G. Y u, N. S a n g. Learning a Discriminative Feature 

Network for Semantic Segmentation. – In: Proc. of IEEE Conference on Computer Vision 

and Pattern Recognition, 2018, pp. 1857-1866. 

21. Z h a n g, W., S. C h e n, Y. M a, Y. L i u, X. C a o. Etunet: Exploring Efficient Transformer 

Enhanced UNet for 3d Brain Tumor Segmentation. – Computers in Biology and Medicine, 

Vol. 171, 2024, 108005. 

 

Received: 13.05.2025.  First Revision: 14.06.2025.   

Second revision:  25.08.2025.  Accepted: 04.09.2025 


