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Abstract: Convolutional Neural Networks (CNNs) have demonstrated remarkable 

accuracy and are employed in different applications. However, adding existing 

CNNs to physics-aware frameworks can distort image features, reducing 

classification accuracy. To overcome this, a new term is added to the loss function 

to reduce distortions and highlight human-recognizable structures in the feature 

maps. The proposed DeConvolve is an explainability methodology for multimodal 

Large Language Models (LLM) on feature maps to extract human-understandable 

sub-steps and provide textual explanations for model inference.  DeConvolve 

recognizes three major impediments when using LLMs to describe feature maps: 

scattered regions of interest within the feature map, large areas of interest, and 

conflicting learning across filters in each convolutional layer. Finally, explanations 

for specific toy examples are derived through weighted semantic averaging. The 

data is curated in the format of images, classes, and the rationale behind a 

professional’s classification to train a Contrastive Language–Image Pre-training 

(CLIP)-based model for generating robust explanations.  

Keywords: Convolutional neural networks, Contrastive language-image 

pretraining, Gradient-weighted class activation mapping, Human recognizable, 

Large language models. 

1. Introduction 

The success of Deep Learning (DL) models, particularly Convolutional Neural 

Networks (CNNs), has transformed the fields of medical image analysis and 

industrial automation [1, 2]. However, early detection and proper treatment of 

images can help reduce these overwhelming statistics [3]. Regression models offer 

the advantage of low complexity but are limited in terms of explainability. DL with 

neural networks takes full advantage of a dataset's complexity and enables the 
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redevelopment of data used in decision-making through explainable artificial 

intelligence approaches [4, 5]. Nevertheless, determining these characteristics 

requires more than just automatic human perception. The need for domain 

knowledge makes this approach less user-friendly for non-experts compared to 

visual data-related operations [6-7]. Furthermore, the required radiation dose is not 

high, unlike traditional imaging approaches, and the produced images exhibit 

superior resolution and contrast [8-9]. Therefore, a stable and cost-effective method 

is sought [10-11]. The proposed method is hypothesized by combining deep 

learning with eXplainable Convolution Neural Network (XCNN) algorithms that 

produce high-performance, interpretable models suitable for clinical application in 

the automated detection of images. Designing explainable decisions in DL-based 

systems is crucial to improving the trust of physicians in the system and promoting 

its application in the field [12-14]. Explainable classifications with greater accuracy 

denote a significant step toward enhancing the trust of patients and caregivers in 

computer-aided diagnostic systems [15-17]. The capabilities of DL approaches have 

advanced classification and detection to a further state. As a result, modern image 

processing techniques have enhanced feature learning [18-19]. While many studies 

focus on individual algorithms, the aim is to consolidate various algorithms and 

demonstrate their effectiveness with high accuracy [20]. There are two mainstream 

methods for enhancing the interpretability of neural networks: providing local 

XCNN and global XCNN for existing neural networks [21-22]. Initially, an 

idealized attribution benchmark dataset is considered, where a CNN is trained to 

classify images of circular and square frames based on the area occupied by each 

frame type [23-25]. This research aims to develop a methodology for XCNNs in 

computer vision tasks. It seeks to generate coherent, human-understandable textual 

explanations of a CNN’s reasoning by leveraging multimodal LLMs. The goal is to 

create a comprehensive framework for practical deployment, fostering responsible 

AI adoption in critical domains such as healthcare, finance, and legal proceedings, 

thus enhancing the use of AI in high-stakes decision-making scenarios [26]. 

In the current scenario, CNNs are applied for image recognition, object 

detection, and medical image analysis to capture spatial patterns through 

convolutional layers efficiently. These layers use learnable filters inspired by the 

visual cortex, enabling CNNs to outperform traditional methods. H u a n g  et al. 

[27] introduced DNN to enhance the explainability and physics-awareness of the 

DL technique. The CNN approach improved classification performance in limited 

labelled data using the counterpart data of the model. However, CNN was 

integrated into the framework by leveraging the physics-aware feature of the image, 

which negatively affected the classification accuracy. S h a j a l a l, B o d e n  and 

S t e v e n s  [28] developed an Explainable Artificial Intelligence (XAI) model 

mainly concentrated on describing networks to specialists, aiming to make image 

recognition human-understandable. This involved interpreting and explaining a 

predictive system to determine the most significant attributes, helping to better 

understand a network’s decision-making prime concerns. However, the CNNs 

employed in predictive model decision-making introduce various features in a way 

that influences the predictions of the models. D a s a r i  and B h u k y a  [29] 
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implemented a DNN model for automatic extraction of the classification features, 

incorporating an explainable method into the CNN model. The CNN-LSTM-based 

method, namely EdeepVPP, was an interpretable CNN approach designed for 

pattern extraction and probability generation to ensure enhanced sequence 

classification performance. The EdeepVPP faced challenges with simple array 

operations, resulting in lower computational complexity than the Conv2D. L u o  et 

al. [30] presented a CNN-based selective fixed-filter active noise control approach 

(SFANC) using a pre-trained model. The selected control filter was delivered to a 

time controller operating at a parallel sampling rate, enabling reduced noise delay in 

the CNN-based SFANC approach. However, the CNN-assisted SFANC approach 

faced challenges, including a limited, slow convergence rate, poor tracking 

capability, and greater potential for divergence. B e g u m  et al. [31] introduced a 

Lightweight CNN (LCNN) combined with the Long Short-Term Memory (LSTM) 

technique to improve defect prediction accuracy. The eXplainable Artificial 

Intelligence (XAI) approach was involved in developing deep models that 

efficiently managed defect prediction while enhancing performance. The main aim 

of the LCNN model was to enhance its ability to identify software defect features. 

However, image recognition within this model was limited by its adaptability to 

software practices. Incorporating the existing CNN into a physics-aware framework 

distorts image features, which negatively impacts classification accuracy by altering 

the image’s inherent physical properties. Therefore, this research proposes the novel 

DeConvolve explainability methodology, which demonstrates the significant 

potential of using multimodal Large Language Models (LLMs) on feature maps to 

extract human-understandable sub-steps and provide textual explanations for model 

inference. 

The main contributions of this research are noted below: 

● The CNN efficiently handles complex patterns and decision-making with 

human-recognizable patterns and textual explanations, thereby enhancing the AI 

system. 
● The integration of LLMs in multimodal AI systems demonstrates how 

language-based reasoning augments the interpretability of vision-based models like 

CNNs. 
● Grad-CAM optimizes heatmaps for better alignment with the LLM process, 

generating filter heatmaps that are processed to highlight critical regions in a format 

conducive to LLM-based reasoning. 
The remainder of the paper is organized as follows: Section 2 reviews related 

work and the state of the art, motivating the need for explainable CNNs through a 

survey of existing methods, Section 3 details the proposed methodology and its 

functioning, while Section 4 discusses the experimental results and discussion, and 

finally, Section 5 concludes the research. 

2. Related work and state of the art 

Recent advancements in Deep Learning (DL), particularly Convolutional Neural 

Networks (CNNs), have significantly improved performance across domains such 
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as medical imaging and industrial automation [1, 2]. Despite the success of CNNs 

in enhancing detection accuracy, their black-box nature has raised concerns about 

trust and interpretability, especially in high-stakes applications [3, 4]. Regression-

based models offer simplicity and computational efficiency but are limited in their 

capacity to model complex feature hierarchies or provide transparent reasoning [5]. 

In contrast, DL approaches effectively exploit high-dimensional data and have been 

extended with eXplainable Artificial Intelligence (XAI) methods to enhance 

interpretability [6, 7]. However, CNNs often require domain-specific insights to 

yield meaningful interpretations, which can hinder their adoption by non-experts  

[8, 9]. While imaging technologies with low radiation exposure and high resolution 

offer tangible benefits [10], translating these advancements into clinically 

actionable and trustworthy AI systems remains a challenge [11]. Consequently, 

hybrid frameworks combining interpretability and performance – such as 

eXplainable CNNs (XCNNs) – are increasingly investigated to bridge this gap  

[12, 13]. These approaches aim to build transparent decision pipelines that align 

with clinician reasoning and foster trust in model outputs [14, 15]. 

Explainability is not only a technical challenge but also a socio-technical 

one, where building trust in automated systems requires models to produce 

decisions that are not only accurate but also comprehensible [16, 17]. DL has 

empowered modern image processing systems to autonomously learn abstract 

features, but the interpretability of these features remains limited [18, 19]. Many 

existing studies address individual techniques without presenting a unified approach 

for integrating multiple interpretability mechanisms into robust predictive pipelines 

[20]. Two primary strategies have emerged to enhance CNN interpretability: local 

explanations, which highlight specific regions influencing a single prediction, and 

global explanations, which describe model behavior over the entire dataset [21, 22]. 

Early benchmark experiments used geometric primitives like circles and squares to 

train CNNs, serving as a foundation for building attribution models that evaluate the 

model’s attention and feature extraction mechanisms [23-25]. Such studies laid the 

groundwork for developing structured methodologies for explainable CNNs in real-

world applications. In the domain of multimodal explainability, current research 

explores leveraging Large Language Models (LLMs) to produce coherent textual 

explanations grounded in visual data, enabling interpretable decision-making across 

domains like healthcare, finance, and law [26]. These systems aim to translate 

convolutional layer activations into sub-symbolic reasoning steps that can be 

articulated in natural language. H u a n g  et al. [27] introduced a physics-aware 

Deep Neural Network (DNN) model that improved transparency but sacrificed 

classification performance due to alterations in the physical properties of input 

images. S h a j a l a l, B o d e n  and S t e v e n s  [28] developed an XAI model 

focused on helping experts understand neural decisions through feature attribution, 

enhancing the interpretability of medical imaging applications. Similarly, D a s a r i  

and B h u k y a  [29] proposed a hybrid CNN-LSTM model (EdeepVPP) to automate 

feature extraction with built-in interpretability. However, the method’s reduced 

complexity limited its performance on standard convolution operations. L u o  et al. 

[30] presented a CNN-based Selective Fixed-Filter Active Noise Control (SFANC) 
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framework for real-time applications. While effective in noise reduction, it suffered 

from convergence issues and tracking limitations. B e g u m  et al. [31] introduced a 

Lightweight CNN (LCNN) enhanced by LSTM layers to improve software defect 

detection. Although effective in prediction tasks, the model’s applicability to image 

recognition was constrained by its narrow domain adaptation. The existing body of 

work underscores the need for a unified, explainable, and high-performance CNN 

framework. Addressing these gaps, our research proposes the DeConvolve 

explainability methodology, which leverages multimodal LLMs to extract sub-step 

explanations from CNN feature maps. This method aims to balance performance 

with interpretability, enhancing the transparency, trustworthiness, and practical 

deployment of CNNs in critical decision-making applications. 

3. Proposed methodology 

In this section, Gradient-weighted Class Activation Mapping (Grad-CAM) is used 

to process Human-Cognizable Convolutional Networks and make decisions by 

attributing essential features. This enhances the cognitive alignment between ML 

outputs and human reasoning. The integration of LLMs helps extract human-

understandable sub-steps and provide textual explanations for model inference. 

3.1. Enforcing human cognizable sub-steps by analyzing the feature map 

CNNs consist of convolutional layers that learn feature extraction from the training 

data [32]. Each filter acts as a selector, simplifying the sub-steps from a 

cognoscibility perspective and reducing the cognitive load on the LLM during post-

analysis. The following modifications to the CNN training loss function are 

proposed to mitigate these issues: Firstly, image thresholding is performed on the 

feature map using a low threshold value to nullify pixels with extremely low focus 

(as measured by the heat map obtained from CAM). Then, the ratio of non-black 

pixels to the total image size is added to reduce the area of focus of the filter. This 

encourages filters to perform selection along the height and width axes, while the 

selection on the depth axis is split across the filters in the layer. Lastly, the 

dispersion of the areas of focus is incorporated into the cost function. This 

encourages each filter to observe a single spot along the image across all channels, 

as expressed by the next equation: 

(1)      
 

 
         

     
              

         
             

 

   
  

The next phase involves choosing the most pertinent features from their 

receptive fields in the input feature maps. The feature extraction manifests in two 

ways: transforming the input feature map into a more meaningful representation and 

focusing on the image regions through localization. While these transformations do 

not hinder explainability due to their visually apparent effects, localization 

complicates the inference process. Localization manifests as a selection along three 

axes of the image: height, width, and depth (channels, usually RGB in the input 

image). Localization along the depth axis cannot be visualized and hence, cannot be 

explained. However, localization along the height and width axes is crucial for 



 27 

explainability, as it directs attention to visually and cognitively recognizable areas 

of the image. Extensive research has been conducted [10] to highlight the areas of 

interest in an image using the SHapley Additive exPlanations (SHAP) and 

GradCAM techniques. However, existing work on the explainability methodology 

provides an overview of model behaviour at the level, but does not delve deeper 

into the functioning of individual filters or neurons. The preliminary goal here is to 

obtain human-cognizable image patches of every filter. The CAM works by 

composing feature maps of various filters based on their impacts on the predictions. 

The feature map of each filter presents two main issues that hinder human 

cognizability: scattered regions of interest, which produce meaningless patterns 

across the image, and large areas of interest, where the filter is either redundant 

(performing no localization) or localizes along the depth axis. Moreover, the 

learned patterns from different filters can be conflicting. For instance, in a CNN 

used to identify human figures, if the first filter learns that the presence of a torso 

and head is positively linked to the prediction, and another filter learns that the 

presence of a torso is negatively linked to the output prediction, this conflict can be 

better represented by one filter focusing solely on the head, while the other filter 

remains blank. The terms are defined as follows: 

● n is the number of samples in the dataset. 
●    is the actual target value for sample i. 

●     is the predicted target value for sample i. 

● The non-black area of focus after applying the black threshold. 
● Image size is the size of the image. 
●      is the explainability hyperparameter that controls the trade-off 

between the regular MSE loss and the additional terms. 
● β is the scattering hyperparameter that controls the trade-off between the 

size of the receptive area and the dispersion of areas within the receptive field. 
The modifications to the cost function can be visualized in Fig. 1. As the two 

new terms are progressively added, the feature map becomes more meaningful. A 

metric has been developed to quantify the concise learning described earlier. For 

each heatmap generated by a specific convolutional layer, the ratio of pixels with 

the highest entropy in the final classification to those with minimal impact on the 

prediction is calculated. A detailed evaluation of this metric is presented in the 

results section. 

3.2. Scoring the filters 

The process begins by scoring each filter, where the score represents the filter’s 

influence on the predicted class. Specifically, it measures the correlation between 

the mean of pixels in the feature map and the output probability of the predicted 

class. To compute this score, a sub-model selection is performed. Fig. 1 represents 

the image with the area of focus highlighted with explainability terms, while Fig. 2 

illustrates the flow of neurons in a human-cognizable manner. Fig. 3 shows how the 

pertinent filter convolution block is measured, while Fig. 4 demonstrates the 

extraction of a model with layers following the selected layer. 
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Fig. 1. A sample representation of images with ROI highlighted in white, with the explainability terms 

 

 
Fig. 2. Model’s human-cognizable neuron flow 

 

 
Fig. 3. Measurement of a filter convolution block 

 

Measuring the change induced by constant matrices on the pertinent filter 

convolution block, with the matrices corresponding to all other filters in the block 

set to a null matrix. For the matrix associated with the relevant filter, a constant 

matrix is applied, beginning with a zero matrix and gradually increasing the 

constant until it reaches one. The predicted probabilities are then recorded, and the 

increase in probability is assigned as the score for the filter. 
 

 
Fig. 4. Extraction of a model with layers after the selected layer 
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3.3. Obtaining activation maps 

Inspired by class activation maps [8], the primary goal here is to generate heatmaps 

corresponding to each filter. This is achieved by performing gradient ascent on the 

inputs to the filter, using the corresponding class activation as the objective 

function. The heatmaps obtained are image-agnostic, evaluated, and stored as an 

extension of the model’s training process. 

3.4. Post hoc inference analysis using LLMs 

We now analyse the network upon completion of inference, i.e., post-hoc 

explainability. The trained CNN model generates predictions for input images. In 

this step, we aim to convert the CNN’s reasoning process into textual form. The 

contribution of each filter to the final decision is computed by simulating its 

activation and observing the change in output probability. This produces an 

influence score for each filter. These scores guide a language model in generating 

contextually relevant sentences that form a human-understandable explanation of 

the model's inference. 

Algorithm 1. Scoring the impact of filters on the prediction  

Step 1. num_layers ← : total number of layers in the CNN 

Step 2.  num_filters[num_layers] ← list storing the number of filters in each 

layer 

Step 3.  Score ← a matrix of dimensions num_layers × max(num_filters) 

Step 4.  For each layer in num_layers: 

  a. Define sub_model as the model sliced from the layer to the final 

output 

  b. For each filter in num_filters[layer]: 

    i. one_hot_input ← : a tensor of all zeros with dimensions equal to 

the input size of sub_model.get_layer[0] 

    ii. baseline_prob ← output probability from sub_model with 

one_hot_input 

    iii. Set one_hot_input[filter] ← unit (1-valued) tensor at the filter 

index 

    iv. activated_prob ← output probability from sub_model with 

modified one_hot_input 

    v. Score[layer][filter] ← activated_prob - baseline_prob 

Step 5. Return the complete Score matrix 

3.4.1. Sentential descriptions of individual feature maps 

The transformation of image data into text presents significant challenges in 

computational tasks. Two main obstacles hinder the conversion process: firstly, 

identifying specific regions of interest within the three-dimensional image, and 

secondly, ensuring the conversion aligns effectively with the intended output 

requirements downstream. To pinpoint the areas of interest within the image, the 

previously stored heatmap is superimposed onto the input image. This 

superimposition creates a trade-off between contextual information and focus. 

Enhancing the clarity of the heatmap grid allows for greater focus on the relevant 
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object of interest. However, this sharpening process inadvertently reduces the 

model’s awareness of its spatial surroundings and its role within the larger context. 

The extent to which sharpening is applied depends on the specific model used and 

the nature of the task being performed. Additionally, as shown in Fig. 5, two 

heatmaps are identified that convey the regions of focus unambiguously: The 

proportionate heatmap, where the intensity of every pixel is multiplied by the 

heatmap value, resulting in a pixel’s opacity being proportional to its importance, 

and the encircled threshold heatmap, where the heatmaps are smoothed, multiplied 

with the input image, and all pixel values above a threshold are placed within a 

boundary. This boundary is drawn onto the image, allowing for a visually obvious 

compensation for the loss of contrast due to focus. The superimposed heatmaps are 

passed into a multimodal large language model with an appropriate prompt for 

context-aware labeling of the object. 

 

Fig. 5. Representation of ROIs 

3.4.2. Semantic averaging of the sentences 

The obtained textual explanations, in conjunction with the neuron scores retrieved 

(as computed in Section 3.2), are used to aggregate the sentential descriptions. This 

aggregation is limited by the intelligence that the current LLMs possess. This step 

involves the LLM understanding the interplay between various sentences as guided 

by the scores. At this stage, the LLM model presents a simple aggregation strategy, 

averaging sentences grouped by their scores. Then, the various bucket average 

sentences are averaged based on the mean score of the filter within the bucket. The 

aggregation strategies greatly affect the efficacy of DeConvolve, where specific 

tasks may require custom aggregation based on the logical “depth” of the task and 

the LLM’s understanding of the topic. 

4. Experiments and results 

The proposed DeConvolve methodology demonstrates considerable promise in 

improving the interpretability of Convolutional Neural Networks (CNNs). The 

experiment is set up in a Python environment, Version 3.8 software tool, 16 GB 

RAM, Intel i7 Processor, Windows 10 operating system, with 16GB GPU and 1TB 
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SSD. To ensure the effectiveness of the custom loss function, a Convolutional 

Neural Network (CNN) model with an architecture containing 3 Convolutional 

Layers, 2 Max Pooling Layers is employed along a Global Average Pooling Layer 

is employed. 

4.1. Improved feature maps on CIFAR-10 

Table 1. Represented the feature mpat based on LLM 

Filter Ft. map(before/after) LLM Description 

1 
 

The image shows a filter map highlighting the salient features of a bird, 

with the whitish area indicating the region of interest. The highlighted 

regions correspond to the bird’s head and beak, which are the most 

significant parts 

 

The image patch primarily highlights a bird-like structure, 

with the most salient or “hot” area being around the head of the bird. The 

heatmap indicates that the CNN model is focusing on the upper portion of 

the bird, possibly identifying features such as the beak or the shape of the 

head 

2  

The hotter areas of the heatmap, particularly around the head 

and body, indicate that these regions are significant for the CNN model’s 

prediction. The whitish areas suggest that these parts of the bird, 

including its general shape and position, are the primary focus 

influencing the output 

 

The filter map highlights a region resembling a humanoid 

figure with a pronounced facial structure, particularly the eyes and a 

smile. The hotter areas emphasize these features, suggesting the CNN is 

focusing on a part of the image that may include a face or face-like 

pattern, which could influence the classification decision 

3  

The filter map highlights a region of interest, predominantly a 

whitish area, which seems to outline the shape of a bird. The salient 

features include a defined head and beak area, with the contrast in the 

heatmap indicating important structural elements like the body and 

possibly wings 

 

The filter map highlights a whitish area prominently in the upper central 

region, which appears to outline the curved shape of the bird’s head or 

body 

4 
 

The filter map highlights a region with a distinct whitish hue, 

indicating that it is the primary area of interest. This region appears to 

outline a bird’s head and beak, which is crucial for the CNN model’s 

predictions. The key features captured here are likely to help identify this 

image as a bird 

 

The image depicts a bird, with the highlighted whitish area 

indicating the region of interest. The hotter area in the heatmap, marked 

by a distinct U-shaped structure, is the bird’s head, suggesting that this 

feature is crucial for the CNN model’s prediction 

 

Table 1 shows four feature maps highlighting the improvements in human 

cognizable representations. The filter maps are shown as before and after the 

application of the custom loss function. Additionally, the immediate increase in the 

relevance of the generated text is observed. The image patches that are most salient 
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and likely to influence the output are described, with a key focus on the hotter areas 

highlighted in the heat map, as represented in Fig. 5. 

The CIFAR-10 dataset consists of 60,000 32×32 color images divided into 10 

classes, with each class containing 6000 images. The filter sizes used in the 

convolutional layers were 32 filters of size 3×3, 64 filters of size 5×5, and 128 

filters of size 3×3. The hyperparameters used are: 

● Learning Rate: 0.001. 
● Batch Size: 64. 
● Epochs: 50. 

● Optimizer: Adam. 
● Loss Metric: Sparse Categorical Cross-entropy. 
● Explainability Hyperparameter (α): 0.1. 
● Scattering Hyperparameter (β): 0.05. 

4.2. Improvement in succinct learning 

The suggested methodology refines and simplifies learnt patterns in CNN feature 

maps to enhance interpretability through Succinct Learning. This process involves 

thresholding feature maps to create binary heatmaps, aggregating them to identify 

positions with consistently high activations, and processing these positions to 

accumulate weights associated with significant activations. The resulting processed 

matrix highlights key patterns, eliminating less relevant information and 

minimizing conflicts between filters. For example, in identifying human figures, 

one filter might learn that the presence of a torso and head is positively linked with 

the prediction, while another might associate the torso negatively. By ensuring each 

filter focuses on distinct patterns, conflicts are reduced, and the cognitive load 

during post hoc analysis is alleviated on the CIFAR-10 dataset. Furthermore, an 

improvement in the clarity of learned patterns is observed where the ratio of 

significantly fewer activations is increased from 0.85 before applying the heuristic 

to 1.00. This demonstrates the heuristic’s effectiveness in achieving a succinct and 

interpretable representation. Please refer to the supplementary material for the 

algorithm used to calculate the ratio. 

4.3. Example explanations 

This study utilizes the CIFAR-10 dataset to test the explainability of the CNN by 

generating textual explanations through an LLM. Specifically, the feature maps 

from the CNN are fed into the LLM to generate detailed explanations for image 

classifications. The study focuses on two classes from CIFAR-10: automobiles and 

airplanes. The results for images from both these classes are discussed below. 

4.3.1. Misclassification of car image 

When a car image, as shown in Fig. 1, is input into the CNN, it is incorrectly 

classified. The generated textual explanation (Place-holder for Explanation 1) 

mentions the absence of a front bumper, which is highlighted as the key reason for 

misclassification. However, upon examining the image, it is evident that the front 
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bumper is present, indicating a significant discrepancy between the actual image 

features and the explanation provided by the model. 

As shown in Fig. 6, by combining positive and negative filter maps, an 

understanding of how the model identifies a vehicle is gained. When there is an 

identification, the model relies heavily on clear and distinct features such as the 

hood, front bumper, roofline, wind-downs, trunk, and rear bumper to classify the 

vehicle. On the other hand, when there is a negative identification, the model 

struggles with less-defined features, such as the bumper and grille, wheels, and 

diffuse shapes of the roof and windows. These areas negatively impact the model’s 

ability to correctly identify the vehicle. Here, the most important substructures 

present are, Front End (Hood and Front Bumper), Cabin Area (Roof and Windows), 

Rear End (Trunk and Rear Bumper), while the most important substructures absent 

include Front/Rear End (Bumper and Grille), Wheels, Cabin Area (Roof and 

Windows), which are diffuse and less distinct. The identification process is 

significantly influenced by the presence of clear and distinct vehicle features. The 

importance of well-defined structural details is observed carefully to ensure 

explainability. To investigate further, another car image with a prominently visible 

front bumper, like in Fig. 7, is passed through. This time, the CNN correctly 

classifies the image as a car. The explanation provided by the LLM is correctly 

identified by identifying the front bumper as a distinguishing feature, which aligns 

with the visual attributes of the image. The classification of airplane images in Fig. 

8 is performed based on the filter maps with positive correlation features to the 

output class prediction, where the model shows higher activation in areas that 

outline specific structures. In this case, the most activated region resembles the hull 

of a boat. The elongated shape and distinct outline are key features that the model 

identifies, enabling it to predict the output class with higher confidence. 

 
Fig. 6. Incorrectly classified automobile 

 

 
Fig. 7. Correctly classified automobile 
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Fig. 8. Correctly classified airplane 

 

The hull-like structure of a boat is a salient feature that significantly influences 

the model’s decision. For the filter maps with a negative correlation to the output 

class prediction, the model shows higher activation in areas that seem to detract 

from the confidence in the predicted class. The most prominent feature in these 

activated areas is the outline of the animal, which suggests that it is most likely a 

horse. The model appears to be agnostic to areas that do not contain significant or 

distinct features, resembling either the hull of a boat or the outline of a horse. These 

regions do not activate strongly in either positive or negative filter maps, indicating 

that they do not contribute significantly to the model’s decision-making process. 

Key features in a positive explanation include the hull-like structure of a boat, 

elongated shape, and the distinct outline. The absence of a negative explanation 

affects the outline of the horse, legs, and body shape. In summary, the model 

highlights the hull-like structure of a boat as a crucial feature for predicting the 

output class. Conversely, the presence of horse-like features negatively impacts 

prediction. The model’s decision-making process is heavily influenced by these 

salient structures, while areas without such distinct features do not significantly 

affect the output. Large Language Models (LLMs) are then employed to produce 

textual descriptions of these regions, resulting in a cohesive explanation of the 

decision-making process of the model and improvement in succinct learning, as 

represented in Figs 6-9. 

 
 

Fig. 9. Improved succinct learning 
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4.4. Discussion 

The proposed DeConvolve methodology demonstrates a superior performance with 

improved interpretability of the CNNs. The algorithm aims to effectively process 

and analyze feature maps generated by CNNs. This algorithm identifies and 

quantifies significant activation patterns within these feature maps, facilitating 

easier interpretation and post hoc analysis of the CNN’s learned representations. 

The process begins by thresholding each feature map from a CNN layer to create 

binary heat maps. These binary heatmaps indicate whether each element in the 

feature map exceeds a specified activation threshold, thus highlighting areas of 

significant activation. The next phase involves identifying high-count positions in 

the combined matrix. The final output of the algorithm is the calculated ratio, which 

indicates the proportion of significant activations relative to the less significant 

ones. There are enhancements made to the training process of the CNN by 

integrating feature map abstraction at the filter level for enhanced human 

recognizability. This is accomplished by neutralizing low-focus pixels and 

modifying the loss function to prioritize smaller, more concentrated regions of 

focus. The effectiveness of the proposed approach in presenting extensive and 

sophisticated rationales underlying CNN inferences is proven through trials on the 

CIFAR-10 dataset for validating these developments. In addition, to enhance the 

model’s ease of use and ability to replicate results, a web interface that is intuitive 

and accessible to users is created. This interface facilitates convenient testing and 

display of the model’s explanations, providing a wide range of modification 

possibilities to enhance interpretation. The findings emphasize the need to use 

DeConvolve to enhance the transparency and comprehensibility of CNNs, thereby 

facilitating the model’s responsible implementation in diverse applications. 

5. Conclusion 

The proposed DeConvolve methodology showcases a commendable performance 

with improved interpretability of CNNs. LLMs are then employed to produce 

textual descriptions of these regions, resulting in a cohesive explanation of the 

model’s decision-making process. This combination ensures that the feature maps 

undergo careful pre-processing at the model and image processing level. The heat 

maps for each filter are generated using GradCAM, and these heat maps are 

optimally represented for LLM comprehension. The Grad-CAM aids in making the 

AI system compliant with regulations of the General Data Protection Regulation 

(GDPR) and AI transparency, making it adaptable to text data using mapping word 

or sentence embeddings to the corresponding heatmaps. Finally, the explanation for 

the specific images is derived through weighted semantic averaging for data 

processing by image format, class, and rationale. This enables professional 

classification using CLIP training for generating robust explorations. In future 

work, the power of CLIP models can be harnessed to improve learning explanations 

in a supervised model, which is currently impossible due to the unavailability of 

datasets with images categorized based on their classes and explanations. For 

example, X-ray scans of the lungs are used to detect the presence of a cancerous 
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tumor, with an oncologist providing an analysis of the observations using X-ray 

images. Furthermore, Language models used here can be pre-trained on lung cancer 

and its visual characteristics. Fig. 1 depicts a possible architecture. The CLIP model 

was proposed by Radford and other authors (2021) in the work titled “Learning 

Transferable Visual Models From Natural Language Supervision”. The proposed 

loss function works as an antecedent to training explainability models upon the 

creation of datasets. 
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