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Abstract: Forecasting is essential in manufacturing and business, but is hindered by 

abnormal events like COVID-19. This paper proposes a model that integrates 

Temporal Fusion Transformer (TFT) with Tree-Structured Parzen Estimator (TPE), 

in which TFT is a deep neural network specifically designed for processing time 

series data to capture trends and model complex data variations and, at the same 

time, TPE is an optimization technique that uses a tree-like data structure to 

determine the best set of hyperparameters for TFT. The TFT-TPE integrated model, 

therefore, provides an effective solution to the forecasting problem, especially for 

abnormal data. The study proposes a combination of forecasting historical data, 

considering the COVID-19 period, and utilizing Google Trends to enhance 

forecasting accuracy. The experimental results show that the TFT-TPE integrated 

model achieves forecasting results better than traditional forecasting models, 

especially the ability to overcome the anomalies in time series data.  

Keywords: Transformer, TFT-TPE integration, Abnormal time series data, Google 

Trends, Tourism demand forecasting. 

1. Introduction 

Time series forecasting is a topic of interest in many research fields, from weather 

forecasting, climate change, economic growth, stock market volatility, to tourism 

demand. Forecasting is making short-term and long-term assumptions based on 

knowledge of past events. For time series data forecasting, researchers often analyze 

the given data series to find out the characteristics and then choose the appropriate 

technique for forecasting [1]. However, accurate forecasting becomes challenging to 

achieve when abnormal data patterns appear. Abnormal data can be sudden 

fluctuations or unexpected changes in trends in the data series, making traditional 

forecasting techniques less effective [2]. Different things, such as market shocks, 

disease outbreaks, data collection errors, or strange human behavior, can cause 

anomalies. When faced with abnormal data, traditional forecasting methods fail to 

capture outliers, leading to inaccurate forecasts. Traditional forecasting methods are 

often based on assumptions of stationarity and regularity, which do not account for 
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anomalies in time series data. Abnormal data pose significant challenges to 

forecasters due to their unpredictable nature [3]. 

For machine learning-based time series forecasting approaches, an indispensable 

and crucial step during training is to initialize the initial values for parameters such as 

the number of epochs, classes, learning rate, etc. The selection of appropriate 

parameters is often based on experience [4]. For each set of parameters, we have to 

train the model, observe the results, evaluate them, readjust the parameters, and repeat. 

In order to automate the above process, some algorithms, such as Grid Search or 

Random Search [5], can be used. However, these algorithms only work effectively with 

a small set of parameters because the search space will increase rapidly when the 

number of parameters is significant, and it takes a lot of time to find a suitable solution. 

The Tree-structured Parzen Estimator (TPE) hyperparameter optimization algorithm 

[6] can help overcome this obstacle by building a model that estimates the conditional 

distribution of hyperparameters based on collected samples. 

This paper proposes an integrated model to improve the forecasting accuracy of 

abnormal events, such as tourism demand during the COVID-19 pandemic. The 

integrated model is based on Temporal Fusion Transformer (TFT) [7], a powerful 

tool for time series forecasting with accurate forecasting ability and adaptability to 

abnormal data fluctuations, and TPE, a hyperparameter optimization method for TFT 

inputs. By integrating TFT with TPE, the TFT-TPE model can improve the 

forecasting performance. We evaluate the performance of the TFT-TPE model with 

tourism demand data, especially with abnormal data appearing during the  

COVID-19 pandemic. Another proposal introduced in the paper to improve 

forecasting performance is to combine historical tourist demand data with Google 

Trends. Experimental results show that the TFT-TPE model achieves accuracy higher 

than traditional forecasting models and can overcome the anomalies in time series 

data. 

The main contributions of the paper include: 

• Proposing an integrated TFT-TPE model and modelling the tourism demand 

forecasting problem as a problem of finding the TFT architecture with an optimal set 

of hyperparameters; 

• Proposing a combination of historical data and Google Trends for 

forecasting, in which the collection of keyword-based search data is analyzed; This 

time series data is then used as a covariate to feed into the TFT-TPE model, which 

can learn and forecast more accurately. 

• Normalizing and transforming time series data on tourism demand 

(international arrivals to Vietnam and the UK) before and during the COVID-19 

pandemic (abnormal data) for training the TFT-TPE model; and 

• Evaluating the tourism demand forecasting performance of the TFT-TPE 

model with the normalized time series data set. 

The next sections of the paper are organized as follows: Section 2 summarizes 

and reviews related works in recent years, focusing on transformer-based forecasting 

models and their variants. Based on these analyses, Section 3 describes the TFT-TPE 

integrated model in terms of the structure and operation of both the TFT model and 

the TPE optimization method. Section 4 describes the implementation, input data 
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processing, and evaluation of forecasting results with data before and during  

COVID-19. Finally, the conclusion is presented in Section 5. 

2. Related works 

Forecasting abnormal data is challenging in various domains, such as e-commerce, 

medical supplies, electricity consumption, pharmaceutical manufacturing, and 

tourism demand. Several different approaches have been proposed to address this 

problem. This section reviews recent research related to forecasting for abnormal 

time series data. 

L i u, M i n g  and H u a n g  [8] studied the demand forecasting of medical 

devices with sparse, temporary, and irregular data. In this study, the authors proposed 

to combine historical data statistics with linear regression. In order to reduce the 

sparse estimates, historical data transformation was added to the linear regression 

model. However, based on statistics and linear regression techniques, this proposal 

has difficulty capturing the complex nonlinear relationships contained in the demand 

forecasting data of medical devices. Unlike deep learning models, which can 

automatically learn complex patterns and features from data, the study in [8] requires 

manual feature extraction and model specification, which limits the adaptability to 

multivariate forecasting. 

In K a l i f a  et al. [9], hypothesized that leveraging external knowledge, such as 

in world events, can help improve forecasting under abnormal conditions. This study 

exploited a 40-year archive of world events. Then, K a l i f a  et al. [9] proposed a new 

method based on the Transformer to construct daily data based on the relationship of 

intraday events. This data is then used to forecast future consumer behavior. An e-

commerce sales dataset from eBay is experimented with using the proposed method. 

The results show that the proposed method predicts more accurately than statistical 

methods such as ARIMA or deep learning methods such as Prophet [10]. 

E l-H a d a d, Y. F. T a n and W. N. T a n [11] proposed an approach using 

Isolation Forest [12], Random Forest [13], and Decision Tree to predict abnormal 

power consumption behavior with high accuracy. The proposed method uses the 

Isolation Forest algorithm to label (normal or abnormal) the power consumption 

index of intelligent electricity meters. From this labeling, the time series data will 

form many time series with different lengths. Based on this data, two algorithms, 

Random Forest and Decision Tree, are applied to predict the possibility of abnormal 

power consumption. Experimental results show that the proposed method accurately 

predicts abnormal states 30 minutes before. The results also show no significant 

difference in performance between Random Forest and Decision Tree when 

considering different dataset sizes and data series lengths. 

L u o c h e n  and H a s a c h o o  [14] studied the case of a hospital having 

difficulty managing drug inventory (surplus or shortage) when there is an abnormal 

demand for some drugs. The study compared some methods, such as C r o s t o n  [15], 

TSB [16], SBA [17], and K a l a y a, T e r m s u k s a w a d  and W a s u s r i  [18] on the 

same abnormal drug demand data set. The results showed that the Kalaya method 

gave the best results for abnormal forecasting over 130 days. This study mainly 

compared abnormal time series forecasting methods, but in univariate form, without 
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considering the ability to combine data in multivariate form and exploiting the 

relationship between variables. 

Research in [19] has shown that irregular data makes time series forecasting 

difficult. The authors proposed using Support Vector Machines (SVM) and Ensemble 

Empirical Mode Decomposition (EEMD) [20] to forecast this type of irregular data. 

Specifically, the time series data is decomposed into “smooth” and “continuous” sub-

series using the EEMD technique. Then, SVM is applied to model each sub-series. 

Finally, the forecasts for the sub-series are aggregated to form the ensemble forecast. 

Experimental results on two artificial datasets show that the SVM-EEMD 

combination outperforms SVM, ARIMA, and Croston in terms of RMSE, SMAPE, 

MDRAE, and MASE. 

The study in [21] proposed a wireless demand forecasting model with abnormal 

traffic values due to interference, mobility, connection requirements, etc., to improve 

energy efficiency and avoid network outages. Sun and Gou o proposed a Feature 

Embedding (FE) kernel for Gaussian Process (GP) to forecast traffic demand with 

extreme values. Experimental results show that the FE-GP combination reduces the 

performance by 32% compared to S-ARIMA and reduces the performance by 17% 

compared to Naive-GP. For long-term mean value forecasting, the FE-GP model has 

a reduction of 21% compared to S-ARIMA and reduces the performance by 12% 

compared to Naive-GP. 

In a research on analyzing short, unstructured comments containing emotional 

language slang, R a n a et al. [22] proposed a combination of RoBERTa-1D-CNN-

BiLSTM and Modern Aspect-Based Sentiment Analysis (ABSA). Specifically, the 

pre-trained Robustly Optimized BERT approach (RoBERTa) and One-Dimensional 

Convolutional Neural Network (1D-CNN) models are used to extract aspect-level 

features from the context of comments. Next, Bidirectional Long Short-Term 

Memory (BiLSTM) is used to perform classification. The model is then evaluated 

with datasets related to electronic products (e.g., MP3 Players, Canon, Apex AD 

2600, Nikon, and Nokia 6610), hotels and restaurants, and movies. The results show 

that the combined model of RoBERTa-1D-CNN-BiLSTM and ABSA achieves an 

accuracy of 92.33%, outperforming other methods such as LSTM-LSTM,  

GRU-LSTM, and LSTM-GRU. 

In summary, studies and proposed solutions have been used to forecast 

abnormal demand in several fields, such as medical supplies, electricity consumption, 

e-commerce, pharmaceuticals, and tourism. These methods include combining 

historical data statistics with linear regression, using world events with Transformer 

models, applying machine learning algorithms such as Isolation Forest and Random 

Forest, or combining feature embedding in Gaussian Process. These studies have 

significantly improved the accuracy of forecasting. However, these studies mainly 

focus on univariate data, requiring manual processing at some stages, and still need 

to incorporate multivariate data to exploit the relationship between time series data 

variables with abnormality. This paper uses the TFT architecture with multivariate 

data, which can explain the influence of data variables on forecasting results. In 

addition, TPE is integrated into TFT to automatically find the optimal hyperparameter 

set for the TFT architecture to improve forecasting efficiency. A combination of 
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historical travel demand data and travel search data from Google Trends is also 

proposed and analyzed. The performance of the TFT-TPE integrated model is 

evaluated with international arrivals data to Vietnam and the UK, covering the 

COVID-19 period. 

3. TFT-TPE integrated model 

3.1. Temporal fusion transformer 

TFT [7] is a transformer-based model used for multidimensional time series 

forecasting with higher explainability than “black box” models of conventional 

neural networks. TFT combines high forecasting performance with explainability, 

which is especially useful for forecasting complex problems such as time series with 

uniform variability, data from the known future, and temporal variables observed in 

the past.  

TFT includes the following key components, as shown in Fig. 1: 

• Gated Residual Networks (GRNs): Use skip connections to enable the model 

to learn which layers can be skipped, to improve generalization, and to reduce the 

required parameters. 

• Static Feature Encoder learns contextual embeddings from static features 

(i.e., features that do not change over time) to enrich the temporal representations 

learned by the model. 

• Variable Selection Networks learn to assess the importance of each input 

feature to ensure that only the most relevant features are used in subsequent layers. 

• Sequence-to-Sequence Layer uses LSTMs to process local temporal patterns 

and combines them with static contextual embeddings to enrich the learned temporal 

representations. 

• Multi-Head Attention helps the model capture long-term dependencies in time 

series data by allowing multiple attention heads to focus on different aspects of the data. 

TFT leverages self-attention mechanisms to capture complex temporal 

dependencies in data. To do so, TFT uses various temporal encoding techniques that 

allow modeling the incorporation of time-related information into the input sequence 

to capture temporal patterns and trends. Model explainability is a crucial feature of 

TFT, as it provides insight into how forecasts are made and shows which past-time 

steps are most influential in forecasting future values. TFT applies attention 

mechanisms, which help highlight the importance of different input features and time 

factors. This approach makes the forecasting process more understandable and 

transparent to users. 

TFT uses sequential layers to process the input data, such as selecting variables 

to remove irrelevant data and encoding contextual data. Like other neural network-

based models, the performance of TFT depends on the configured hyperparameters, 

such as learning rate, number of layers, number of neurons in each layer, etc. 

Selecting a suitable set of hyperparameters for TFT is essential, and several 

hyperparameter optimization techniques, such as Grid Search, Random Search [5], 

or Tree-structured Parzen Estimator (TPE) [6], can be used to determine the optimal 

set of hyperparameters. TPE is focused on in this paper because of its ability to 
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automatically search for hyperparameter sets, reduce the number and time of 

evaluating them, and escape local optimizations. Details of TPE are presented in the 

next section.  
 

 
Fig. 1. TFT model [7] 

3.2. Tree-structured Parzen Estimator 

Hyperparameter optimization is an important requirement for neural network-based 

models. Given that each parameter can have its unique value range, whether 

continuous or discrete, it is impractical to try all possible combinations, called 

hyperparameter configurations, to determine the best one. TPE can help overcome 

this obstacle by not only learning from observed data (the tested hyperparameter 

configurations 𝑐 and the corresponding evaluation results 𝑣 = 𝑓(𝑐)) but also 

predicting which configurations will improve the model performance, reducing the 

number of trials and time required for optimization. 

TPE uses the Expected Improvement (EI) criterion, which represents the 

expectation of improving the objective function value if testing with a new 

hyperparameter configuration. EI considers the improvement that can be achieved 

compared to the current result and the probability of obtaining that improvement. 

Specifically, EI is calculated based on the conditional probability distribution  
𝑝(𝑣 ∣ 𝑐), which represents the probability of obtaining the value 𝑣 when evaluating 

the objective function with the hyperparameter configuration 𝑐, as  

(1)  EI𝑣∗(𝑐) = ∫ (𝑣∗ − 𝑣)
𝑣∗

−∞
. 𝑝(𝑣|𝑐)𝑑𝑣, 

where 𝑣∗ is the threshold value selected from the top-γ quantile, which is defined in 

Equation (4). 

To estimate 𝑝(𝑣 ∣ 𝑐), TPE does not directly model this distribution but uses 

Bayes’ theorem to rewrite the conditional probability as  
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(2)  𝑝(𝑣|𝑐) =
𝑝(𝑐|𝑣)𝑝(𝑣)

𝑝(𝑐)
. 

The optimization problem then turns into modeling 𝑝(𝑐 ∣ 𝑣) as a conditional 

probability of a hyperparameter configuration 𝑐 given the value 𝑣. To do this, TPE 

divides the observation dataset into two regions corresponding to the configuration 

with good performance 𝑙(𝑐) and the configuration with poor performance 𝑔(𝑐), as 

shown in the equation 

(3)  𝑝(𝑐|𝑣) = {
𝑙(𝑐) = 𝑝(𝑐|𝐷(𝑙))𝑖𝑓 𝑣 <  𝑣∗,

𝑔(𝑐) = 𝑝(𝑐|𝐷(𝑔))𝑖𝑓 𝑣 ≥  𝑣∗,
 

where:  

- 𝑙(𝑐) = 𝑝(𝑐 ∣ 𝐷(𝑙)) is the probability density function of configurations 𝑐 

estimated from the set of observed points 𝐷(𝑙) that performs better than the threshold 

𝑣∗. In other words, this is the distribution of configurations that we “want to find 

more”. 𝑙(𝑐), abbreviated low, represents the probability density function of a 

configuration 𝑐 in the region with the evaluation value less than the threshold 𝑣∗, i.e., 

the configuration considered “good” according to the minimization criterion. 

- 𝑔(𝑐) = 𝑝(𝑐 ∣ 𝐷(𝑔)) is the probability density function of configurations 𝑐 

estimated from the set of observed points 𝐷(𝑔) whose performance is worse than or 

equal to the threshold 𝑣∗. These are the configurations that are least preferred for 

further testing. 𝑔(𝑐), abbreviated greater, represents the probability density function 

of a configuration 𝑐 in the region with an evaluation value greater than or equal to the 

threshold 𝑣∗, i.e., the configuration is worse and is less preferred for testing. 

Splitting the data based on a threshold 𝑣∗ means that the set 𝐷 is divided into 

two groups: one group consisting of 𝛾 percent of the configurations with the best 

performance (corresponding to 𝑣 < 𝑣∗) and the rest with worse performance. The 

parameter 𝛾 is chosen by the user (usually 0.15 or 0.25), representing the proportion 

of “good” observations in the collected data. This value is also the probability that a 

configuration has a rating value that is in the region better than 𝑣∗, as in the equation  
(4)  𝛾 = 𝑝(𝑣 < 𝑣∗) = ∫ 𝑝(𝑣)

𝑣<𝑣∗  𝑑𝑣. 

At the same time, to standardize EI, it is necessary to determine the marginal 

probability 𝑝(𝑐) of a hyperparameter configuration 𝑐 by fully integrating the variable 

𝑣, with the conditional probability distribution 𝑝(𝑐 ∣ 𝑣), as in equation  

(5)  𝑝(𝑐) = ∫ 𝑝(𝑐|𝑣)𝑝(𝑣)𝑑𝑣
+∞

−∞
= ∫ 𝑝(𝑐|𝑣)𝑝(𝑣)

𝑣<𝑣∗  𝑑𝑣 + ∫ 𝑝(𝑐|𝑣)𝑝(𝑣)
𝑣≥𝑣∗  𝑑𝑣. 

Combining Equations (2), (3), (4), and (5) into Equation (1), 𝐸𝐼 finally is as in 

the equation  

(6)  𝐸𝐼𝑣∗(𝑐) =  
𝛾𝑣∗𝑙(𝑐)− 𝑙(𝑐) ∫ 𝑝(𝑣)𝑑𝑣

𝑣∗

−∞

𝛾𝑙(𝑐)+(1−𝛾)𝑔(𝑐)
 ∝ (𝛾 +

𝑔(𝑐)

𝑙(𝑐)
(1 − 𝛾))

−1

. 

The point with the largest EI corresponds to the point with the smallest ratio of 
𝑔(𝑐)

𝑙(𝑐)
. This allows the algorithm to select the optimal hyperparameter set in each 

iteration. After multiple iterations, TPE identifies the best hyperparameter 

configuration based on the point with the highest EI. 
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The TPE Algorithm is performed iteratively with the following seven steps. 

Step 1. Determine the optimal value range for the hyperparameters, randomly 

generate some initial hyperparameter configurations, and evaluate the corresponding 

model performances. 

Step 2. Based on the evaluations, divide the set of tested hyperparameter 

configurations into two groups according to Equation (3). 

Step 3. Determine 𝑝(𝑐 ∣ 𝑣) through two distributions, 𝑙(𝑐) and 𝑔(𝑐), which 

reflect the probability of the selected configuration 𝑐 given the performance 𝑣∗. 

Step 4. Apply Equation (6) to calculate the expected value of EI for each 

candidate configuration. 

Step 5. Select the configuration 𝑐𝑖+1
∗  with the largest EI to test in the next round, 

𝑖 + 1. 

Step 6. Train the model with configuration 𝑐𝑖+1
∗  and evaluate the performance 

on the validation dataset. 

Step 7. Record the results in the observation data set 𝐷. If the stopping 

condition, such as the maximum number of iterations, is not met, return to Step 2; if 

the stopping condition is met, select the configuration with the best performance as 

the final result. 

TPE builds a probabilistic model based on the results from previous tests to find 

a better set of hyperparameters with each run. TPE can determine the importance of 

each hyperparameter during the optimization process. TPE does not directly evaluate 

the importance of each hyperparameter but can adjust the testing frequency for each 

hyperparameter value. By evaluating the model’s performance with different 

configurations, TPE adjusts the search direction so that parameters significantly 

impacting performance will have a higher probability in the next runs. 

3.3. TFT-TPE integration 

Integrating TPE into TFT leverages the power of TPE to optimize the hyperparameter 

set in TFT. Specifically, this process begins with using TFT to represent a part of the 

hyperparameter space. TFT can represent complex relationships between parameters, 

especially in models with sequential data. This paper uses TFT to create a model for 

the objective function. Updating each pass’s parameters and results is a fine-tuning 

process through TPE to create a more stable model. 

The TFT-TPE model is implemented in 12 steps (Fig. 2). 

Step 1. Data collection: Collect time series and related data that may affect the 

forecast results. 

Step 2. Data processing and feature generation: Process the data to normalize 

and clean it. Identify essential features from the original data, including past and 

future covariates. 

Step 3. Initialize the hyperparameter search space: Set the range and initial 

values to optimize the hyperparameters. This activity helps define the hyperparameter 

search space boundaries. Randomly generate some initial hyperparameter value sets 

and evaluate their performance. 

Step 4. Group 𝑙(𝑐) and 𝑔(𝑐): Based on the observation results, divide the data 

into two groups: the best-performing group, 𝑙(𝑐), and the remaining group, 𝑔(𝑐). 
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TFT-TPE uses two density distributions 𝑙(𝑐) and 𝑔(𝑐) defined in Equation (3) to 

model the conditional probability 𝑝(𝑐 ∣ 𝑣), where 𝑣 < 𝑣∗ indicates that the value of 

the objective function is less than the threshold, and 𝑣 ≥ 𝑣∗ denotes that the value of 

the objective function is greater than or equal to the threshold. After data splitting, 

TPE uses the Kernel Density Estimation (KDE) method [23] to estimate the 

probability density distributions 𝑙(𝑐) and 𝑔(𝑐). KDE is a non-parametric density 

estimation method that allows for constructing smooth approximations of probability 

distributions from discrete data without making any assumptions about the original 

distribution. 

Step 5. Update the probability models: Incorporate the latest observation into 

the historical dataset, then re-estimate the two conditional probability models 𝑙(𝑐) 

and 𝑔(𝑐), which characterize the probability density of configurations with objective 

values below and above the threshold 𝑣∗, respectively. 

Step 6. Compute 𝑐∗ = argmax𝑖 (
𝑙(𝑐)

𝑔(𝑐)
): Find the hyperparameter set 𝑐∗ that 

maximizes the ratio of  
𝑙(𝑐)

𝑔(𝑐)
. 

Step 7. Choose 𝑐𝑖+1 with Max(EI): Choose the new hyperparameter set 𝑐𝑖+1 

that maximizes the EI in (5). 

Step 8. Train the model with the new hyperparameter set 𝑐𝑖+1. 

Step 9. Evaluate the model performance with 𝑐𝑖+1. 

Step 10. Add 𝑐𝑖+1to the historical hyperparameter set. 

Step 11. Check stop conditions: If 𝑖 equals the maximum number of iterations, 

go to Step 12. Otherwise, increment the value 𝑖 by 1 (𝑖 =  𝑖 +  1), and the process 

will return to Step 4. 

Step 12. Return the result: Choose the best-performing hyperparameter set from 

the historical dataset. 

 
Fig. 2. The proposed TFT-TPE integrated model  
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The TFT-TPE integrated model offers significant benefits. Specifically, TFT 

allows complex relationships between parameters to be represented, while TPE 

provides efficient search capabilities in the hyperparameter space. This combination 

not only enhances the efficiency of the hyperparameter optimization process but also 

helps to achieve higher performance in a shorter time. This result demonstrates the 

outstanding potential of TFT-TPE integration in improving the efficiency and speed 

of predictive models. 

4. Simulation and analysis 

4.1. Data collection 

The data was collected from various sources from January 2008 to December 2023. 

Accordingly, abnormal data on tourism demand due to the impact of the COVID-19 

pandemic are included. To evaluate the performance of the forecasting model with 

non-abnormal and abnormal data, we split the data into two parts: the dataset from 

January 2008 to December 2019 (excluding abnormal data) and the dataset from 

January 2008 to December 2023 (including abnormal data during the COVID-19 

pandemic, from January 2020 to April 2022). These two datasets are normalized and 

divided into two training and testing parts with a ratio of 80:20. Specifically, for the 

data set of the period [01/2008, 12/2019], data from January 2008 to June 2017 is 

used to train the model and data from July 2017 to December 2019 is used to test and 

evaluate the performance of the model (Fig. 3a). For the data set covering the 

COVID-19 epidemic period of [01/2008, 12/2023], data from January 2008 to August 

2020 is used to train the model, and from September 2020 to December 2023 is used 

to test and evaluate the performance (Fig. 3b). Splitting the data this way helps the 

model learn long-term trends and seasonality before testing it on a newer data period 

with both cases affected and unaffected by the COVID-19 pandemic. The goal is to 

determine which model can better capture and predict complex and uncertain trends 

in travel data. 

 
(a) 

 
(b) 

Fig. 3. The method divides the dataset into a training set and a test set for cases of data before  

COVID-19 (a), and including the COVID-19 period (b) 



 162 

4.2. Data analysis 

The forecasting model uses monthly international arrivals data as the target variable. 

Monthly international arrivals data for Vietnam and the United Kingdom (the UK) 

for the period of [2008, 2023] are collected to be used to forecast the two countries' 

tourism demand. The data are then preprocessed and normalized to serve as the target 

variable for the TFT-TPE model (Fig. 4). To ensure comparability across different 

Google Trends time series, we applied Z-score normalization (Standardization), a 

widely used technique in time series analysis and machine learning. Given a time 

series 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, the normalized value X′ is computed using the Z-score 

formula, 𝑋′ =
𝑋−μ

σ
, where μ is the mean of the time series, and σ is the standard 

deviation. 

For Vietnam, data on monthly international arrivals were collected from the 

website of the Vietnam National Authority of Tourism [24], while the tourists to the 

UK were collected from the source [26]. As shown in Fig. 4, there were still tourists 

to the UK during the COVID-19 period. Meanwhile, the number of tourists to 

Vietnam during this time was zero due to Vietnam’s complete entry ban policy. 

 

 
Fig. 4. Monthly international arrivals data to Vietnam and the UK covering the COVID-19 period  

[24, 25] 

As shown in Fig. 4, the UK international arrivals data clearly shows seasonality 

(in the pre-COVID-19 period), while this is not evident for the Vietnam international 

arrivals data. The seasonality has a significant positive impact on the accuracy of the 

different forecasting methods. 

4.3. Combine with Google Trends 

Tourists often search for information about their destinations before they travel. This 

search information, typically expressed in the frequency of search keywords, clearly 

affects the accuracy of forecasting tourist arrivals to a destination. Therefore, 

combining Google search volume data with historical time series data on arrivals can 

improve forecasting accuracy. 

The initial keyword list was built using reference sources, combined with 

Google’s suggestion tool and interviews with travelers to collect popular keywords 

before traveling. Table 1 describes the list of keywords used. These keywords were 

then input into Google Trends to determine the search volume over time. Next, the 
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time series of these keywords was compared with the target series in the training set 

to calculate the similarity.  

Table 1. Normalized similarity of search volumes relative to keywords 

VN UK 

Keyword Similarity Keyword Similarity 

Visit Vietnam 0.9379 Things to do in London 0.8368 

Vietnam things to do 0.9086 hand luggage 0.7786  

Hanoi things to do 0.9073 Things to do in the UK 0.6352 

Best time to visit Vietnam 0.8061 Liverpool Beatles Tour 0.6111 

Flights to Hanoi 0.7857 Best time to visit London 0.5256 

Holiday in Vietnam 0.7124 Cheap flights to anywhere 0.4994 

Flights to Vietnam 0.6913 Solo travel 0.4446 

Travel to Vietnam 0.6829 Flights anywhere 0.4402 

Travel to Hanoi 0.6748 Cheapest places 0.4183 

Hotels in Vietnam 0.6582 Visit London 0.4151 
 

We use the Pearson Correlation Coefficient (PCC), a widely used method for 

identifying linear relationships between two signals, to quantify the similarity 

between time series. Given two normalized time series X′ and Y′, PCC is defined as 

(7)  𝜌(𝑋′, 𝑌′) =
∑(𝑋𝑖

′−𝑋′̅̅̅̅ )(𝑌𝑖
′−𝑌′̅̅ ̅)

√∑(𝑋𝑖
′−𝑋′̅̅̅̅ )

2
√∑(𝑌𝑖

′−𝑌′̅̅ ̅)
2
 

where 𝑋′̅̅ ̅ and 𝑌′̅ are the mean values of the respective normalized series. 

A correlation coefficient close to +1 indicates a strong positive similarity, while a 

value near −1 indicates an inverse relationship. Based on the similarity, the most 

relevant keywords were selected to covariate for the past in the forecasting model. 

Fig. 5 depicts the normalized similarity level to the keywords collected from 

Google Trends for the Vietnam and UK destinations. After identifying relevant 

keywords, the search volume series is normalized to ensure they are on the same scale 

and suitable for comparison. These normalized time series are then used as historical 

covariates in the TFT-TPE integrated model. 
 

   
Fig. 5. Data corresponding to keywords collected from Google Trends: Vietnam and UK destinations 

4.4. Future covariates 

Future covariates in the TFT-TPE model are input variables outside the time series 

that are used to provide additional information about factors that may affect the future 
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forecast. Future covariates are understood as data that are known at the time of 

forecasting. They help the model better understand the context and external factors 

that may affect the future target time series’ value. We use time attributes such as 

year, month, and a linear increase series incorporating COVID-19 travel ban policy 

data (Linear Increase and COVID-19 Period) as future covariates (Table 2). These 

attributes provide detailed information about time and trends, helping the TFT model 

better understand the temporal characteristics of the data. The “Year” covariate helps 

the model recognize year-wise features. For example, if the tourism data increases 

over the year, the year covariate will help the model learn this trend. The “month” 

covariate helps the model recognize month-wise features, which aids in learning 

seasonal patterns. For example, if tourist arrivals increase in the summer months and 

decrease in the winter months, the month covariate will help the model learn this 

seasonality. 
 
Table 2. Covariate and target data 

Time  

index 
2008-01 2008-02 2008-03 ... 2019-12 2020-01 2020-02 … 2022-04 2022-05 2022-06 … 2023-11 2023-12 

Year 2008 2008 2008 ... 2019 2020 2020 … 2022 2022 2022 … 2023 2023 

Month 1 2 3 ... 12 1 2 … 4 5 6 … 11 12 

UK-LC 0 1 2 ... 143 144 145 … 0 1 2 … 20 21 

G1 51 48 50 ... 67 74 71 ... 60 57 55 ... 44 46 

G2 20 18 18 ... 46 48 48 ... 40 50 60 ... 37 39 

UK-T 2349 2249 2597 ... 3445 3036 2512 ... 2252 2728 2977 ... 2795 2931 

VN-LC 0 1 2 ... 143 –191 –191 ... –191 0 1 ... 19 20 

G3 20 15 13 ... 66 84 41 ... 47 46 57 ... 75 85 

G4 17 10 14 ... 82 98 58 ... 43 49 54 ... 70 74 

G5 0 0 0 ... 84 73 84 ... 25 31 41 ... 67 77 

VN-T 400 411 414 ... 1710 1994 1243 ... 101 173 237 ... 1233 1371 

Note:  -  UK-LC: Linear Increase and COVID-19 Period of UK 

- G1: Google Trends with “Things to do in London” keyword 

- G2: Google Trends with “hand luggage” keyword 

- UK-T: Monthly international arrivals data to the UK (in thousands) 

- VN-LC: Linear Increase and COVID-19 Period of VN 

- G3: Google Trends with “Visit Vietnam” keyword 

- G4: Google trend with “Vietnam things to do” keyword 

- G5: Google trend with “Hanoi things to do” keyword 

- VN-T: Monthly international arrivals data to Vietnam (in thousands) 

The Linear Increase and COVID-19 Period covariate (Fig. 6) represents a time-

based index that increases gradually under normal conditions and decreases during 

periods of significant disruptions, such as the COVID-19 travel bans. Positive values 

in the “Linear Increase” indicate a gradual increase in tourism or other related factors 

over time, while negative values reflect a decline due to external factors like travel 

restrictions. For instance, the large negative values in January and February 2020 

(e.g., −191 in the UK) represent the sharp decline in tourism caused by COVID-19 

lockdowns. This covariate helps the model understand both the long-term trends and 

the abrupt shifts in the data due to such events. 
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Fig. 6. Linear Increase and COVID-19 period 

4.5. Evaluation metrics 

The performance of the TFT-TPE integrated model is compared with that of two 

traditional models, Exponential Smoothing (ES) and ARIMA, and that of two 

machine learning models, Prophet and LSTM. Common evaluation metrics include 

Mean Absolute Percentage Error (MAPE), symmetric MAPE (sMAPE), Mean 

Absolute Error (MAE), and Root Mean Square Error (RMSE), 

(8)  MAPE =
100%

𝑛
∑

|𝐹𝑡−𝐴𝑡|

|𝐴𝑡|

𝑛
𝑡=1 , 

(9)  sMAPE =
100%

𝑛
∑

|𝐹𝑡−𝐴𝑡|

|𝐴𝑡|+|𝐹𝑡|

2

𝑛
𝑡=1 , 

(10)  MAE =
1

𝑛
∑ |𝐹𝑡 − 𝐴𝑡|𝑛

𝑡=1 , 

(11)  RMSE = √
1

𝑛
∑ (𝐹𝑡 − 𝐴𝑡)2𝑛

𝑡=1 , 

where n is the number of observations in the test sets, At and Ft are the actual and 

predicted values at step t, respectively. According to (8), (9), (10), and (11), the 

smaller the MAPE, sMAPE, MAE, and RMSE, the better the model's forecasting 

performance. 

However, MAPE can become very large when the actual value is small, 

approaching zero, especially if there is a difference between the actual value and the 

forecast value, even if the difference is insignificant. sMAPE overcomes this 

drawback by using the average between the actual and forecast values in the 

denominator, making it less sensitive to small values, resulting in smaller sMAPE 

values in similar cases. To find the set of hyperparameter values for the TFT-TPE 

model, we use sMAPE instead of MAPE as a criterion to evaluate the model's 

performance under different hyperparameter values. 

To achieve optimal forecasting performance, tuning the hyperparameters of the 

TFT model is extremely important. This process uses TPE to focus on the 

hyperparameters with the most significant impact, ensuring that the model exploits 

its maximum forecasting potential. The important hyperparameters that need to be 

optimized include the model’s main structural and training elements. These 

parameters directly affect the learning ability of the TFT, helping the model learn 

complex features and forecast more accurately for time series data. Therefore, this 

paper uses the following hyperparameters to be included in the TFT-TPE integrated 

model for optimization; the remaining hyperparameters are used by default: 
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• hidden_size: Represents the hidden size of the model, helping to adjust the 

representation ability of LSTM in TFT. Too small a size can lead to information loss, 

while too large can cause overfitting. 

• lstm_layers: The number of LSTM layers affects the depth and learning 

ability of the model. Optimizing the number of layers helps the model process more 

complex information. 

• num_attention_heads: The number of attention heads allows the model to 

learn more about the relationships in the data. This optimization improves the ability 

to pay attention to essential features. 

• dropout: This parameter helps prevent overfitting by randomly ignoring some 

connections in the model. Optimizing the dropout level is necessary to maintain 

accuracy without losing information. 

• batch_size: Optimizing the batch size helps adjust the training speed and 

stability of the model. A batch size that is too large can reduce the accuracy of 

learning. 

• n_epochs: The number of epochs affects whether the model learns enough. 

This optimization ensures that the model is trained enough without being overtrained. 

• random_state: Ensures reproducibility between optimizations, helping to 

evaluate hyperparameters objectively. 

• feed_forward and norm_type: Network types and normalization are also 

optimized to find the best structure for the data. 

The non-optimized hyperparameters include input_chunk_length and 

output_chunk_length, which are the lengths of the input and output sequences, 

respectively. Based on the characteristics of the data and the forecasting 

requirements, the data from the previous 2 years (input_chunk_length = 24) is used 

to forecast the next 6 months (output_chunk_length = 6). With sMAPE as the 

criterion for optimization, the set of hyperparameter values is found in Table 3. 

Table 3. Hyperparameters found for the TFT-TPE integrated model corresponding to two datasets 

Parameters and  

Domain Space 

UK data before 

COVID-19 

UK data after 

COVID-19 

VN data before 

COVID-19 

VN data after 

COVID-19 

hidden_size = [16, 128] 100 79 87 117 

lstm_layers = [1, 3] 1 1 2 2 

dropout = [0.1, 0.5] 0.212945046655 0.100011684062 0.376140965425 0.269451232155 

batch_size = [16, 64] 38 32 43 39 

n_epochs = [50, 200] 176 132 105 112 

num_attention_heads = [1, 8] 3 2 8 1 

random_state = [0, 100] 71 54 84 17 

feed_forward = 

[GatedResidualNetwork, 

GLU, Bilinear, ReGLU, 

GEGLU, SwiGLU, ReLU, 

GELU] 

Bilinear GLU SwiGLU ReLU 

norm_type = [LayerNorm, 

RMSNorm, 

LayerNormNoBias] 
LayerNormNoBias LayerNorm LayerNorm RMSNorm 
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To ensure a fair comparison between models, we utilized the Darts (Darts 

0.30.0: https://github.com/unit8co/darts/releases/tag/0.30.0) library for time series 

forecasting. Specifically, for the Prophet, we used default seasonalities (yearly) 

unless otherwise specified, and holidays were set based on the country of interest 

(Vietnam or the UK). With ARIMA, we used AutoARIMA with predefined 

boundaries for the values p, d, and q, allowing the model to find the best configuration 

automatically. In the case of deep learning models (TFT and LSTM), we tuned 

hyperparameters such as input and output chunk lengths, dropout rates, and the 

number of attention heads for TFT. These values were chosen based on prior work 

and experimentation to optimize forecasting accuracy. By documenting these 

hyperparameters, we ensure reproducibility and provide transparency in our model 

selection process. The details of the hyperparameters used for each model are 

summarized in Table 4. 

Table 4. Default values of hyperparameters for the traditional models 
Models Parameters  Models Parameters 

ES 

trend = ModelMode.ADDITIVE  
ARIMA 

start_p = 8 

damped = FALSE  max_p = 12 

Seasonal = SeasonalityMode.ADDITIVE  start_q = 1 

Prophet 

add_seasonalities = None  

TFT 

input_chunk_length = 24 

country_holidays = VN or UK  output_chunk_length = 6 

add_encoders = None  output_chunk_shift = 0 

cap = None  hidden_size = 16 

floor = None  lstm_layers = 1 

LSTM 

hidden_dim = 20  num_attention_heads = 4 

dropout = 0  full_attention = FALSE 

batch_size = 16  feed_forward = GatedResidualNetwork 

n_epochs = 300  dropout = 0.1 

optimizer_kwargs = {“lr”: 1×10–3}  hidden_continuous_size = 8 

log_tensorboard = TRUE  categorical_embedding_sizes = None 

random_state = 42  loss_fn = None 

training_length = 30  likelihood = None 

input_chunk_length = 24  norm_type = LayerNorm 

output_chunk_length = 6  use_static_covariates = TRUE 

force_reset = TRUE  n_epochs = 300 

save_checkpoints = TRUE 
 force_reset = TRUE 
 add_relative_index = TRUE 

4.6. Comparing the forecasting performance with pre-COVID-19 data 

The analysis of the performance of tourism forecasting models in the COVID-19 

period in Vietnam and the UK provides an overview of the differences in the 

performance of the forecasting models. UK tourism demand data has an apparent  

12-month seasonality, while the international arrivals data in Vietnam do not show 

this seasonality. The experimental results show that the traditional models, ES and 

ARIMA, and the machine learning models, Prophet and LSTM, show good 

forecasting ability for UK tourism demand data. However, these models give poor 

forecasting accuracy when applied to international arrivals data in Vietnam. This 
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result shows that seasonality positively impacts forecasting accuracy and that the 

traditional models can capture the data trend with seasonality, but have difficulty with 

the data type whose seasonality is unclear. 

Meanwhile, deep learning models such as TFT and especially the improved 

version, TFT-TPE, have shown superior predictive performance for both datasets. 

Experimental results demonstrate that TFT-TPE consistently outperforms traditional 

models and yields significant improvements over the standard TFT configuration 

with evaluation metrics, as described in Table 5. 

Table 5. Comparing the forecasting models based on evaluation metrics with the data before  

COVID-19 

Model 
UK VietNam 

sMAPE (%) MAE RMSE sMAPE (%) MAE RMSE 

ES 23.6 898 932 22.4 324,627 341,744 

Prophet 17.7 653 686 17.6 248,631 265,616 

ARIMA 17.2 626 679 20.3 290,525 312,562 

TFT 21.0 772 869 17.9 256,045 291,570 

LSTM 21.8 804 921 17.9 258,870 310,041 

TFT-TPE 11.0 387 461 12.8 179,322 240,548 

Based on the results in Table 5, TFT-TPE outperforms in forecasting tourism 

demand in both Vietnam and the UK from July 2017 to December 2019. Specifically, 

for the UK, TFT-TPE has the lowest error indices: sMAPE = 11%, MAE = 387, and 

RMSE = 461, meaning that the model achieves the highest forecasting accuracy. 

ARIMA also shows good forecasting ability with sMAPE = 17.2%, while LSTM and 

TFT have higher sMAPE values. ES is the worst in terms of forecasting ability for 

both datasets. 

 
Fig. 7. Comparison of forecast results and actual international arrivals in the UK and Vietnam  

(from December 2017 to December 2019) 

With non-seasonal data, such as the Vietnam tourism demand data, the 

forecasting performance of TFT-TPE is better than that of other models. With the 

metric values sMAPE = 12.8%, MAE = 179.322, and RMSE = 240.548, the forecast 

error in TFT-TPE is significantly reduced, indicating that the model is robust to non-

seasonal data. Prophet shows better forecasting ability than other models, with 

sMAPE = 17.6%, while ARIMA and ES perform poorly. 
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TFT-TPE demonstrates high effectiveness due to its ability to adapt to diverse 

data characteristics. By leveraging the TFT and optimizing its hyperparameters with 

TPE, the model effectively captures both seasonal trends, as seen in UK tourism data, 

and irregular patterns in non-seasonal data, like Vietnam’s international arrivals. 

Traditional models often struggle with non-seasonal data, while TFT-TPE's advanced 

architecture allows it to model complex variations and deliver consistent, accurate 

forecasts regardless of the data’s underlying patterns (Fig. 7). 

4.7. Comparing the forecasting performance with data including the COVID-19 

period 

We further compare the TFT-TPE forecasting performance with the other forecasting 

models mentioned above for the dataset covering the COVID-19 period. Fig. 8 

depicts the forecasting results (from September 2020 to December 2023) and shows 

that, despite the sharp decline in international arrivals to the UK, TFT-TPE can still 

capture this abnormal event well and forecast pretty accurately. Particularly for 

Vietnam, due to the policy of banning international tourists altogether, there has been 

a significant increase in forecasting accuracy during the COVID-19 period. 

 

  
Fig. 8. Comparison of forecast results and actual international arrivals in the UK and Vietnam  

(from September 2020 to December 2023)  

Table 6 compares the forecasting performance of the forecasting models, in 

which TFT-TPE outperforms ES, Prophet, ARIMA, LSTM, and TFT. TFT-TPE 

achieves the lowest evaluation metrics for both the UK and Vietnam travel demand 

datasets, especially sMAPE. Although widely used in forecasting evaluation, the ES 

and Prophet models give the worst forecasting results with the highest errors. ES has 

the highest sMAPE, 164.5% for the UK and 193.2% for Vietnam, indicating that it is 

unsuitable for abnormal events. ARIMA gives better forecasting results than ES and 

Prophet, but is still less effective than expected, with the evaluation metrics relatively 

high, especially sMAPE. With TFT, a recently proposed advanced machine learning 

model, the prediction accuracy has been significantly improved compared to 

traditional models, but it still cannot compete with TFT-TPE. 

TFT-TPE stands out in evaluation metrics thanks to its ability to handle 

abnormal data well and integrate covariates such as COVID-19 cases. Experimental 

results show that TFT-TPE is robust to non-seasonal data and responds well to 

abnormal data, confirming that it is the most effective and reliable forecasting model 



 170 

for different data conditions. TFT-TPE achieves a relatively low sMAPE value of 

35.9% for the UK and 40.7% for Vietnam. TFT-TPE's superior performance during 

the COVID-19 period is driven by its robustness in handling abnormal data and its 

capacity to incorporate external factors such as COVID-19 case numbers. These 

capabilities enable the model to identify and respond to sharp disruptions and 

irregularities in tourism trends. While traditional models are limited by their 

assumptions about trend stability, TFT-TPE dynamically adjusts to unexpected 

changes, ensuring accurate forecasts even under extreme volatility caused by 

unprecedented events like the pandemic. 

Table 6. Comparing the forecasting models based on evaluation metrics with the data, including the 

COVID-19 period. 

Mô hình 
UK VN 

sMAPE (%) MAE RMSE sMAPE (%) MAE RMSE 

ES 164.5 2011 2434 193.2 47,2626 6.61×105 

Prophet 76.1 1304 1469 128.5 921,256 1.01×106 

ARIMA 55.7 739 849 169.5 413,774 5.71×105 

TFT 63 824 1002 119.7 285,612 3.38×105 

LSTM 79 1437 1692 169.9 1139,650 1.19×106 

TFT-TPE 35.9 384 492 40.7 130,319 2.13×105 

5. Conclusion 

The paper proposed a TFT-TPE integration model in which TPE searches for the best 

set of hyperparameter values to fill the TFT. The paper evaluated the TFT-TPE 

integration model with the dataset of international arrivals to Vietnam and the UK 

from 2008 to 2023, combined with the data on new COVID-19 cases. The evaluation 

metrics include RMSE, MAE, MSE, and sMAPE. The experimental results show that 

TFT-TPE achieves the best performance in determining the hyperparameter set and 

helps optimize the performance of the TFT architecture. TFT-TPE consistently 

achieves better evaluation metrics for both datasets before and including the  

COVID-19 period than the traditional forecasting models, ES and ARIMA, and the 

machine learning-based forecasting models, Prophet and LSTM. Compared with 

TFT, TFT-TPE gives more accurate forecasting results by identifying the optimal 

hyperparameter set and incorporating covariates of COVID-19 cases. Therefore, 

TFT-TPE is suitable for non-seasonal data and particularly robust to abnormal data. 

This confirms the superiority of the proposed TFT-TPE integrated model. 
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