
 131

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 25, No 2

Sofia • 2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2025-0016

Refining Graduation Classification Accuracy with Synergistic

Deep Learning Models

Nguyen Thi Kim Son1,2, Nguyen Huu Quynh3, Bui Tuan Minh4

1Hanoi University of Industry, Hanoi, Vietnam
2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi,

Vietnam
3CMC University, Hanoi, Vietnam
4Thuyloi University, Hanoi, Vietnam

E-mails: sonntk@haui.edu.vn (correspondig author) nhquynh@cmc-u.edu.vn

2051063681@e.tlu.edu.vn

Abstract: Learning Analytics plays an important role in monitoring and improving

educational outcomes, but is often challenged by limited dataset sizes, resulting from

privacy regulations and curriculum changes. This paper proposes the LATCGAd

(Learning Analysis by Transformer with Conditional Generative Adversarial

Framework Network and Adaptive Layer Normalization model), a deep learning

framework that combines the Transformer architecture and Conditional Generative

Adversarial Network (CGAN) to overcome the above problems. The CGAN

component generates synthetic data samples, which balance and expands the dataset

size, while the Transformer leverages this rich dataset to improve prediction

performance. The integration of Adaptive Layer Normalization (AdaLN) in the

Transformer also helps stabilize the learning process and minimize overfitting.

Experiments on datasets from Hanoi Metropolitan University and Hanoi National

University show that the LATCGAd model achieves an accuracy of up to 96.97%,

outperforming traditional models such as Decision Tree, SVM and Transformer

alone. This result confirms the effectiveness of LATCGAd in educational predictive

analysis and its potential for widespread application in the field of learning analytics.

Keywords: Deep learning, Transformer, CGAN, Graduation classification, Learning

analytics.

1. Introduction

Learning Analytics (LA) involves applying established methods and models to

address fundamental issues affecting educational processes and the development

strategies of educational institutions [1]. A key application of LA is monitoring and

predicting student learning outcomes, while identifying potential issues early for

timely intervention [2]. This not only enhances learning performance but also

mailto:sonntk@haui.edu.vn
mailto:nhquynh@cmc-u.edu.vn
mailto:2051063681@e.tlu.edu.vn

 132

provides valuable insights for teachers and administrators to make well-informed and

effective decisions.

Educational datasets are often tiny, primarily due to the lack of compatibility

between educational data systems, making it difficult to combine data from different

sources difficult. The differences in curricula across educational institutions further

complicate data integration. Additionally, the need to protect privacy and comply

with ethical obligations in learning analytics limits data collection and usage.

Moreover, the inability to inherit data from previous studies due to privacy concerns

reduces the scale and availability of data, leading to the issue of small datasets.

In recent years, machine learning methods such as Decision Trees, Support

Vector Machines (SVM), Deep Neural Networks (DNN), Graph Attention Networks

(GAT), and Transformers have been widely used in LA to predict student outcomes

and performance [3]. However, these models have many limitations when working

with small and imbalanced datasets, a common challenge in the educational context

due to confidentiality constraints and frequent curriculum changes. Decision Trees,

while easy to understand, often suffer from overfitting, especially to small datasets,

which reduces their generalizability. SVM models can handle high-dimensional data

efficiently but struggle with imbalanced data, leading to biased predictions. DNN

models are powerful but require large amounts of labeled data to perform well, which

can easily lead to overfitting when data is scarce [4]. GATs are effective at capturing

graph-based relationships but are not applicable to traditional tabular datasets [5].

Even Transformers, with their powerful string processing capabilities, require large

datasets to realize their full potential, leading to suboptimal performance when

dealing with small or imbalanced datasets [6].

To address these challenges, more advanced models are needed that can handle

small and imbalanced datasets while still maintaining high prediction accuracy. This

paper proposes a novel hybrid model, LATCGAd, which synergistically combines a

Transformer and a Conditional Generative Adversarial Network (CGAN). In this

hybrid model, each component serves a distinct function to enhance performance,

particularly in the context of small datasets. Initially, the CGAN addresses the issue

of data scarcity by generating synthetic samples for underrepresented labels, thereby

expanding and balancing the dataset. Once the dataset has been augmented, the

Transformer Encoder leverages this more diverse data to learn intricate relationships

between input features, enhancing its representational capacity. To further optimize

performance and ensure stability when working with small data, the model

incorporates Adaptive Layer Normalization (AdaLN) into each Transformer Encoder

layer. AdaLN dynamically adjusts the normalization parameters based on the specific

characteristics of the input data, thereby mitigating bias and variance across the

layers. This adjustment promotes more efficient convergence and improves the

overall performance of the model, ensuring that the Transformer learns with greater

stability and resilience, while also reducing the risk of overfitting—a common

challenge when working with small datasets.

Our work offers significant contributions that enhance the accuracy and

efficiency of educational predictive analysis:

 133

• Data Balancing with CGAN. LATCGAd effectively combats class

imbalance by generating realistic synthetic samples for minority classes. This

innovation significantly boosts the detection accuracy for underrepresented

categories, specifically focusing on classes such as excellent or medium.

• Enhanced Multi-Class Classification. By employing a stacked Transformer

Encoder, LATCGAd demonstrates exceptional performance in multi-class

classification, making it particularly valuable for predicting early graduation

classification.

• Improved Accuracy and Robust Performance on Small Datasets. Our model

employs Adaptive Layer Normalization (AdaLN) within each Transformer Encoder

layer, which allows for dynamic adjustments of normalization parameters based on

input data characteristics. This approach minimizes bias and variance across network

layers, leading to quicker convergence and enhanced overall performance.

These contributions collectively present a powerful, efficient, and precise

solution for multi-class educational predictive analysis, effectively addressing the

critical challenges existing prediction systems face in diverse, real-world, multi-

platform environments.

This paper is structured as follows: Section II provides a brief overview of

related research. Section III describes the proposed model and methodology in detail.

The effectiveness of the proposed approach will be thoroughly discussed in Section

IV, with experiments conducted on datasets from the databases of the University of

Education, Vietnam National University (VNU), and Hanoi Metropolitan University,

Hanoi, Vietnam. Finally, Section V concludes the paper and discusses future research

directions.

2. Related works

In recent years, the use of artificial intelligence in educational research has emerged

as a growing trend that has garnered significant attention from scholars. AI is

approached as the use of machine learning and deep learning models to analyze

educational data more accurately. Several studies have applied data mining methods

in education, such as Decision Trees, KNN, Bayes, Association Rules, and Logistic

Regression, to predict learning outcomes and student capabilities, achieving

promising results [3]. P o p c h e v and O r o z o v a [7] used five algorithms (Decision

Tree, Random Forest, Logistic Regression, Naive Bayes, Support Vector Machines,

and Neural Network) to classify students based on assessments of their knowledge

and skills. K u s t i t s k a y a, K y t m a n o v and N o s k o v [8] explored various ML

techniques, including Bayesian Networks, k-Nearest Neighbors (k-NN), and Linear

Discriminant Analysis (LDA), for early detection of at-risk students in blended

learning settings. In their study, I q b a l et al. [9] applied machine learning techniques

such as CF, SVD, NMF, and RBM to analyze the learning data of Electrical

Engineering students at ITU. They provided suggestions to improve scores and

identified students needing special support during their studies. A l s h a n q i t i and

N a m o u n [10] predicted academic performance by combining three techniques:

correlation filtering, fuzzy rules, and Lasso linear regression. Other studies [11, 12]

 134

applied machine learning techniques to analyze student behavior and predict students

at risk of failing, which drew interest from the academic community. S o n et al. [13]

used logistic regression and discriminant feature selection to predict student

graduation outcomes based on admission data and academic performance in the first

and second years of university. S o n, Q u y n h and M i n h [14] proposed the

Learning Analysis by Graph Convolutional Network and Transformer approach for

predicting students’ graduation ranks. This method combines a Graph Convolutional

Network (GCN) to augment the training set with labeled samples, along with a

Transformer to predict graduation ranks.

To improve prediction model accuracy and address small dataset limitations,

C a r d o n a and C u d n e y [15] employed SVM combined with the Smote technique

to predict students likely to drop out. M u k h t a r, A m i e n and D e w i [16] used the

Decision Tree method combined with Smote to predict whether students would

graduate on time. Y a q i n, R a h a r d i and A b d u l l o h [17] compared KNN,

Support Vector Machine, and ANN combined with SMOTE to determine the best

algorithm for predicting student on-time graduation.

In 2018, B e n d a n g n u k s u n g [4] introduced a Deep Neural Network (DNN)

model, which outperformed other machine learning algorithms in predicting the

learning outcomes of students in the same course. P o u d y a l, M o h a m m a d i-

A r a g h and B a l l [18] developed a hybrid 2D CNN model to predict student

learning outcomes and compared it with traditional machine learning models,

showing that the hybrid 2D CNN model outperformed them. K u s u m a w a r d a n i

and A l f a r o z i [19] proposed a Transformer Encoder model to predict the order of

student learning activities based on their log data in online courses. The study

demonstrated that this model outperformed regression models such as LSTM in both

accuracy and F1-score, particularly in predicting students at risk of dropping out. The

research of Y a n g et al. [20] proposed a Social-path Embedding-based Transformer

Neural Network to predict student graduation outcomes. This model not only

considered academic performance but also explored students’ social relationships, an

important factor in deciding career paths after graduation. The results showed that

this model outperformed traditional methods in predicting student graduation.

However, the application of deep learning in educational data science is still in its

infancy, with many studies only emerging in recent years.

3. The proposed method

3.1. Model

In this section, we introduce our proposed model, which combines a Transformer

with CGAN under AdaLN. The purpose of this model is to improve the accuracy of

predicting student graduation classifications, especially in cases where the dataset

size is small. The LATCGAd refers to the integration of three key components to

enhance performance in learning data analysis:

• Conditional Generative Adversarial Network (CGAN). CGAN is used to

generate synthetic samples for underrepresented labels, helping to expand and

 135

balance the dataset. This addresses the issue of data scarcity in underrepresented

groups.

• Transformer encoder. Once the dataset is expanded, the Transformer

Encoder learns from this more diverse data, optimizing its ability to capture complex

relationships among input features.

• Adaptive Layer Normalization (AdaLN). To improve accuracy and ensure

robust performance when working with small datasets, the model integrates AdaLN

into each Transformer Encoder layer. AdaLN automatically adjusts the normalization

parameters based on the input data's characteristics, reducing bias and variance across

the network layers. This promotes faster convergence and enhances overall model

performance.

The combination of these three components helps the model learn more stably

and reduces overfitting, which is a common issue when working with small datasets.

Fig. 1 illustrates the LATCGAd model, where the combination of the CGAN

and Transformer Encoder provides an effective solution for accurately predicting

graduation classification on small and imbalanced datasets. In this model, CGAN

expands and balances the dataset by generating synthetic samples for specific labels,

addressing the issue of data scarcity in underrepresented groups. Once the dataset is

expanded and balanced, the Transformer Encoder learns from this diverse dataset,

optimizing its ability to capture complex relationships among input features. Notably,

to improve accuracy and ensure robust performance on small datasets, the model

integrates AdaLN into each Transformer Encoder layer. Adaptive Layer

Normalization automatically adjusts normalization parameters based on the

characteristics of the input data. It reduces bias and variance across network layers,

enhancing convergence and overall model performance. As a result, the Transformer

learns more stably and mitigates overfitting, a common challenge when working with

small datasets. The tight integration of CGAN, Adaptive Layer Normalization, and

Transformer not only improves accuracy but also enhances precision, recall, and

F1-score, enabling the model to make more reliable and comprehensive predictions.

Fig. 1. The proposed model LATCGAd

 136

The operation of the proposed model is depicted in Fig. 1. Real data samples Xr

(which contain student-related information, such as survey data and academic scores

from the first two years of study) are collected along with the labels y′ (representing

the actual academic ranking after students graduate, serving as the ground truth labels

for training and evaluating the model. This label is used in both the CGAN and

Transformer components: in CGAN, it acts as a condition during data generation to

ensure that the synthetic data aligns with specific academic ranking categories; in the

Transformer model, it serves as the target variable for the classification task. To

generate additional synthetic data and expand the training dataset, we propose

integrating CGAN into the model. Using the original data, we train the CGAN model,

where the generator takes in noise vectors z (z is a random input that allows the

Generator to create diverse synthetic data instead of repeating a single sample for

each label) and labels y′ to create synthetic data. The discriminator then distinguishes

between real and synthetic data using the labels y′ (y′ is the label that helps the

Generator create synthetic data with the correct label for each class. Meanwhile, the

Discriminator uses y′ to verify whether the generated data matches the assigned label,

allowing the generator to improve and produce data that closely resembles the real

data (see details in Fig. 2). After training the CGAN, we will use the generator to

generate additional new data Xf (synthetic student-related data generated by CGAN,

including simulated survey responses and academic scores from the first two years,

corresponding to each yf) and yf. We chose CGAN to allow the generation of data

based on specific classification labels.

Next, the newly generated datasets Xf and yf are combined with the original data

Xr and yr to form a larger dataset, which is then used to train the Transformer model

for predicting student graduation classifications.

In this paper, we utilize a generator with three hidden layers and a discriminator

with four hidden layers. We apply the Adam optimizer, learning rate, and Beta_1.

For the Transformer model, we only use the Transformer Encoder. The final

output will be a latent feature vector, which will then be passed through a fully

connected layer for classification prediction. We use parameters such as multi-head

attention, feed-forward layers, the number of Transformer encoder layers, the Adam

optimizer, learning rate, and weight decay.

3.2. Conditional Generative Adversarial Network (CGAN)

Our proposed model utilizes the Conditional Generative Adversarial Network

(CGAN). The Conditional Generative Adversarial Network (CGAN) is a variant of

the original Generative Adversarial Network (GAN) introduced by Goodfellow in

2014. The CGAN algorithm was developed by researchers Mehdi Mirza and Simon

Osindero, as detailed in their paper titled “Conditional Generative Adversarial Nets”

[21]. This section provides an overview of the CGAN model, which serves as a key

component of our approach, illustrated in Fig. 2.

The Conditional Generative Adversarial Network (CGAN) consists of two main

components: (1) the Generator Neural Network, and (2) the Discriminator Neural

Network.

 137

Fig. 2. CGAN model

Since CGAN is a conditional generative model, both the Generator and

Discriminator networks are trained simultaneously, with both receiving the label of

the data as input, ensuring they generate and evaluate data that aligns with specific

labels. The CGAN operates as follows: the Generator network takes as input a noise

vector z and a condition label y′, generating new data according to the condition

provided by y. The real samples (x, y′) and the newly generated samples (x′, y′) are

then passed to the Discriminator network, which distinguishes between real and fake

samples. This process is akin to a min-max game between two players, with the loss

function calculated as described below.
(1) min

𝐺
max

𝐷
𝑉(𝐷, 𝐺) = 𝐸𝑥∽𝑝data(𝑥)[log𝐷(𝑥 | 𝑦)] + 𝐸𝑧∽𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧 | 𝑦) | 𝑦))].

For real data input x and label y, logD(𝑥 | 𝑦) is the probability that the

Discriminator believes the data x (with label y) is real. The Discriminator’s goal is to

maximize this probability as much as possible. Meanwhile, G(z | y) generates fake

data using the Generator model from the noise matrix z, based on label y.

log(1 − 𝐷(𝐺(𝑧 | 𝑦) | 𝑦)) is the probability that the Discriminator believes the newly

generated data (with label y) is fake. The Discriminator aims to maximize this

probability, while the Generator’s goal is to make 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) as close to 1 as

possible, meaning it has successfully fooled the Discriminator.

3.3. Transformer model

Our proposed model also incorporates the Transformer to predict student

classifications. This section provides an overview of the Transformer model, which

serves as a core component in our approach, illustrated in Fig. 3 [6].

The Transformer model consists of two main components: the Encoder and the

Decoder. Both parts consist of multiple layers, each containing two key components:

Multi-Head Self-Attention and Feed-Forward Neural Networks.

• The Encoder is responsible for transforming the input into a latent feature

vector representation that the model can understand and use for various tasks.

• The Decoder is responsible for generating outputs based on the latent feature

vector representation from the Encoder. The Decoder’s goal is to compute the

 138

probability of the latent feature vectors and determine the output. The result could be

a label for classification models or a target sequence based on the source sequence

encoded by the Encoder.

• Self-attention is a special case of the attention mechanism, where the Query,

Key, and Value all come from the same data sequence. This mechanism helps the

model learn relationships between words in the same sequence without having to

process them sequentially, as in RNN models. Multi-Head Attention extends the self-

attention mechanism by using multiple “attention heads” to compute attention in

parallel. Instead of using a single attention mechanism, the model splits the hidden

representation into multiple parts and computes attention on each part separately. The

results are then combined and further processed.

• Feed-Forward is a crucial component applied after each Multi-Head

Attention step in both the Encoder and Decoder. The Feed-Forward adds nonlinearity

and creates more complex representations, improving performance in tasks involving

sequential data processing, such as machine translation, text classification, or other

natural language processing tasks. Each Feed-Forward in the Transformer is a feed-

forward neural network with two fully connected layers and a nonlinear activation

function in between.

Fig. 3. Transformer model

Adaptive Layer Normalization (AdaLN) is an extension of Layer

Normalization that adapts normalization parameters based on input data

characteristics. It is particularly useful in deep learning models, like Transformers,

where input data varies during training. AdaLN enhances model performance by

dynamically adjusting parameters to reduce bias and variance across layers. In Layer

Normalization, normalization is applied by calculating the mean 𝜇 and standard

deviation 𝜎 of the inputs:

(2) 𝑥�̂� =
𝑥𝑖−𝜇

𝜎
.

After normalization, learned parameters 𝛾 and 𝛽 (scale and shift) are applied:
(3) 𝑦𝑖 = 𝛾𝑥�̂� + 𝛽.

AdaLN adapts these parameters for each input dynamically:
(4) 𝑦𝑖 = 𝛾(𝑥) × 𝑥�̂� + 𝛽(𝑥),

 139

where 𝛾(𝑥) and 𝛽(𝑥) are computed based on the input 𝑥 for each layer. These

parameters are learned through a sub-network, allowing for adjustment according to

the data’s characteristics.

In Transformer models, AdaLN improves stability and efficiency, especially

when working with small or heterogeneous datasets, ensuring effective learning

across layers.

4. Experiments

4.1. Datasets

In this paper, we use three datasets consisting of students majoring in primary

education from Hanoi Metropolitan University (HNMU), math education from Hanoi

Metropolitan University, and literature education from the University of Education,

Vietnam National University, Hanoi (VNU). We collected these datasets from the

universities. The preprocessing steps included handling missing data by removing

attributes with over 60% missing values, and if there are fewer, we will fill the

missing values with the mean. We then checked for random distributions of scores

within columns, analyzed correlations with the “rating” column, and removed

insignificant columns.

The first dataset includes students majoring in primary education who studied

at HNMU from 2014 to 2021. This dataset, labeled by HNMU1, was collected and

processed over 18 months, from March 2020 to September 2021. After cleaning, the

dataset contains 932 records and 21 variables (comprising 3 survey data and 20 grade

data (scores for the first two years of students)) for training, with actual labels (11

Medium classification labels,430 Good classification labels, 468 Very Good

classification labels, and 23 Excellent classification labels). The dataset is imbalanced

in the Medium and Excellent classes, with only 11 and 23 samples. The detailed

distribution of the HNMU1 dataset is shown in Fig. 4.

Fig. 4. The structure of the dataset HNMU1

The second dataset consists of students majoring in math education at HNMU

from 2014 to 2023. This dataset, labeled by HNMU2, was collected and processed

over two years, from 2022 to 2023, with 551 records and 62 variables (comprising

34 survey data and 28 grade data (scores for the first two years of students)) for

training, with actual labels (19 Medium classification labels, 337 Good classification

Medium;
11; 1%

Good; 430;
46%

Very Good;
468; 50%

Excellent;
23; 3%

Medium Good Very Good Excellent

 140

labels, 191 Very Good classification labels, and four Excellent classification labels).

The dataset is imbalanced in the Medium and Excellent classes, with only 19 and 4

samples. The structure of the dataset HNMU2 is shown in Fig. 5.

Fig. 5. The structure of the dataset HNMU2

The third dataset, labeled by VNU dataset, contains students majoring in

literature education at VNU from 2014 to 2023. Collected and processed over three

years, from 2021 to 2023, it contains 271 records and 72 variables (comprising 48

survey data and 24 grade data (scores for the first two years of students)) for training,

with corresponding labels assigned to each student, including Good, Very Good, and

Excellent, with actual labels (46 Good classification labels, 187 Very Good

classification labels, and 38 Excellent classification labels). The VNU dataset is less

imbalanced compared to HNMU1 and HNMU2; however, the Good and Excellent

classes are still imbalanced relative to the most prevalent class, Very Good (Fig. 6).

Fig. 6. The structure of the dataset VNU

4.2. Evaluation metrics

The evaluation metrics used include: Accuracy (Acc), Macro Averaged Precision (P),

Macro Averaged Recall (R), and Macro F1-score (F1), calculated using the following

formulas:

(5) Acc =
Correct predictions

All predictions
,

Medium; 19;
3%

Good; 337;
61%

Very Good;
191; 35%

Excellent; 4;
1%

Medium Good Very Good Excellent

Good; 46;
17%

Very Good;
187; 69%

Excellent;
38; 14%

Good Very Good Excellent

 141

(6) 𝑃 =
1

𝑁
∑

TP𝑖

TP𝑖+FP𝑖

𝑁
𝑖=1 ,

(7) 𝑅 =
1

𝑁
∑

TP𝑖

TP𝑖+FN𝑖

𝑁
𝑖=1 ,

(8) F1 =
2×𝑃×𝑅

𝑃+𝑅
,

where N is the number of classes, TP𝑖 (True Positive of class i), FP𝑖 (False Positive

of class i), and FN𝑖 (False Negative of class i) are key metrics in classification tasks,

and all predictions are the total number of data samples.

4.3. Experimental evaluation

To demonstrate the effectiveness of our proposed model, we will test it on these three

datasets: HNMU1, HNMU2, and VNU. We will use survey data and student scores

from their first two years to predict student classification. By using real-world data,

we aim to show that our proposed model is effective in practical applications. The

dataset is divided into train, validation, and test sets, with 60% of the data used for

training, 10% for validation, and 30% for testing.

4.3.1. Experimental setup

We will compare the proposed model against three different deep learning algorithms

(DNN, GAT, and Transformer), and traditional machine learning methods (which are

known to perform well with small datasets): Decision Tree, SVM, and Logistic

Regression.

Machine learning models:

• Decision tree. Uses entropy for information calculation, with a minimum of

1 sample per leaf and 4 samples for splits.

• SVM. Utilizes the RBF kernel, penalty coefficient = 1, and gamma = “scale”

to automatically calculate the gamma value based on the characteristics of the data.

• Logistic regression. Ridge regularization, inverse regularization coefficient

= 1, and lbfgs optimization (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)

Deep learning models. The parameters are optimized through the cross-

validation and grid search process to determine the optimal combination for each

dataset. The main criteria for parameter selection include minimizing validation loss,

achieving high accuracy, and improving class balance.

DNN model. A 4-layer DNN with ReLU and softmax activation functions. The

first layer has 512 neurons, the second 256, the third 64, and the output layer matches

the number of classes in each dataset. The model uses the Adam optimizer with

lr = 0.005 and dropout = 0.6.

CGAN model. This CGAN model is structured with two main components: the

Generator and the Discriminator. The Generator in the CGAN network consists of

three layers to generate new data from the latent space. Specifically, the first layer of

the Generator has 256 neurons, the second layer has 512 neurons, and the third layer

has 1024 neurons. The output of the Generator is 21 for HNMU1, 62 for HNMU2,

and 72 for VNU. The activation function for HNMU1 and VNU is LeakyReLU with

a coefficient of 0.2, and for HNMU2, it is ReLU. The Adam optimizer is used with a

learning rate (lr) of 0.0002 and Beta_1 of 0.5. The loss function is Binary Cross

Entropy Loss, which helps the network learn nonlinear features effectively and avoid

 142

neuron death. The Discriminator also consists of 4 layers to evaluate the authenticity

of the data generated by the Generator. Specifically, the first layer of the

Discriminator has 1024 neurons, the second layer has 512 neurons, the third layer has

256 neurons, and the fourth layer has 64 neurons. The activation function for

HNMU1 and VNU is LeakyReLU with a coefficient of 0.2, and for HNMU2, it is

ReLU. The Adam optimizer is used with lr = 0.0002 and beta_1 = 0.5. The loss

function is Binary Cross-Entropy Loss. The output of the Critic is a single value

representing the Discriminator’s score for the input sample.

• CGAN generates for HNMU1 an additional 32 samples per one class.

• CGAN generates for HNMU2 an additional 25 samples per one class.

• CGAN generates for VNU an additional 12 samples per one class.

Table 1. Number of samples before and after creation with CGAN on the HNMU dataset

Label Before generating After generating

Medium 11 43

Good 430 462

Very Good 468 500

Excellent 23 55

Total 932 1060

Table 2. Number of samples before and after creation with CGAN on the HNMU2 dataset

Label Before generating After generating

Medium 19 51

Good 337 369

Very Good 191 223

Excellent 4 36

Total 551 679

Table 3. Number of samples before and after creation with CGAN on the VNU dataset

Label Before generating After generating

Good 46 58

Very Good 187 199

Excellent 38 50

Total 271 307

The parameters of the CGAN model (such as the number of layers, learning rate,

and activation functions) are tailored for each dataset to ensure that the synthetic data

closely resembles the real data. For HNMU1 and VNU, the LeakyReLU activation

function is used in both the generator and discriminator, whereas ReLU is more

effective for HNMU2. The number of synthetic data samples for each class is also

adjusted differently for each dataset to ensure class balance without introducing

excessive noise.

GAT Model. We use a 2-layer model with the HNMU1, HNMU2, and VNU

datasets.

• For the HNMU1 dataset, the first layer has eight attention heads and

calculates the number of features as six (output of each attention head), resulting in

48 features. The activation function is ELU. The second layer has 1 attention head

since it is used for classification, and the activation function is softmax. Models use

the Adam optimizer with lr = 0.005 and dropout = 0.6.

 143

• For the HNMU2 dataset, the first layer has eight attention heads and

calculates the number of features as eight (output of each attention head), resulting in

64 features. The activation function is ELU. The second layer has one attention head

since it is used for classification, and the activation function is softmax. Models use

the Adam optimizer with lr = 0.005 and dropout = 0.6.

• For the VNU dataset, the first layer has eight attention heads and calculates

the number of features as six (output of each attention head), resulting in 48 features.

The activation function is ELU. The second layer has one attention head since it is

used for classification, and the activation function is softmax. Models use the Adam

optimizer with lr = 0.005 and dropout = 0.6.

Transformer Model.

• For HNMU1, the Transformer uses two multi-heads. The feed-forward layer

in each encoder layer has 64 units. The number of Transformer encoder layers is one,

with dropout = 0.6. This is followed by a fully connected network with an output of

four (corresponding to the number of classes in the HNMU1 dataset). Models use the

Adam optimizer with lr = 0.005 and weight decay = 0.0005.

• For HNMU2, the Transformer uses seven multi-heads. The feed-forward

layer in each encoder layer has 64 units. The number of Transformer encoder layers

is two, with dropout = 0.5. This is followed by a fully connected network with an

output of four (corresponding to the number of classes in the HNMU2 dataset).

Models use the Adam optimizer with lr = 0.005 and weight decay = 0.0005.

• For VNU, the Transformer uses two multi-heads. The feed-forward layer in

each encoder layer has 128 units. The number of Transformer encoder layers is one,

with dropout = 0.6. This is followed by a fully connected network with an output of

three (corresponding to the number of classes in the VNU dataset). Models use the

Adam optimizer with lr = 0.005 and weight decay = 0.0005.

Table 4. Generator model parameter table on the HNMU1, HNMU2, and VNU datasets

Dataset
First

layer

Second

layer

Third

layer

Activation

function

Output

layer

Output activation

function

HNMU1 256 512 1024 LeakyReLU(0.2) 21 Tanh

HNMU2 256 512 1024 ReLU 62 Tanh

VNU 256 512 1024 LeakyReLU(0.2) 72 Tanh

Table 5. Training parameter table for the Generator model on the HNMU1, HNMU2, and VNU datasets

Dataset Optimizer Learning Rate Beta_1 Loss function

HNMU1 Adam 0.0002 0.5 Binary Cross-Entropy Loss

HNMU2 Adam 0.0002 0.5 Binary Cross-Entropy Loss

VNU Adam 0.0002 0.5 Binary Cross-Entropy Loss

Table 6. Discriminator model parameter table on the HNMU1, HNMU2, and VNU datasets

Dataset
First

layer

Second

layer

Third

layer

Fourth

Layer

Activation

function

Third

layer

Output

activation

function

HNMU1 1024 512 256 64 LeakyReLU(0.2) 1 Sigmoid

HNMU2 1024 512 256 64 ReLU 1 Sigmoid

VNU 256 512 256 64 LeakyReLU(0.2) 1 Sigmoid

 144

Table 7. Training parameter table for the Discriminator model on the HNMU1, HNMU2, and VNU

datasets

Dataset Optimizer Learning rate Beta_1 Loss function

HNMU1 Adam 0.0002 0.5 Binary Cross-Entropy Loss

HNMU2 Adam 0.0002 0.5 Binary Cross-Entropy Loss

VNU Adam 0.0002 0.5 Binary Cross-Entropy Loss

Table 8. Transformer model parameter table on the HNMU1, HNMU2, and VNU datasets

Dataset Multi-head
Feed-

forward layer

Number of

transformer

encodes

Fully

connected

layer

Activation

function

HNMU1 2 64 1 4 Softmax

HNMU2 7 64 2 4 Softmax

VNU 2 128 1 3 Softmax

Table 9. Training parameter table for the Transformer model on the HNMU1, HNMU2, and VNU

datasets

Dataset Optimizer Learning rate Weight decay Loss function DropOut

HNMU1 Adam 0.005 0.0005 Cross-Entropy Loss 0.6

HNMU2 Adam 0.005 0.0005 Cross-Entropy Loss 0.5

VNU Adam 0.005 0.0005 Cross-Entropy Loss 0.6

The number of attention heads is selected based on the complexity of the feature

space. For HNMU1 and VNU, two multi-heads are appropriate due to the smaller

number of variables in the datasets. In contrast, HNMU2 requires seven multi-heads

to learn complex patterns from a larger feature space. Feed-Forward Layer: The

number of units in the feed-forward layers is determined by the complexity and size

of the dataset. For HNMU1 and HNMU2, the feed-forward layers have 64 units,

whereas VNU requires 128 units due to the higher number of variables in the dataset.

Learning Rate and Optimizer: The learning rate is set to 0.005 with the Adam

optimizer after experimenting with different values and observing the convergence

speed and accuracy.

During the model training process, several important parameters were utilized

to optimize and adjust the model’s learning capability, including Beta_1, lr, and

Dropout. Beta_1 is a parameter in the Adam optimization algorithm that determines

the exponential decay rate of the first moment estimate, helping the model update

gradients more stably and efficiently. In the paper, a Beta_1 value of 0.5 was chosen

to balance convergence speed and learning stability. The lr controls the adjustment

speed of the model’s weights after each gradient update. This value was set

differently for each model: 0.0002 for CGAN and 0.005 for Transformer, ensuring

optimal convergence speed while preventing oscillations or slow convergence.

Additionally, Dropout was used as a regularization technique to mitigate overfitting

by randomly dropping some neurons during training. In the paper, the Dropout value

was set at either 0.5 or 0.6, depending on the model and dataset, to enhance

generalization and model robustness when applied to real-world data.

 145

4.3.2. Model training

We trained the DNN model with the three datasets HNMU1, HNMU2, and VNU,

training the model for 1000 epochs. The images of the loss values for HNMU1,

HNMU2, and VNU are shown respectively in Fig. 7. The principle for selecting the

best model is that the model with the lowest average of train loss and validation loss

will be chosen. Based on this principle, for the HNMU1 dataset, the model selected

at epoch 357 has a train loss of 0.0363 and a validation loss of 0.5976. For the

HNMU2 dataset, the model selected at epoch 934 has a train loss of 0.0002 and a

validation loss of 0.0016. For the VNU dataset, the model selected at epoch 791 as a

train loss of 0.0351 and a validation loss of 0.1696. Although the experimental results

already allow for selecting the best model, the charts provide deeper insights into the

training process and enhance the transparency and reliability of the experiment.

(a) (b) (c)

Fig. 7. Training the DNN model: on the HNMU1 dataset (a); on the HNMU2 dataset (b);

on the VNU dataset (c)

We trained the GAT model with the three datasets HNMU1, HNMU2, and

VNU, training the model for 1000 epochs. The images of the loss values for HNMU1,

HNMU2, and VNU are shown respectively in Fig. 8. The principle for selecting the

best model is the model with the lowest average of train loss and validation loss.

Based on this principle, for the HNMU1 dataset, the model selected at epoch 154 has

a train loss of 0.3432 and a validation loss of 0.4730. For the HNMU2 dataset, the

model selected at epoch 891 has a train loss of 0.0433 and a validation loss of 0.0976.

For the VNU dataset, the model selected at epoch 557 has a train loss of 0.3635 and

a validation loss of 0.6443.

(a) (b) (c)

Fig. 8. Training the GAT model: on the HNMU1 dataset (a); on the HNMU2 dataset (b);

on the VNU dataset (c)

We trained the Transformer model for 1000 epochs for the three datasets

HNMU1, HNMU2, and VNU. The training graphs of the models for the three datasets

 146

HNMU1, HNMU2, and VNU are shown respectively in Fig. 9. The principle for

selecting the best model is to take the average of the training loss and validation loss,

and the epoch with the smallest value will be chosen. Based on this principle, for the

model in Fig. 9a, the model selected at epoch 132 has a train loss of 0.0849 and a

validation loss of 0.1451. For the model in Fig. 9b, the model selected at epoch 275

has a train loss of 0.0405 and a validation loss of 0.0481. For the model in

Fig. 9c, the model selected at epoch 44 has a train loss of 0.2905 and a validation loss

of 0.2547.

(a) (b) (c)

Fig. 9. Training the Transformer model: on the HNMU1 dataset (a); on the HNMU2 dataset (b);

on the VNU dataset (c)

For LATCGAd model, the number of epochs for training the CGAN model for

the three datasets HNMU1, HNMU2, and VNU is 5000 epochs. The training graphs

of the models are shown respectively in Fig. 10. The principle for model selection is

that the CGAN model with the smallest FID value (FID is a method for assessing the

difference between generated data and real data) will be chosen.

(9) FID = ||𝜇𝑟 − 𝜇𝑔||2 + 𝑇𝑟(𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)
1

2,

where 𝜇𝑟, 𝜇𝑔 are the average vector of features of real-world data and generated data.

𝛴𝑟, 𝛴𝑔 are the variance matrix of real-world data and generated data. Tr is the trace

of the matrix, i.e., the sum of the elements on the main diagonal of the matrix. ||.|| is

the Euclidean distance between two vectors.

Based on this principle, for the model in Fig. 11a, the model was selected at

epoch 1073 because it has an FID of 0.2561. For the model in Fig. 11b, the model

was selected at epoch 511 because it has an FID of 8.900. For the model in Fig. 11c,

the model was selected at epoch 929 because it has an FID of 2.5141.

(a) (b) (c)

Fig. 10. Training the CGAN model (in the LATCGAd model): on the HNMU1 dataset (a);

on the HNMU2 dataset (b); on the VNU dataset (c)

 147

(a) (b) (c)

Fig. 11. FID values: on the HNMU1 dataset (a); on the HNMU2 dataset (b); on the VNU dataset (c)

We will then train the Transformer model for 1000 epochs for the three datasets

HNMU1, HNMU2, and VNU. The training graphs for the models for the three

datasets HNMU1, HNMU2, and VNU are shown respectively in Fig. 12. The

principle for selecting the best model is to take the average of the training loss and

validation loss, and the epoch with the smallest value will be chosen. Based on this

principle, for the model in Fig. 12a, the model selected at epoch 71 has a train loss of

0.2677 and a validation loss of 0.1237. For the model in Fig. 12b, the model selected

at epoch 962 has a train loss of 0.0361 and a validation loss of 0.0018. For the model

in Fig. 12c, the model selected at epoch 61 has a train loss of 0.3878 and a validation

loss of 0.2793.

(a) (b) (c)

Fig. 12. Training the Transformer model (in the LATCGAd model): on the HNMU1 dataset (a); on the

HNMU2 dataset (b); on the VNU dataset (c)

4.3.3. Experimental results

Experimental results on the three datasets (HNMU1, HNMU2, and VNU) show that

the LATCGAd model outperforms traditional models (Decision Tree, SVM, Logistic

Regression) and deep learning models (DNN, GAT, and standard Transformer).

On the HNMU1 dataset, LATCGAd achieves an accuracy of 95.56%,

significantly higher than Decision Tree (89.64%), SVM (84.64%), Logistic

Regression (92.86%), DNN (93.57%), and GAT (82.14%) (Table 10). In addition to

accuracy, the model also improves Precision (72.50%), Recall (74.78%), and

F1-score (73.61%), demonstrating its ability to reduce errors and correctly classify

almost all true positive samples, outperforming all compared models.

On the HNMU2 dataset, LATCGAd maintains the highest performance with an

accuracy of 96.97%, surpassing standard Transformer (95.15%), Decision Tree

(89.70%), SVM (82.42%), Logistic Regression (74.55%), DNN (86.06%), and GAT

(90.91%). The model also maintains a well-balanced Precision (73.26%) and Recall

(74.09%). However, Decision Tree achieves a higher Precision (94.65%), likely due

to its conservative approach in making predictions, which also increases the risk of

 148

overfitting. Although Decision Tree has the highest Recall (79.26%), LATCGAd

remains more stable and generalizes better, thanks to synthetic data from CGAN

(Table 11).

Table 10. Prediction Results on the HNMU1 Dataset

Method Accuracy Precision Recall F1-score
Decision tree 89.64 39.77 48.09 42.90

SVM 84.64 35.95 45.31 38.77
Logistic Regression 92.86 43.13 49.05 45.71

DNN 93.57 69.07 74.15 71.35
GAT 82.14 34.81 44.57 37.46

Transformer 93.57 44.71 47.96 46.26
LATCGAd 95.56 72.50 74.78 73.61

Table 11. Prediction Results on the HNMU2 Dataset

Method Accuracy Precision Recall F1-score
Decision tree 89.70 94.65 79.26 82.48

SVM 82.42 66.76 51.63 54.15
Logistic Regression 74.55 59.08 64.47 58.77

DNN 86.06 68.28 69.35 68.12
GAT 90.91 57.96 55.20 56.07

Transformer 95.15 72.26 73.30 72.72
LATCGAd 96.97 73.26 74.09 73.66

On the VNU dataset, LATCGAd achieves an accuracy of 87.65%,

outperforming Decision Tree (83.95%), SVM (83.95%), Logistic Regression

(71.60%), DNN (74.07%), GAT (81.48%), and standard Transformer (86.42%). A

key advantage is that Precision increases to 95.56%, significantly surpassing the other

models, indicating its high reliability in predicting positive cases and minimizing

false positives (Table 12). However, Recall is 58.73%, slightly lower than DNN

(66.91%) and Transformer (61.41%). This trade-off is justified by its optimized

Precision, making it suitable for applications requiring high confidence in identifying

critical cases. The F1-score of LATCGAd on the VNU dataset reaches 67.62%,

surpassing most machine learning models, though slightly lower than standard

Transformer (67.89%).

Table 12. Prediction Results on the VNU Dataset

Method Accuracy Precision Recall F1-score

Decision tree 83.95 67.59 55.08 59.06

SVM 83.95 52.19 50.83 51.05

Logistic Regression 71.60 64.91 64.83 59.44

DNN 74.07 58.19 66.91 60.71

GAT 81.48 62.63 61.49 61.68

Transformer 86.42 80.83 61.41 67.89

LATCGAd 87.65 95.56 58.73 67.62

A key factor influencing the experimental results is the differences in

characteristics among the three datasets: HNMU1, HNMU2, and VNU. Each dataset

varies in size, number of features, and class imbalance levels, which directly impact

the models’ performance.

 149

Specifically, the HNMU1 dataset has the largest sample size (932 samples) but

a limited number of features (21 features, with only three survey-based features). As

a result, the model primarily relies on academic scores from the first two years. While

this enables the model to quickly identify learning trends, it also increases the risk of

missing additional insights from non-academic factors. By balancing the data with

CGAN, LATCGAd significantly improves accuracy and F1-score compared to other

models.

The HNMU2 dataset is smaller (551 samples) but contains 62 features

(including 34 survey-based features), providing a more comprehensive view of

students. This allows LATCGAd to capture multidimensional relationships between

academic and non-academic data. As a result, HNMU2 achieves the highest accuracy

(96.97%), while maintaining a balance between Precision and Recall, demonstrating

that rich and diverse data plays a crucial role in enhancing model performance.

In contrast, the VNU dataset has the smallest sample size (271 samples) but

includes 72 features. Despite the dataset’s high feature richness, its small size makes

the model more susceptible to overfitting. The high Precision (95.56%) indicates that

LATCGAd is highly effective in reducing false positives, but the low Recall

(58.73%) suggests that some true positive samples were missed, likely due to the

limited training data. The differences in size and composition across these datasets

highlight the necessity of data balancing and augmentation using CGAN, particularly

when working with small or highly imbalanced datasets. Additionally, this

underscores the importance of feature selection and analysis in optimizing deep

learning model performance.

In summary, LATCGAd demonstrates superior accuracy and overall

performance across all three datasets, particularly in the context of small and

imbalanced data, thanks to the combination of data generation from CGAN and

model optimization through Adaptive Layer Normalization.

As previously discussed, educational datasets are often limited by

confidentiality constraints and data collection challenges, resulting in small sample

sizes that are not publicly available. While the proposed model has shown superior

performance when evaluated on three independent datasets from two universities, the

comparison results remain somewhat unsatisfactory due to the lack of inheritance

from prior published research. This limitation is an important consideration for future

educational research, particularly in the context of data sharing and the integration of

existing findings.

5. Conclusion

The LATCGAd model proposed in this paper introduces a novel approach to

addressing challenges in educational predictive analytics, particularly when working

with small and imbalanced datasets. By combining CGAN’s ability to generate

synthetic data with Transformer’s strength in capturing complex relationships, the

proposed model significantly enhances prediction accuracy and generalization

capability. The integration of Adaptive Layer Normalization (AdaLN) further

 150

improves stability and mitigates overfitting, enabling the model to perform

consistently across diverse educational datasets.

Experimental results on three real-world datasets (HNMU1, HNMU2, and

VNU) demonstrate the superiority of LATCGAd over traditional machine learning

models and other deep learning approaches. Notably, the model achieves 96.97%

accuracy on the HNMU2 dataset, showcasing its ability to leverage synthetic data for

enhanced predictive performance. These findings confirm that LATCGAd is a

reliable framework for improving learning analytics and providing practical solutions

for educational institutions in forecasting and enhancing student outcomes.

Future research could further refine the model by incorporating additional data

sources, optimizing the CGAN architecture, or extending the LATCGAd framework

to domains beyond education. The combination of data augmentation and deep

learning continues to unlock significant potential in solving complex predictive tasks

across various fields.

R e f e r e n c e s

1. D u t t, A., M. A. I s m a i l, T. H e r a w a n. A Systematic Review on Educational Data Mining. –

IEEE Access, Vol. 5, 2017, pp. 15991-16005.

2. B i e n k o w s k i, M., M. F e n g, B. M e a n s. Enhancing Teaching and Learning through

Educational Data Mining and Learning Analytics. – U.S. Department of Education, Office of

Educational Technology, 2012.

3. X u, X., J. W a n g, H. P e n g, R. W u. Prediction of Academic Performance Associated with Internet

Usage Behaviors Using Machine Learning Algorithms. – Computers in Human Behavior,

Vol. 98, 2019, pp. 166-173.

4. B e n d a n g n u k s u n g, D. P. Students’ Performance Prediction Using Deep Neural Network. –

International Journal of Applied Engineering Research, 2018, pp. 1171-1176.

5. V e l i č k o v i ć, P., G. C u c u r u l l, A. C a s a n o v a, A. R o m e r o, P. L i ò, Y. B e n g i o. Graph

Attention Networks. – In: Proc. of International Conference on Learning Representations

(ICLR’18), 2018. DOI: 10.48550/arXiv.1710.10903.

6. V a s w a n i, A., N. S h a z e e r, N. P a r m a r, J. U s z k o r e i t, L. J o n e s, A. N. G o m e z,

Ł. K a i s e r, I. P o l o s u k h i n. Attention is All You Need. – Advances in Neural Information

Processing Systems (NeurIPS), 2017, pp. 5998-6008.

7. P o p c h e v, I. P., D. A. O r o z o v a. Towards a Multistep Method for Assessment in e-Learning of

Emerging Technologies. – Cybernetics and Information Technologies, Vol. 20, 2020, No 3,

pp. 116-129.

8. K u s t i t s k a y a, T. A., A. A. K y t m a n o v, M. V. N o s k o v. Early Student-at-Risk Detection

by Current Learning Performance and Learning Behavior Indicators. – Cybernetics and

Information Technologies, Vol. 22, 2022, No 1, pp. 117-130.

9. I q b a l, Z., J. Q a d i r, A. N. M i a n, F. K a m i r a n. Machine Learning Based Student Grade

Prediction: A Case Study. – arXiv preprint, 2021.

10. A l s h a n q i t i, A., A. N a m o u n. Predicting Student Performance and Its Influential Factors

Using Hybrid Regression and Multi-Label Classification. – IEEE Access, Vol. 8, 2020,

pp. 203827-203844. DOI: 10.1109/access.2020.3036572.

11. W a h e e d, H., S. H a s s a n, N. R. A l j o h a n i, J. H a r d m a n, R. N a w a z. Predicting Academic

Performance of Students from VLE Big Data Using Deep Learning Models. – Computers in

Human Behavior, Vol. 104, 2020, pp 106-189. DOI: 10.1016/j.chb.2019.106189.

12. W a r d l e, C. Challenges of Content Moderation: Define “Harmful Content” (online). Retrieved

1 September 2023.

https://tinyurl.com/ys5wc3t6

https://doi.org/10.1016/j.chb.2019.106189
https://tinyurl.com/ys5wc3t6

 151

13. S o n, N. T. K., N. V. B i e n, N. H. Q u y n h, C. C. T h o. Machine Learning Based Admission Data

Processing for Early Forecasting Students’ Learning Outcomes. – International Journal of Data

Warehousing and Mining, 2022, pp. 1-15. DOI: 10.4018/IJDWM.313585.

14. S o n, N. T. K., N. H. Q u y n h, B. T. M i n h. Early Prediction Students’ Graduation Rank Using

LAGT: Enhancing Accuracy with GCN and Transformer on Small Datasets. – J. Comput. Sci.

Cybern., Vol. 40, 2024, No 4, pp. 299-314. DOI: 10.15625/1813-9663/21095.

15. C a r d o n a, T. A., E. A. C u d n e y. Predicting Student Retention Using Support Vector Machines.

– Procedia Manufacturing, 2019, pp. 1827-1833. DOI: 10.1016/j.promfg.2020.01.256.

16. M u k h t a r, H., J. A. A m i e n, F. D e w i. Prediction of Student Graduation Using Decision Tree.

– CELSciTech, Vol. 5, 2021, pp. 7-18.

17. Y a q i n, A., M. R a h a r d i, F. F. A b d u l l o h. Accuracy Enhancement of Prediction Method

Using SMOTE for Early Prediction Student’s Graduation in XYZ University. – International

Journal of Advanced Computer Science and Applications, Vol. 13, 2022, No 6, pp. 418-424.

DOI: 10.14569/IJACSA.2022.0130652.

18. P o u d y a l, S., M. J. M o h a m m a d i-A r a g h, J. B a l l. Prediction of Student Academic

Performance Using a Hybrid 2D CNN Model. – Electronics, Vol. 11, 2022, No 7, pp. 1-21.

DOI: 10.3390/electronics11071005.

19. K u s u m a w a r d a n i, S. S., S. A. A l f a r o z i. Transformer Encoder Model for Sequential

Prediction of Student Performance Based on Their Log Activities. – IEEE Access, Vol. 11,

2023, pp. 18960-18971. DOI: 10.1109/ACCESS.2023.3246122.

20. Y a n g, G., Y. O u y a n g, Z. Y e, R. G a o, Y. Z e n g. Social-Path Embedding-Based Transformer

for Graduation Development Prediction. – Applied Intelligence, Vol. 52, 2022,

pp 14119-14136. DOI: 10.1007/s10489-022-03268-y.

21. M i r z a, M., S. O s i n d e r o. Conditional Generative Adversarial Nets. – arXiv preprint, 2014.

Received: 11.11.2024, First Revision: 02.02.2025, Second Revision: 28.02.2025,

Accepted: 07.03.2025

https://doi.org/10.14569/IJACSA.2022.0130652
https://doi.org/10.1007/s10489-022-03268-y

