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Abstract: Early detection of skin cancer is crucial for improving patient outcomes, 

as the disease progresses rapidly when left untreated. Recent advancements in 

artificial intelligence have revolutionized the field of early detection, giving 

clinicians more accurate and efficient diagnostic tools. In this paper, two 

convolutional neural network-based classifiers using transfer learning are 

proposed to improve early skin cancer detection. These models were trained and 

tested on the novel ISIC-2024 dataset. To mitigate the class imbalance in this 

Dataset, a Generative Adversarial Network (DCGAN) is adopted to synthesize 

malignant samples. Additionally, the pre-trained VGG-16 and MobileNetV2 models 

were fine-tuned to improve feature learning and classification performance. Our 

MobileNetV2-based model outperformed the VGG16-based model, achieving an 

accuracy of 96.87%, a precision of 98.97%, and a recall of 94.7%. These results 

highlight the impact of deep learning in early skin cancer detection, and most 

importantly, they lead to better patient outcomes. 
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1. Introduction 

Skin cancer remains a significant public health concern; the number of new skin 

malignant tumors diagnosed is projected to increase by 5.9% in 2025, and skin 

cancer fatalities will increase by 1.7% [1]. However, correct and early detection can 

greatly reduce mortality, as most skin lesions are extremely treatable if identified in 

their early stage. 

Skin cancer is a runaway growth of abnormal cells in the epidermis, the outer 

layer of the skin. The abnormal growth results from unrepaired DNA damage, 
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leading to genetic mutations that make the cells grow and divide rapidly and create 

tumors. Basal cell carcinoma, squamous cell carcinoma, melanoma, and Merkel cell 

carcinoma are the primary types of skin cancer [2]. This type of cancer looks 

different depending on the type of skin cancer a person might have, but keeping in 

mind the ABCDE rule: Asymmetry – irregular shape; Border – jagged or fuzzy 

edges; Color – mole with more than one color; Diameter – more than a pencil eraser 

(6 mm); Evolution – increasing, shape, color or size change (this is the most 

important indicator) [3], any person can check for some concerning lesions just to 

be safe, and if any lesion looks concerning, it is important to visit a specialized 

dermatologist, where after a thorough visual examination, he will decide whether a 

biopsy is necessary or not. In a biopsy, a sample of tissue is removed and sent to a 

laboratory where a pathologist examines it under a microscope, and then he will be 

able to conclude: if the skin lesion is cancerous, what type of cancer you have, and 

will list treatment options for you [4]. Unfortunately, misdiagnosis of skin cancer 

remains a significant concern in medical practice. Studies have shown that a notable 

percentage of skin lesions are incorrectly identified, leading to delayed treatment 

and potentially poorer patient outcomes. For instance, research indicates that 

approximately 21.9% of cases clinically identified as seborrheic keratosis were later 

found to be misdiagnosed, with 5.7% of these cases being skin cancers such as 

basal cell carcinoma, squamous cell carcinoma, or melanoma [5]. Additionally, 

there have been instances where skin cancer was mistakenly identified as less 

severe conditions like eczema, underscoring the critical need for accurate diagnosis 

[6]. 

On the other hand, AI has introduced some life-changing technologies that 

made the doctors work easier and patient lives safer, and that is by integrating deep 

learning models in their diagnosis process, particularly Convolutional Neural 

Networks (CNNs), which have shown significant success in automating skin lesion 

classification. However, for AI to be effectively incorporated into clinical 

workflows, it has to be trained on vast, diverse, and correctly labeled datasets; this 

helps to guarantee that it is accurate for multiple skin types, imaging conditions, as 

well as cancer types. 

One of the most significant skin disease problems in AI is the lack of skin 

cancer datasets publicly available for model training. Unlike general medical 

images, skin lesion datasets are often small in sample size, low in diversity, and 

poor in annotation quality. Some of the most commonly used datasets include: 

HAM10000 [7], PH2 [8], PAD-UFES-20 [9].  

Compared to existing datasets, our study leverages the novel SLICE-3D 

dataset from the ISIC-2024 challenge, which uniquely incorporates 3D volumetric 

imaging, offering enhanced lesion depth and texture analysis. This new dataset was 

released by the International Skin Imaging Collaboration (ISIC) but remains 

relatively unvisited in the literature. Other works employing the SLICE-3D dataset 

have employed different methodologies from our own. 

For instance, P i n t e l a s  et al. [10] utilized the dataset without any cleaning or 

data augmentation but maximized model performance via an ensemble of 

MobileNet specialists; however, their accuracy was not as impressive as ours 
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because our study focused not only on fine-tuning the model but also enhanced the 

dataset distribution and quality as well. Similarly, S y e d  and A l b a l a w i  [11] 

used a CNN and trained it on 10000 3D-TBP images of SLICE-3D with geometric 

augmentations (translation, rotation, zooming). However, their results were not as 

favorable as ours. 

Another study by T e y m o u r i  et al. [12] where the authors uses several 

models, such as the Data-efficient Image Transformer 3 and Light Gradient 

Boosting Machine to improve performance, in addition to an ensemble approach. 

Using a thorough preprocessing approach, they addressed class imbalance and 

yielded promising results. In our work, different methodological approaches were 

adopted, which further refined the performance on the same dataset. To summarize, 

our key contributions are as follows: 

 We proposed 2 enhanced architectures based on pretrained models, which 

are VGG-16 and MobileNetV2, and they achieved state-of-the-art results. 

 We generated realistic, diverse, and clear synthetic images of malignant 

lesions using a DCGAN. 

 We handled this novel dataset imbalance through advanced data 

augmentation and thorough data preprocessing. 

We will be presenting a review of related works in the rest of this article in 

Section 2. After that, in Section 3, we will present our methodology by first 

describing the SLICE 3D dataset and then its preprocessing journey. Furthermore, 

we will address data augmentation, classification models, training, and model 

evaluation. Finally, in Section 4, we will provide the empirical findings of the 

proposed model, its evaluation, and a comparative analysis before concluding this 

article in Section 6. 

2. Related works 

This section discusses recent relevant studies on skin cancer detection using deep 

neural networks, with only three specifically applying the same dataset, ISIC-2024. 

For instance, A l j o h a n i  and T u r k i  [13] investigated the performance of 8 deep 

learning models, such as VGG16, ResNet50, and GoogleNet, for melanoma 

classification on the ISIC 2019 dataset in their work; The results indicated that 

GoogleNet had the highest test accuracy of 76.08% and outperformed 

dermatologists in sensitivity, with results of 84.5% compared to 73.3%. 

D j a r o u d i b  et al. [14] analyzed the impact of image quality rather than quantity 

in melanoma classification using transfer learning with VGG-16 on the HAM10000 

dataset. The outcomes revealed that a model learned from fewer images of high 

quality yielded higher accuracy (94%) compared to large datasets. S i k a n d a r  et 

al. [15] presented SCDet, a 32-layer CNN for efficient skin lesion detection with 

reduced computational cost compared to pre-trained models like ResNet50; trained 

on DermIS data, SCDet achieved 99.6% accuracy, and external validation on 

HAM10000 reached 85% accuracy. The proposed model is a reasonable 

compromise between effectiveness and efficiency, showing the promise of 

simplified CNN architectures in medical image analysis. Y a s h w a n t, I n g l e  and 
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S h a i k h  [16] compared the classification of skin cancer using a custom CNN 

versus VGG16 with transfer learning on the HAM10000 dataset; the results 

indicated that VGG16, augmented by the inclusion of more dense layers and 

dropout regularization, performed better than the CNN model with 89% accuracy 

and 89% weighted F1-score. The use of pre-trained architectures to improve 

classification over custom CNNs is emphasized in this study. In a related work, K et 

al. [17] proposed a deep learning approach to skin lesion classification using a 

sequential CNN architecture trained on a large Kaggle dataset. The model worked 

nicely, achieving 95% accuracy and an F1-score of 96.3%, making it efficient in 

distinguishing between seven types of skin cancer. Their research indicated the 

reliability of CNNs in computer-aided cancer detection in medical images. In a 

parallel study, M’h a m e d i  et al. [18] improved melanoma classification using data 

augmentation to address class imbalance in the SIIM-ISIC 2020 dataset. With fine-

tuning VGG-19 and MobileNetV2, their approach achieved a 95.16% accuracy, 

where MobileNetV2 performed best; the results show the impact of transfer 

learning and augmentation in enhancing diagnostic accuracy. G o u d a  et al. [19] 

enhanced the diagnosis of skin cancer by coupling ESRGAN (Enhanced Super-

Resolution Generative Adversarial Network) for preprocessing with the assessment 

of different deep learning models using the ISIC-2018 dataset. The best performer 

was InceptionV3 at 85.8% accuracy, demonstrating the utility of super-resolution 

techniques to improve classification accuracy. Their contribution shows the 

importance of data preprocessing in deep learning diagnosis. M e h r  and A m e r i  

[20] merged lesion images and patient metadata (gender, age, anatomical location) 

using Inception-ResNet-v2 to improve classification performance on ISIC2019, 

PAD-UFES-20, and Fitzpatrick17k datasets. The model achieved 94.5% accuracy 

for benign versus malignant lesion discrimination, demonstrating the influence of 

patient data on diagnostic performance. A l r a b a i, E c h t i o u i  and K a l l e l  [21] 

compared the performance of InceptionV3 and Xception for the detection of skin 

cancer through transfer learning using a Kaggle dataset. InceptionV3 performed 

better than Xception, with 89.1% accuracy and better classification performance in 

comparison with state-of-the-art approaches. I s l a m  and P a n t a  [22] employed 5 

pre-trained transfer learning models for skin cancer binary classification on the 

Kaggle ISIC dataset (3297 images). The best accuracy (93.5%) with an F1-score of 

0.86 was achieved by ResNet-50, demonstrating the benefit of fine-tuning 

activation functions and layers. P o p e  et al. [23] investigated tone bias in skin 

cancer diagnosis on an imbalanced (3623 images) and a balanced dataset (~500 

images). Their system consistently favored lighter skin tones, with selection rates of 

27.5% vs 15.9% (imbalanced) and 50.0% vs 34.2% (balanced), confirming 

significant bias below the 0.80 fairness threshold. I m r a n, A l g h a m d i  and 

A l k a t h e i r i  [24] improved skin cancer classification with EfficientNetB0 and 

Ant Colony Optimization (ACO) as feature selection. Their CB-SVM model 

reached more than 98% accuracy on a self-created ISIC dataset. N a e e m  et al. [25] 

introduced SNC_Net, a fusion of handcrafted and deep learning-based features for 

classification. It outperformed baseline models in terms of accuracy, precision, and 

F1-score with 97.81%, 98.31%, and 98.10% on ISIC 2019, respectively. S e d i g h, 
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S a d e g h i a n  and M a s o u l e h  [26] employed a CNN to detect cancer from the 

skin and used a GAN to generate synthetic images to augment the dataset. Their 

small ISIC dataset of 97 images was improved from 53% to 71% accuracy after 

synthesizing additional samples. Furthermore, T e o d o r o  et al. [27] also presented 

EfficientAttentionNet for skin cancer classification, integrating a GAN to balance 

data and a U-Net to be employed for RoI-based attention. It was trained on ISIC 

2020, HAM10000, BCN20000, and MKS datasets with an accuracy of 97.9%, a 

recall of 99.5%, and a precision of 94.5%.  

The most pertinent comparison should be made with works that use the same 

novel dataset, even though some of the previously mentioned studies have reported 

slightly better results than our models. Of these, T e y m o u r i  et al. [12] proposed a 

sophisticated two-step method for classifying skin lesions through the use of the 

SLICE-3D dataset. To improve overall diagnostic performance, the authors use an 

ensemble framework that combines the Light Gradient Boosting Machine (LGBM) 

and the Data-efficient Image Transformer 3 (DeIT3). Also, they used stratified 

sampling, the Synthetic Minority Over-sampling Technique (SMOTE), and data 

augmentation techniques like random Gaussian blur, rotation, and flipping as part of 

a multi-phase preprocessing strategy to address data imbalance. Better model 

training is made possible by this all-encompassing approach, which contributes to 

the creation of a balanced dataset. Outperforming individual models, the combined 

model identified malignant lesions with an accuracy of 89% and a recall of 90%.  

In a separate work using the same dataset, a new method of detecting skin 

cancer was created by S y e d  and A l b a l a w i  [11], combining sophisticated 

artificial intelligence algorithms with 3D Total Body Photography (3D-TBP). 

Careful preprocessing methods like zooming, normalization, translation, and 

rotation were used to improve the dataset's diversity and representativeness in order 

to improve model performance. Focusing on feature extraction via transfer learning 

and rigorous augmentation techniques, the researchers created a specialized 

Convolutional Neural Network (CNN) architecture that is optimized for analyzing 

single-lesion crops from 3D-TBP images. The study’s findings showed that the 

model was effective in accurately differentiating between benign and malignant 

lesions, with a true positive rate of over 80% and a partial Area Under the ROC 

Curve (pAUC) of 85%.  

Finally, in the work of P i n t e l a s  et al. [10], the authors present a brand-new 

ensemble model designed to minimize computational demands and maximize 

performance. In order to generate a diverse population of MobileNets, the model 

employs a two-step Expand-and-Squeeze mechanism. These are subsequently 

trimmed according to performance metrics. An important benchmark was the ISIC 

2024 dataset, there are roughly 400,000 benign and almost 400 malignant cases. 

With an accuracy of 89%, an AUC of 90.5%, and a Geometric Mean (GM) of 

0.809, the MobileNet-HeX demonstrated noteworthy performance. These results 

show that it can effectively handle the difficulties posed by unbalanced data. 
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3. Methodology 

This study demonstrates our modified skin cancer classifier based on the VGG16 

model and MobileNetV2, and showcases the effectiveness of a DCGAN framework 

in generating synthetic images resembling the original malignant samples from the 

ISIC 2024 dataset. 

3.1. Dataset 

For our research, the novel SLICE-3D (Skin Lesion Image Crops Extracted from 

3D Total Body Photography) dataset [28] was used, published in the summer of 

2024 for the ISIC-2024 challenge hosted on Kaggle. This rich dataset has 401,059 

standardized, de-identified, and diagnostically labelled skin images, with 393 

malignant images and 400,552 benign images. Each image was accompanied by its 

metadata, that were exploited for data preparation. Fig. 1 shows some interesting 

representations of the metadata offered by this dataset. 
 

 
Fig. 1. The SLICE-3D dataset attribute classification 

 

These 3D images were captured using VECTRA WB360, a 3D Total Body 

Photography imaging system designed to document skin pathologies. It captures the 

entire exposed body in a single shot using 92 fixed cameras equipped with xenon 

flashes for polarized and non-polarized lighting. Moreover, the DermaGraphix 

software was employed to enable clinicians to tag and track lesions within a secure 

database and to link them to pathology reports, as well as enabling clinicians to 

manually tag the lesions. On the other hand, the Lesion Visualizer (LV) research 

tool in DermaGraphix was introduced to automatically detect lesions in 3D TBP 

images using AI, estimating their size, shape, color, nevus confidence, and 

asymmetry. And finally, all Lesions in 3D TBP images were automatically detected 

and cropped using the ISIC2024 Tile Export Tool, with visual confirmation of a 

primary lesion in each image. So, in conclusion, lesions are identified either through 

manual tagging (by clinicians for attribution) or automated detection by Lesion 

Visualizer. 
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3.2. Data preprocessing 

So, given the great imbalance between the images of the two classes, a profound 

dataset cleaning was needed. Basic triage and selection methods allowed us to 

reduce the benign images from 400,666 to 4084 images, and preserve all 393 

malignant images. Fig. 2 shows the details of the data cleaning process. Before 

anything, the dataset was divided into two classes, using the binary target attribute 

(0: benign, 1: malignant), from here on, only the benign images were taken into 

consideration for treatment, the malignant cases stayed untouched since we already 

had a very small number of those images, so, we started by removing rows with null 

values of some chosen columns, that were considered important for analysis and 

model performance (age_approx, sex, lesion_id, anatom_site_general, 

tbp_tile_type), After that, columns content with more than 90% missing values 

were removed, and then duplicate images were dropped, keeping only the first 

image for each patient and body part. And for the last important step, only one type 

of lighting modality of the 3D TBP source image (tbp-tile-type) was considered, as 

it is the primary technical factor affecting variations in hue, tint, tone, and shade 

among the otherwise standardized images within this dataset. So overall, this data 

cleaning process helped us reduce the number of benign cases from +400,000 to 

4084 images (when choosing 'tbp_tile_type' = '3D: XP). 
 

 
Fig. 2. Data preprocessing for the SLICE-3D dataset 

3.3. Data augmentation using DCGAN  

After reducing the large number of benign images as much as possible, the 

remaining data imbalance was addressed through data augmentation using 

DCGANs. In the 2016 paper, R a d f o r d, M e t z and C h i n t a l a [28] define Deep 

Convolutional Generative Adversarial Networks as a class of Convolutional Neural 

Networks (CNNs) with specific architectural constraints, demonstrating their 

effectiveness in unsupervised learning; they show That DCGANs can capture a 

hierarchical structure of representations, ranging from object components to entire 

scenes, within both the generator and discriminator networks. The DCGAN applied 

consists of two competing neural networks: first, we have the generator, which 

rescales a 100-dimensional latent vector into a high-resolution RGB image. This 

happens through a series of convolutional layers with batch norm and ReLU 

activation, while the final layer employs a Tanh activation to normalize pixel 
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values. Conversely, there is the discriminator, which verifies whether an image is 

real or fake, using LeakyReLU activation and progressively down-sampling by 

subsequent convolutional layers until producing a binary classification output via a 

sigmoid function. 

Moreover, to encourage diversity and realism, we applied data augmentation 

techniques such as random horizontal and vertical flipping of the 393 malignant 

images during training to enhance the robustness of the discriminator, we didn’t opt 

for the zoom technique as it isn’t favoured in medical imaging because it has the 

potential to modify the scale and body shape of such key features and generate 

deceptive training images and clinically unreliable models, so we made sure to 

exclude it to guarantee a more accurate synthetic images. Both networks were 

trained using an Adam learning rate of 0.0001 and betas of (0.5, 0.999). DCGAN 

Training was then carried out for 350 epochs. Loss functions of both networks were 

monitored to attain convergence, and synthetic images were saved at intervals. 

Once trained, the DCGAN model was applied to the minority class and generated a 

total of 3691 malignant images to balance our dataset. Below in Fig. 3 are the lesion 

images used for our model training, where the good quality of the images generated, 

compared to the original ones, can be observed. 
 

     
(a) 

     
(b) 

Fig. 3. Dataset skin lesions sample: original lesion images (a); generated lesion images (b) 
 

To better assess the quality of the generated images, 2 metrics were calculated 

to confirm the integrity of the generated medical images; first, we calculated the 

Structural Similarity Index Metric (SSIM), which is a widely recognized metric for 

assessing image quality by evaluating the similarity between two images. It was 

proposed originally by W a n g  et al. [29]; this metric is very much in line with how 

the Human Visual System (HVS) perceives image quality. Unlike other methods 

that are based on the calculation of error values, SSIM deals with image distortion 

by observing it from three perspectives: correlation loss, changes in luminance, and 

contrast alterations. The results of comparing original malignant images vs the same 

amount of the synthetic images were equal to 0.6, which is a fair result considering 

the limited number of original training malignant images.  

We also used another metric, which is the Learned Perceptual Image Patch 

Similarity metric (LPIPS metric) [30], which evaluates the resemblance between 
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two images using feature representations obtained from deep neural networks. As 

opposed to traditional measures such as SSIM, which perform direct pixel-wise 

comparisons, LPIPS relies on intermediate layer activations of neural networks to 

measure visual similarity in a way that is more like human judgment. Given two 

images A and B, the measure computes their deep feature embeddings and 

approximates perceptual closeness. The results given were equal to 0.4, which is 

also considered a good result. 

3.4. Data splitting  

Once the dataset was balanced (4084 malignant + 4084 benign images), we 

primarily conducted an even data splitting to ensure a fair model evaluation. We 

took 80% of the total dataset for training and 20% for testing. Then, from the 

training set, we dedicated 85% for pure training and 15% for validation. After 

balancing the dataset, we can now see an even number of images for each subset. 

Table 1 demonstrates the final exact number of images used for each phase. 

Table 1. Balanced dataset splitting summary 

Dataset Benign Malignant 

Training (60%) 2450 2450 

Validation (20%) 817 817 

Testing (20%) 817 817 
 

This augmentation and splitting approach ensures that the model learns 

effectively from both real and synthetic malignant images, ultimately improving 

classification performance. 

3.5. Modal training 

Now that our dataset is ready, we proceed with the final step, which is training. For 

this important task, transfer learning was applied, as it’s proven to be very effective 

in similar tasks; additionally, the VGG16 [31] and MobileNetV2 [32] models were 

selected for our transfer learning. 

The experiments were conducted on the Kaggle platform using a GPU-

accelerated environment. The model was developed with Python using the PyTorch 

framework, leveraging the Adam optimizer with a learning rate of 0.0001 and the 

Binary Cross-Entropy with Logits loss function. 

For the first experiment, the VGG16 model was trained, and it was adapted to 

classify skin cancer images with greater stability and performance. The original 

VGG16 architecture that was initially created to perform large-scale image 

classification was particularly adapted to our needs, with batch normalization and 

dropout. Primarily, the modifications relied on the feature extraction layers. Instead 

of using the pre-trained convolutional layers directly, it was redefined with batch 

normalization after each convolutional operation. This modification works to 

stabilize training by reducing internal covariate shifts and improving generalization. 

The convolutional layers themselves are identical to the conventional VGG16 

architecture, but with their hierarchical feature extraction capability, along with the 

benefit of normalized activations. Furthermore, dropout layers were added, which 

serve in reducing the overfitting by randomly deactivating neurons during training, 
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so the model is not relying too much on specific features. The classifier section was 

also redesigned to better suit our binary classification task. Instead of the original 

fully connected layers pre-tuned to multi-class ImageNet classification, we 

implemented a streamlined approach using an adaptive average pooling layer, 

followed by a reduced fully connected network. The classifier consists of a global 

average pooling layer that condenses spatial features, a fully connected layer with 

128 neurons, and a ReLU activation function. To enhance regularization and 

prevent overfitting, a dropout rate of 0.6 was used before the final classification 

layer, which consists of a single neuron for binary prediction; also, the Binary 

Cross-Entropy with Logits loss function was used, ensuring compatibility with our 

classification objective. The Adam optimizer, known for its adaptive learning rate, 

was employed to accelerate convergence and mitigate the risk of vanishing 

gradients. Model performance was evaluated for 100 training epochs. 

After evaluating the performance of the first model, the second experiment 

was conducted using MobileNetV2, a lightweight and efficient architecture 

optimized for mobile and embedded devices. This approach aimed to compare the 

effectiveness of a more computationally efficient model while maintaining 

competitive classification performance. Unlike the first approach, this time the 

feature extraction layers were frozen, and there were some modifications to the 

classifier layer. Similarly, the classifier starts with a fully connected layer of 1024 

neurons, and batch normalization is applied followed by ReLU activation, to help 

with generalization, dropout (0.5) was also integrated at various locations; after the 

first layer, another dense layer was added with 512 neurons, again followed by 

batch normalization, ReLU, and another dropout layer before the final output 

neuron that does binary classification. We used BCEWithLogitsLoss in this 

approach also to train and the Adam optimizer with a learning rate of 0.0001, 

keeping the training consistent from our previous approach. We kept track of 

accuracy, precision, recall, and AUC at each epoch for both experiments, giving an 

overall evaluation of the model’s performance. The two network architectures are 

summarized in Fig. 4. 
 

 
(a) 

 
(b) 

Fig. 4. Our network architectures for: VGG-16-based model (a); MobileNetV2-based model (b) 
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Despite these differences, both models have the same input shape of 

224×224×3, both models follow the same general training approach, and use the 

same cleaned-augmented dataset in order to allow fair comparison between 

performance and efficiency. 

4. Results and evaluation 

For the final results, we can say that our meticulously crafted models and our work 

results concluded that the MobileNetV2-based model performed slightly better than 

the VGG16-based model. The effectiveness of the enhanced model’s 

training/validation is presented below in Fig. 5 regarding accuracy and loss. 

Furthermore, we had compared the effectiveness of our VGG16/MobileNetV2-

based skin cancer classifier models using the confusion matrix illustrated in Fig. 6 

on our test set, as well as the most critical metrics of performance were calculated 

during this testing (Loss, Accuracy, Precision, Recall, AUC) and plotted in the 

histogram illustrated in Fig. 7. 

Our first VGG16-based model had achieved a test accuracy of 96.20%, 

reflecting exemplary overall classification power, with a test loss of 0.113, 

indicating relatively low error in predictions. The precision (97.4%) suggests that 

the model is predicting very few false positives, and the recall (94.8%) suggests its 

ability to detect most of the positive cases. In addition, the AUC score of 99% 

confirms the model’s strong discriminatory power between classes.   

The performance of the second model on the test set is also assessed on a 

number of measures; the model attained a test loss of 0.0926, revealing a negligible 

error in its prediction.  
 

 
(a) 

 
(b) 

Fig. 5. The accuracy & loss functions vs epochs of: VGG-16 (a); MobileNetV2 based models (b) 
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Additionally, the test accuracy was recorded at 96.88%, further backing its 

high ability in accurately classifying instances. Besides the accuracy of 98.98% and 

recall of 94.74%, it reveals that the model has an impressive balance in predicting 

positive cases correctly and in avoiding false negatives and false positives. 

Moreover, the AUC of 99.13% demonstrates the model’s excellence in separating 

the classes. The confusion matrix plotted in Fig. 6 explains the performance of the 

model by describing its classification decisions. 

Concisely, the findings indicate both models performed outstandingly; 

nonetheless, the MobileNetV2-based model topped the VGG16-based model 

regarding loss, precision, and accuracy. In addition, the high AUC values also 

confirm the accurate classification performance of both models. The finding 

underscores the potential of the models to identify fine differences between benign 

and malignant lesions, which speaks to their advanced pattern recognition 

capacities. 
 

      
(a)                                                             (b) 

Fig. 6. Confusion matrix of: VGG-16 (a); MobileNetV2-based models (b) 
 

Finally, to properly evaluate our model, we had previously reported cutting-edge 

results in the context of our chosen ISIC-2024 dataset [10-12], and we classified 

their test result in Table 2.   

 
Fig. 7. Testing results of our proposed models: VGG16-based model vs MobileNetV2-based model 

 

Table 2. State-of-the-art models and their test results vs our two models 
Model Accuracy (%) Precision (%) True Positives (%) AUC (%) Recall (%) 

Pintelas et al. (Pintelas et al. 2024) 89 - - 90 - 

Syed & Albawi (Syed and Albalawi 2024) 87.5 - 80 85 - 

Teymouri et al. (Teymouri et al. 2024) 89 - - - 90 

Based on VGG-16 96.20 99.2 93.1 99 93.1 

Based on MOBILENETV2 96.87 98.9 94.7 99.1 94.7 

 

In addition, we validated the best performing model with exclusively real (not 

synthetic) skin cancer images, unlike previous experiments with synthetic 

malignant samples to augment the dataset. For testing, we removed 79 benign and 
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79 malignant images from the original, un-augmented dataset, for a total of 158 true 

images.  

As indicated in Fig. 8, the resulting confusion matrix is observed to have the 

model accurately detecting benign instances (True Negatives = 69, 87.6%), though 

it fared worse with malignant instances, registering more False Negatives (23.4%). 

This may be because of the absence of synthetic data that had earlier balanced out 

more difficult-to-detect malignant patterns. This leads us to observe a decline in 

evaluation metrics under these constraints. 
 

 
Fig. 8. Confusion matrix results after evaluation of only real images on the MobileNetV2 Model 

In terms of quantitative evaluation, the confusion matrix (Fig. 7) reveals that 

the model achieved an accuracy of 82.3%, reflecting its overall ability to distinguish 

between benign and malignant lesions in the test set. The precision reached 85.9%, 

indicating that the majority of lesions predicted as malignant were indeed true 

positives, while the recall was 77.2%, suggesting that the model successfully 

identified over three-quarters of the actual malignant cases. This balance between 

precision and recall highlights a robust classification behavior, although a slight 

bias towards missing malignant cases (i.e., false negatives) is still present. These 

results underline the importance of data diversity and quantity – especially for 

minority classes like malignant lesions – in achieving optimal sensitivity without 

compromising specificity. 

5. Conclusion 

Although deep learning techniques have demonstrated remarkable success across 

diverse domains [33, 34], this paper specifically investigates their transformative 

impact on skin cancer classification through leveraging the power of transfer 

learning and data augmentation. Founded on the SLICE-3D dataset offered in the 

ISIC-2024 challenge, we have addressed the extreme class imbalance problem by 

utilizing a GAN framework in synthesizing malignant images and thereby creating 

a more balanced and representative dataset. Our solution has explored two popular 

pre-trained models: VGG16 and MobileNetV2, each of which has been altered with 

architectural modifications to enhance performance and generalization. 

By thorough experimentation, we have determined that both models have 

achieved high classification accuracy, with the MobileNetV2-based model having 

shown slight superiority to VGG16 in fundamental evaluation metrics, including 

AUC, recall, and precision. Importantly, the MobileNetV2 model has shown 

improved efficiency while maintaining good predictive performance, thus making it 

a viable candidate for deployment in real-world clinical settings. Overall, our results 

have validated the potential of deep learning models for dermatological diagnostics, 
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particularly when we enhanced and balanced the dataset. By leveraging data 

augmentation and architectural optimization, we have demonstrated an effective 

strategy for improving skin cancer classification, achieving state-of-the-art 

performance compared to related studies on the ISIC-2024 dataset. Future work can 

explore other potential enhancements, such as ensemble learning or multimodal 

data fusion, to enhance the diagnostic performance of the model and its 

applicability across diverse clinical environments. 
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