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Abstract: Learning Analytics plays an important role in monitoring and improving 

educational outcomes, but is often challenged by limited dataset sizes, resulting from 

privacy regulations and curriculum changes. This paper proposes the LATCGAd 

(Learning Analysis by Transformer with Conditional Generative Adversarial 

Framework Network and Adaptive Layer Normalization model), a deep learning 

framework that combines the Transformer architecture and Conditional Generative 

Adversarial Network (CGAN) to overcome the above problems. The CGAN 

component generates synthetic data samples, which balance and expands the dataset 

size, while the Transformer leverages this rich dataset to improve prediction 

performance. The integration of Adaptive Layer Normalization (AdaLN) in the 

Transformer also helps stabilize the learning process and minimize overfitting. 

Experiments on datasets from Hanoi Metropolitan University and Hanoi National 

University show that the LATCGAd model achieves an accuracy of up to 96.97%, 

outperforming traditional models such as Decision Tree, SVM and Transformer 

alone. This result confirms the effectiveness of LATCGAd in educational predictive 

analysis and its potential for widespread application in the field of learning analytics. 

Keywords: Deep learning, Transformer, CGAN, Graduation classification, Learning 

analytics. 

1. Introduction 

Learning Analytics (LA) involves applying established methods and models to 

address fundamental issues affecting educational processes and the development 

strategies of educational institutions [1]. A key application of LA is monitoring and 

predicting student learning outcomes, while identifying potential issues early for 

timely intervention [2]. This not only enhances learning performance but also 
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provides valuable insights for teachers and administrators to make well-informed and 

effective decisions. 

Educational datasets are often tiny, primarily due to the lack of compatibility 

between educational data systems, making it difficult to combine data from different 

sources difficult. The differences in curricula across educational institutions further 

complicate data integration. Additionally, the need to protect privacy and comply 

with ethical obligations in learning analytics limits data collection and usage. 

Moreover, the inability to inherit data from previous studies due to privacy concerns 

reduces the scale and availability of data, leading to the issue of small datasets. 

In recent years, machine learning methods such as Decision Trees, Support 

Vector Machines (SVM), Deep Neural Networks (DNN), Graph Attention Networks 

(GAT), and Transformers have been widely used in LA to predict student outcomes 

and performance [3]. However, these models have many limitations when working 

with small and imbalanced datasets, a common challenge in the educational context 

due to confidentiality constraints and frequent curriculum changes. Decision Trees, 

while easy to understand, often suffer from overfitting, especially to small datasets, 

which reduces their generalizability. SVM models can handle high-dimensional data 

efficiently but struggle with imbalanced data, leading to biased predictions. DNN 

models are powerful but require large amounts of labeled data to perform well, which 

can easily lead to overfitting when data is scarce [4]. GATs are effective at capturing 

graph-based relationships but are not applicable to traditional tabular datasets [5]. 

Even Transformers, with their powerful string processing capabilities, require large 

datasets to realize their full potential, leading to suboptimal performance when 

dealing with small or imbalanced datasets [6]. 

To address these challenges, more advanced models are needed that can handle 

small and imbalanced datasets while still maintaining high prediction accuracy. This 

paper proposes a novel hybrid model, LATCGAd, which synergistically combines a 

Transformer and a Conditional Generative Adversarial Network (CGAN). In this 

hybrid model, each component serves a distinct function to enhance performance, 

particularly in the context of small datasets. Initially, the CGAN addresses the issue 

of data scarcity by generating synthetic samples for underrepresented labels, thereby 

expanding and balancing the dataset. Once the dataset has been augmented, the 

Transformer Encoder leverages this more diverse data to learn intricate relationships 

between input features, enhancing its representational capacity. To further optimize 

performance and ensure stability when working with small data, the model 

incorporates Adaptive Layer Normalization (AdaLN) into each Transformer Encoder 

layer. AdaLN dynamically adjusts the normalization parameters based on the specific 

characteristics of the input data, thereby mitigating bias and variance across the 

layers. This adjustment promotes more efficient convergence and improves the 

overall performance of the model, ensuring that the Transformer learns with greater 

stability and resilience, while also reducing the risk of overfitting—a common 

challenge when working with small datasets. 

Our work offers significant contributions that enhance the accuracy and 

efficiency of educational predictive analysis: 
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• Data Balancing with CGAN. LATCGAd effectively combats class 

imbalance by generating realistic synthetic samples for minority classes. This 

innovation significantly boosts the detection accuracy for underrepresented 

categories, specifically focusing on classes such as excellent or medium. 

• Enhanced Multi-Class Classification. By employing a stacked Transformer 

Encoder, LATCGAd demonstrates exceptional performance in multi-class 

classification, making it particularly valuable for predicting early graduation 

classification. 

• Improved Accuracy and Robust Performance on Small Datasets. Our model 

employs Adaptive Layer Normalization (AdaLN) within each Transformer Encoder 

layer, which allows for dynamic adjustments of normalization parameters based on 

input data characteristics. This approach minimizes bias and variance across network 

layers, leading to quicker convergence and enhanced overall performance. 

These contributions collectively present a powerful, efficient, and precise 

solution for multi-class educational predictive analysis, effectively addressing the 

critical challenges existing prediction systems face in diverse, real-world, multi-

platform environments. 

This paper is structured as follows: Section II provides a brief overview of 

related research. Section III describes the proposed model and methodology in detail. 

The effectiveness of the proposed approach will be thoroughly discussed in Section 

IV, with experiments conducted on datasets from the databases of the University of 

Education, Vietnam National University (VNU), and Hanoi Metropolitan University, 

Hanoi, Vietnam. Finally, Section V concludes the paper and discusses future research 

directions. 

2. Related works 

In recent years, the use of artificial intelligence in educational research has emerged 

as a growing trend that has garnered significant attention from scholars. AI is 

approached as the use of machine learning and deep learning models to analyze 

educational data more accurately. Several studies have applied data mining methods 

in education, such as Decision Trees, KNN, Bayes, Association Rules, and Logistic 

Regression, to predict learning outcomes and student capabilities, achieving 

promising results [3]. P o p c h e v  and O r o z o v a  [7] used five algorithms (Decision 

Tree, Random Forest, Logistic Regression, Naive Bayes, Support Vector Machines, 

and Neural Network) to classify students based on assessments of their knowledge 

and skills. K u s t i t s k a y a, K y t m a n o v  and N o s k o v  [8] explored various ML 

techniques, including Bayesian Networks, k-Nearest Neighbors (k-NN), and Linear 

Discriminant Analysis (LDA), for early detection of at-risk students in blended 

learning settings. In their study, I q b a l  et al. [9] applied machine learning techniques 

such as CF, SVD, NMF, and RBM to analyze the learning data of Electrical 

Engineering students at ITU. They provided suggestions to improve scores and 

identified students needing special support during their studies. A l s h a n q i t i  and 

N a m o u n  [10] predicted academic performance by combining three techniques: 

correlation filtering, fuzzy rules, and Lasso linear regression. Other studies [11, 12] 
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applied machine learning techniques to analyze student behavior and predict students 

at risk of failing, which drew interest from the academic community. S o n  et al. [13] 

used logistic regression and discriminant feature selection to predict student 

graduation outcomes based on admission data and academic performance in the first 

and second years of university. S o n, Q u y n h  and M i n h  [14] proposed the 

Learning Analysis by Graph Convolutional Network and Transformer approach for 

predicting students’ graduation ranks. This method combines a Graph Convolutional 

Network (GCN) to augment the training set with labeled samples, along with a 

Transformer to predict graduation ranks.  

To improve prediction model accuracy and address small dataset limitations, 

C a r d o n a  and C u d n e y  [15] employed SVM combined with the Smote technique 

to predict students likely to drop out. M u k h t a r, A m i e n  and D e w i  [16] used the 

Decision Tree method combined with Smote to predict whether students would 

graduate on time. Y a q i n, R a h a r d i  and A b d u l l o h  [17] compared KNN, 

Support Vector Machine, and ANN combined with SMOTE to determine the best 

algorithm for predicting student on-time graduation. 

In 2018, B e n d a n g n u k s u n g  [4] introduced a Deep Neural Network (DNN) 

model, which outperformed other machine learning algorithms in predicting the 

learning outcomes of students in the same course. P o u d y a l, M o h a m m a d i-

A r a g h  and B a l l  [18] developed a hybrid 2D CNN model to predict student 

learning outcomes and compared it with traditional machine learning models, 

showing that the hybrid 2D CNN model outperformed them. K u s u m a w a r d a n i  

and A l f a r o z i  [19] proposed a Transformer Encoder model to predict the order of 

student learning activities based on their log data in online courses. The study 

demonstrated that this model outperformed regression models such as LSTM in both 

accuracy and F1-score, particularly in predicting students at risk of dropping out. The 

research of Y a n g  et al. [20] proposed a Social-path Embedding-based Transformer 

Neural Network to predict student graduation outcomes. This model not only 

considered academic performance but also explored students’ social relationships, an 

important factor in deciding career paths after graduation. The results showed that 

this model outperformed traditional methods in predicting student graduation. 

However, the application of deep learning in educational data science is still in its 

infancy, with many studies only emerging in recent years. 

3. The proposed method 

3.1. Model 

In this section, we introduce our proposed model, which combines a Transformer 

with CGAN under AdaLN. The purpose of this model is to improve the accuracy of 

predicting student graduation classifications, especially in cases where the dataset 

size is small. The LATCGAd refers to the integration of three key components to 

enhance performance in learning data analysis: 

• Conditional Generative Adversarial Network (CGAN). CGAN is used to 

generate synthetic samples for underrepresented labels, helping to expand and 
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balance the dataset. This addresses the issue of data scarcity in underrepresented 

groups. 

• Transformer encoder. Once the dataset is expanded, the Transformer 

Encoder learns from this more diverse data, optimizing its ability to capture complex 

relationships among input features. 

• Adaptive Layer Normalization (AdaLN). To improve accuracy and ensure 

robust performance when working with small datasets, the model integrates AdaLN 

into each Transformer Encoder layer. AdaLN automatically adjusts the normalization 

parameters based on the input data's characteristics, reducing bias and variance across 

the network layers. This promotes faster convergence and enhances overall model 

performance. 

The combination of these three components helps the model learn more stably 

and reduces overfitting, which is a common issue when working with small datasets. 

Fig. 1 illustrates the LATCGAd model, where the combination of the CGAN 

and Transformer Encoder provides an effective solution for accurately predicting 

graduation classification on small and imbalanced datasets. In this model, CGAN 

expands and balances the dataset by generating synthetic samples for specific labels, 

addressing the issue of data scarcity in underrepresented groups. Once the dataset is 

expanded and balanced, the Transformer Encoder learns from this diverse dataset, 

optimizing its ability to capture complex relationships among input features. Notably, 

to improve accuracy and ensure robust performance on small datasets, the model 

integrates AdaLN into each Transformer Encoder layer. Adaptive Layer 

Normalization automatically adjusts normalization parameters based on the 

characteristics of the input data. It reduces bias and variance across network layers, 

enhancing convergence and overall model performance. As a result, the Transformer 

learns more stably and mitigates overfitting, a common challenge when working with 

small datasets. The tight integration of CGAN, Adaptive Layer Normalization, and 

Transformer not only improves accuracy but also enhances precision, recall, and  

F1-score, enabling the model to make more reliable and comprehensive predictions. 

 

 
Fig. 1. The proposed model LATCGAd 
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The operation of the proposed model is depicted in Fig. 1. Real data samples Xr 

(which contain student-related information, such as survey data and academic scores 

from the first two years of study) are collected along with the labels y′ (representing 

the actual academic ranking after students graduate, serving as the ground truth labels 

for training and evaluating the model. This label is used in both the CGAN and 

Transformer components: in CGAN, it acts as a condition during data generation to 

ensure that the synthetic data aligns with specific academic ranking categories; in the 

Transformer model, it serves as the target variable for the classification task. To 

generate additional synthetic data and expand the training dataset, we propose 

integrating CGAN into the model. Using the original data, we train the CGAN model, 

where the generator takes in noise vectors z (z is a random input that allows the 

Generator to create diverse synthetic data instead of repeating a single sample for 

each label) and labels y′ to create synthetic data. The discriminator then distinguishes 

between real and synthetic data using the labels y′ (y′ is the label that helps the 

Generator create synthetic data with the correct label for each class. Meanwhile, the 

Discriminator uses y′ to verify whether the generated data matches the assigned label, 

allowing the generator to improve and produce data that closely resembles the real 

data (see details in Fig. 2). After training the CGAN, we will use the generator to 

generate additional new data Xf (synthetic student-related data generated by CGAN, 

including simulated survey responses and academic scores from the first two years, 

corresponding to each yf) and yf. We chose CGAN to allow the generation of data 

based on specific classification labels. 

Next, the newly generated datasets Xf and yf are combined with the original data 

Xr and yr to form a larger dataset, which is then used to train the Transformer model 

for predicting student graduation classifications. 

In this paper, we utilize a generator with three hidden layers and a discriminator 

with four hidden layers. We apply the Adam optimizer, learning rate, and Beta_1. 

For the Transformer model, we only use the Transformer Encoder. The final 

output will be a latent feature vector, which will then be passed through a fully 

connected layer for classification prediction. We use parameters such as multi-head 

attention, feed-forward layers, the number of Transformer encoder layers, the Adam 

optimizer, learning rate, and weight decay. 

3.2. Conditional Generative Adversarial Network (CGAN) 

Our proposed model utilizes the Conditional Generative Adversarial Network 

(CGAN). The Conditional Generative Adversarial Network (CGAN) is a variant of 

the original Generative Adversarial Network (GAN) introduced by Goodfellow in 

2014. The CGAN algorithm was developed by researchers Mehdi Mirza and Simon 

Osindero, as detailed in their paper titled “Conditional Generative Adversarial Nets” 

[21]. This section provides an overview of the CGAN model, which serves as a key 

component of our approach, illustrated in Fig. 2. 

The Conditional Generative Adversarial Network (CGAN) consists of two main 

components: (1) the Generator Neural Network, and (2) the Discriminator Neural 

Network. 
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Fig. 2. CGAN model 

Since CGAN is a conditional generative model, both the Generator and 

Discriminator networks are trained simultaneously, with both receiving the label of 

the data as input, ensuring they generate and evaluate data that aligns with specific 

labels. The CGAN operates as follows: the Generator network takes as input a noise 

vector z and a condition label y′, generating new data according to the condition 

provided by y. The real samples (x, y′) and the newly generated samples (x′, y′) are 

then passed to the Discriminator network, which distinguishes between real and fake 

samples. This process is akin to a min-max game between two players, with the loss 

function calculated as described below.  
(1) min

𝐺
max

𝐷
𝑉(𝐷, 𝐺) = 𝐸𝑥∽𝑝data(𝑥)[log𝐷(𝑥 | 𝑦)] + 𝐸𝑧∽𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) )]. 

For real data input x and label y, logD(𝑥 | 𝑦) is the probability that the 

Discriminator believes the data x (with label y) is real. The Discriminator’s goal is to 

maximize this probability as much as possible. Meanwhile, G(z | y) generates fake 

data using the Generator model from the noise matrix z, based on label y. 

log(1 − 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) ) is the probability that the Discriminator believes the newly 

generated data (with label y) is fake. The Discriminator aims to maximize this 

probability, while the Generator’s goal is to make 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) as close to 1 as 

possible, meaning it has successfully fooled the Discriminator. 

3.3. Transformer model 

Our proposed model also incorporates the Transformer to predict student 

classifications. This section provides an overview of the Transformer model, which 

serves as a core component in our approach, illustrated in Fig. 3 [6]. 

The Transformer model consists of two main components: the Encoder and the 

Decoder. Both parts consist of multiple layers, each containing two key components: 

Multi-Head Self-Attention and Feed-Forward Neural Networks. 

• The Encoder is responsible for transforming the input into a latent feature 

vector representation that the model can understand and use for various tasks. 

• The Decoder is responsible for generating outputs based on the latent feature 

vector representation from the Encoder. The Decoder’s goal is to compute the 
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probability of the latent feature vectors and determine the output. The result could be 

a label for classification models or a target sequence based on the source sequence 

encoded by the Encoder. 

• Self-attention is a special case of the attention mechanism, where the Query, 

Key, and Value all come from the same data sequence. This mechanism helps the 

model learn relationships between words in the same sequence without having to 

process them sequentially, as in RNN models. Multi-Head Attention extends the self-

attention mechanism by using multiple “attention heads” to compute attention in 

parallel. Instead of using a single attention mechanism, the model splits the hidden 

representation into multiple parts and computes attention on each part separately. The 

results are then combined and further processed. 

• Feed-Forward is a crucial component applied after each Multi-Head 

Attention step in both the Encoder and Decoder. The Feed-Forward adds nonlinearity 

and creates more complex representations, improving performance in tasks involving 

sequential data processing, such as machine translation, text classification, or other 

natural language processing tasks. Each Feed-Forward in the Transformer is a feed-

forward neural network with two fully connected layers and a nonlinear activation 

function in between. 
 

 
Fig. 3. Transformer model 

Adaptive Layer Normalization (AdaLN) is an extension of Layer 

Normalization that adapts normalization parameters based on input data 

characteristics. It is particularly useful in deep learning models, like Transformers, 

where input data varies during training. AdaLN enhances model performance by 

dynamically adjusting parameters to reduce bias and variance across layers. In Layer 

Normalization, normalization is applied by calculating the mean 𝜇 and standard 

deviation 𝜎 of the inputs: 

(2) 𝑥�̂� =
𝑥𝑖−𝜇

𝜎
.  

After normalization, learned parameters 𝛾 and 𝛽 (scale and shift) are applied: 
(3) 𝑦𝑖 = 𝛾𝑥�̂� + 𝛽. 

AdaLN adapts these parameters for each input dynamically: 
(4) 𝑦𝑖 = 𝛾(𝑥) × 𝑥�̂� + 𝛽(𝑥),  
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where 𝛾(𝑥) and 𝛽(𝑥) are computed based on the input 𝑥 for each layer. These 

parameters are learned through a sub-network, allowing for adjustment according to 

the data’s characteristics. 

In Transformer models, AdaLN improves stability and efficiency, especially 

when working with small or heterogeneous datasets, ensuring effective learning 

across layers. 

4. Experiments 

4.1. Datasets 

In this paper, we use three datasets consisting of students majoring in primary 

education from Hanoi Metropolitan University (HNMU), math education from Hanoi 

Metropolitan University, and literature education from the University of Education,  

Vietnam National University, Hanoi (VNU). We collected these datasets from the 

universities. The preprocessing steps included handling missing data by removing 

attributes with over 60% missing values, and if there are fewer, we will fill the 

missing values with the mean. We then checked for random distributions of scores 

within columns, analyzed correlations with the “rating” column, and removed 

insignificant columns. 

The first dataset includes students majoring in primary education who studied 

at HNMU from 2014 to 2021. This dataset, labeled by HNMU1, was collected and 

processed over 18 months, from March 2020 to September 2021. After cleaning, the 

dataset contains 932 records and 21 variables (comprising 3 survey data and 20 grade 

data (scores for the first two years of students)) for training, with actual labels (11 

Medium classification labels,430 Good classification labels, 468 Very Good 

classification labels, and 23 Excellent classification labels). The dataset is imbalanced 

in the Medium and Excellent classes, with only 11 and 23 samples. The detailed 

distribution of the HNMU1 dataset is shown in Fig. 4. 

 
Fig. 4. The structure of the dataset HNMU1 

The second dataset consists of students majoring in math education at HNMU 

from 2014 to 2023. This dataset, labeled by HNMU2, was collected and processed 

over two years, from 2022 to 2023, with 551 records and 62 variables (comprising 

34 survey data and 28 grade data (scores for the first two years of students)) for 

training, with actual labels (19 Medium classification labels, 337 Good classification 

Medium; 
11; 1%

Good; 430; 
46%

Very Good; 
468; 50%

Excellent; 
23; 3%

Medium Good Very Good Excellent
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labels, 191 Very Good classification labels, and four Excellent classification labels). 

The dataset is imbalanced in the Medium and Excellent classes, with only 19 and 4 

samples. The structure of the dataset HNMU2 is shown in Fig. 5. 
 

 
Fig. 5. The structure of the dataset HNMU2 

The third dataset, labeled by VNU dataset, contains students majoring in 

literature education at VNU from 2014 to 2023. Collected and processed over three 

years, from 2021 to 2023, it contains 271 records and 72 variables (comprising 48 

survey data and 24 grade data (scores for the first two years of students)) for training, 

with corresponding labels assigned to each student, including Good, Very Good, and 

Excellent, with actual labels (46 Good classification labels, 187 Very Good 

classification labels, and 38 Excellent classification labels). The VNU dataset is less 

imbalanced compared to HNMU1 and HNMU2; however, the Good and Excellent 

classes are still imbalanced relative to the most prevalent class, Very Good (Fig. 6). 
 

 
Fig. 6. The structure of the dataset VNU 

4.2. Evaluation metrics 

The evaluation metrics used include: Accuracy (Acc), Macro Averaged Precision (P), 

Macro Averaged Recall (R), and Macro F1-score (F1), calculated using the following 

formulas: 

(5)    Acc =  
Correct predictions

All predictions
, 

Medium; 19; 
3%

Good; 337; 
61%

Very Good; 
191; 35%

Excellent; 4; 
1%

Medium Good Very Good Excellent

Good; 46; 
17%

Very Good; 
187; 69%

Excellent; 
38; 14%

Good Very Good Excellent
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(6)     𝑃 =  
1

𝑁
∑

TP𝑖

TP𝑖+FP𝑖

𝑁
𝑖=1 ,  

(7)     𝑅 =  
1

𝑁
∑

TP𝑖

TP𝑖+FN𝑖

𝑁
𝑖=1 ,  

(8)    F1 =  
2×𝑃×𝑅

𝑃+𝑅
, 

where N is the number of classes, TP𝑖 (True Positive of class i), FP𝑖 (False Positive 

of class i), and FN𝑖 (False Negative of class i) are key metrics in classification tasks, 

and all predictions are the total number of data samples. 

4.3. Experimental evaluation 

To demonstrate the effectiveness of our proposed model, we will test it on these three 

datasets: HNMU1, HNMU2, and VNU. We will use survey data and student scores 

from their first two years to predict student classification. By using real-world data, 

we aim to show that our proposed model is effective in practical applications. The 

dataset is divided into train, validation, and test sets, with 60% of the data used for 

training, 10% for validation, and 30% for testing. 

4.3.1. Experimental setup 

We will compare the proposed model against three different deep learning algorithms 

(DNN, GAT, and Transformer), and traditional machine learning methods (which are 

known to perform well with small datasets): Decision Tree, SVM, and Logistic 

Regression. 

Machine learning models: 

• Decision tree. Uses entropy for information calculation, with a minimum of 

1 sample per leaf and 4 samples for splits. 

• SVM. Utilizes the RBF kernel, penalty coefficient = 1, and gamma = “scale” 

to automatically calculate the gamma value based on the characteristics of the data. 

• Logistic regression. Ridge regularization, inverse regularization coefficient 

= 1, and lbfgs optimization (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) 

Deep learning models. The parameters are optimized through the cross-

validation and grid search process to determine the optimal combination for each 

dataset. The main criteria for parameter selection include minimizing validation loss, 

achieving high accuracy, and improving class balance. 

DNN model. A 4-layer DNN with ReLU and softmax activation functions. The 

first layer has 512 neurons, the second 256, the third 64, and the output layer matches 

the number of classes in each dataset. The model uses the Adam optimizer with  

lr = 0.005 and dropout = 0.6. 

CGAN model. This CGAN model is structured with two main components: the 

Generator and the Discriminator. The Generator in the CGAN network consists of 

three layers to generate new data from the latent space. Specifically, the first layer of 

the Generator has 256 neurons, the second layer has 512 neurons, and the third layer 

has 1024 neurons. The output of the Generator is 21 for HNMU1, 62 for HNMU2, 

and 72 for VNU. The activation function for HNMU1 and VNU is LeakyReLU with 

a coefficient of 0.2, and for HNMU2, it is ReLU. The Adam optimizer is used with a 

learning rate (lr) of 0.0002 and Beta_1 of 0.5. The loss function is Binary Cross 

Entropy Loss, which helps the network learn nonlinear features effectively and avoid 
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neuron death. The Discriminator also consists of 4 layers to evaluate the authenticity 

of the data generated by the Generator. Specifically, the first layer of the 

Discriminator has 1024 neurons, the second layer has 512 neurons, the third layer has 

256 neurons, and the fourth layer has 64 neurons. The activation function for 

HNMU1 and VNU is LeakyReLU with a coefficient of 0.2, and for HNMU2, it is 

ReLU. The Adam optimizer is used with lr = 0.0002 and beta_1 = 0.5. The loss 

function is Binary Cross-Entropy Loss. The output of the Critic is a single value 

representing the Discriminator’s score for the input sample. 

• CGAN generates for HNMU1 an additional 32 samples per one class. 

• CGAN generates for HNMU2 an additional 25 samples per one class. 

• CGAN generates for VNU an additional 12 samples per one class. 
 

Table 1. Number of samples before and after creation with CGAN on the HNMU dataset 

Label Before generating After generating 

Medium 11 43 

Good 430 462 

Very Good 468 500 

Excellent 23 55 

Total 932 1060 

 

Table 2. Number of samples before and after creation with CGAN on the HNMU2 dataset 

Label Before generating After generating 

Medium 19 51 

Good 337 369 

Very Good 191 223 

Excellent 4 36 

Total 551 679 

 

Table 3. Number of samples before and after creation with CGAN on the VNU dataset 

Label Before generating After generating 

Good 46 58 

Very Good 187 199 

Excellent 38 50 

Total 271 307 

The parameters of the CGAN model (such as the number of layers, learning rate, 

and activation functions) are tailored for each dataset to ensure that the synthetic data 

closely resembles the real data. For HNMU1 and VNU, the LeakyReLU activation 

function is used in both the generator and discriminator, whereas ReLU is more 

effective for HNMU2. The number of synthetic data samples for each class is also 

adjusted differently for each dataset to ensure class balance without introducing 

excessive noise. 

GAT Model. We use a 2-layer model with the HNMU1, HNMU2, and VNU 

datasets. 

• For the HNMU1 dataset, the first layer has eight attention heads and 

calculates the number of features as six (output of each attention head), resulting in 

48 features. The activation function is ELU. The second layer has 1 attention head 

since it is used for classification, and the activation function is softmax. Models use 

the Adam optimizer with lr = 0.005 and dropout = 0.6. 
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• For the HNMU2 dataset, the first layer has eight attention heads and 

calculates the number of features as eight (output of each attention head), resulting in 

64 features. The activation function is ELU. The second layer has one attention head 

since it is used for classification, and the activation function is softmax. Models use 

the Adam optimizer with lr = 0.005 and dropout = 0.6. 

• For the VNU dataset, the first layer has eight attention heads and calculates 

the number of features as six (output of each attention head), resulting in 48 features. 

The activation function is ELU. The second layer has one attention head since it is 

used for classification, and the activation function is softmax. Models use the Adam 

optimizer with lr = 0.005 and dropout = 0.6. 

Transformer Model. 

• For HNMU1, the Transformer uses two multi-heads. The feed-forward layer 

in each encoder layer has 64 units. The number of Transformer encoder layers is one, 

with dropout = 0.6. This is followed by a fully connected network with an output of 

four (corresponding to the number of classes in the HNMU1 dataset). Models use the 

Adam optimizer with lr = 0.005 and weight decay = 0.0005. 

• For HNMU2, the Transformer uses seven multi-heads. The feed-forward 

layer in each encoder layer has 64 units. The number of Transformer encoder layers 

is two, with dropout = 0.5. This is followed by a fully connected network with an 

output of four (corresponding to the number of classes in the HNMU2 dataset). 

Models use the Adam optimizer with lr = 0.005 and weight decay = 0.0005. 

• For VNU, the Transformer uses two multi-heads. The feed-forward layer in 

each encoder layer has 128 units. The number of Transformer encoder layers is one, 

with dropout = 0.6. This is followed by a fully connected network with an output of 

three (corresponding to the number of classes in the VNU dataset). Models use the 

Adam optimizer with lr = 0.005 and weight decay = 0.0005. 

Table 4. Generator model parameter table on the HNMU1, HNMU2, and VNU datasets 

Dataset 
First 

layer 

Second 

layer 

Third 

layer 

Activation 

function 

Output 

layer 

Output activation 

function 

HNMU1 256 512 1024 LeakyReLU(0.2) 21 Tanh 

HNMU2 256 512 1024 ReLU 62 Tanh 

VNU 256 512 1024 LeakyReLU(0.2) 72 Tanh 

 

Table 5. Training parameter table for the Generator model on the HNMU1, HNMU2, and VNU datasets 

Dataset Optimizer Learning Rate Beta_1 Loss function 

HNMU1 Adam 0.0002 0.5 Binary Cross-Entropy Loss 

HNMU2 Adam 0.0002 0.5 Binary Cross-Entropy Loss 

VNU Adam 0.0002 0.5 Binary Cross-Entropy Loss 

 

Table 6. Discriminator model parameter table on the HNMU1, HNMU2, and VNU datasets 

Dataset 
First 

layer 

Second 

layer 

Third 

layer 

Fourth 

Layer 

Activation 

function 

Third 

layer 

Output 

activation 

function 

HNMU1 1024 512 256 64 LeakyReLU(0.2) 1 Sigmoid 

HNMU2 1024 512 256 64 ReLU 1 Sigmoid 

VNU 256 512 256 64 LeakyReLU(0.2) 1 Sigmoid 
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Table 7. Training parameter table for the Discriminator model on the HNMU1, HNMU2, and VNU 

datasets 

Dataset Optimizer Learning rate Beta_1 Loss function 

HNMU1 Adam 0.0002 0.5 Binary Cross-Entropy Loss 

HNMU2 Adam 0.0002 0.5 Binary Cross-Entropy Loss 

VNU Adam 0.0002 0.5 Binary Cross-Entropy Loss 

 

Table 8. Transformer model parameter table on the HNMU1, HNMU2, and VNU datasets 

Dataset Multi-head 
Feed-

forward layer 

Number of 

transformer 

encodes 

Fully 

connected 

layer 

Activation 

function 

HNMU1 2 64 1 4 Softmax 

HNMU2 7 64 2 4 Softmax 

VNU 2 128 1 3 Softmax 

 

Table 9. Training parameter table for the Transformer model on the HNMU1, HNMU2, and VNU 

datasets 

Dataset Optimizer Learning rate Weight decay Loss function DropOut 

HNMU1 Adam 0.005 0.0005 Cross-Entropy Loss 0.6 

HNMU2 Adam 0.005 0.0005 Cross-Entropy Loss 0.5 

VNU Adam 0.005 0.0005 Cross-Entropy Loss 0.6 

 

The number of attention heads is selected based on the complexity of the feature 

space. For HNMU1 and VNU, two multi-heads are appropriate due to the smaller 

number of variables in the datasets. In contrast, HNMU2 requires seven multi-heads 

to learn complex patterns from a larger feature space. Feed-Forward Layer: The 

number of units in the feed-forward layers is determined by the complexity and size 

of the dataset. For HNMU1 and HNMU2, the feed-forward layers have 64 units, 

whereas VNU requires 128 units due to the higher number of variables in the dataset. 

Learning Rate and Optimizer: The learning rate is set to 0.005 with the Adam 

optimizer after experimenting with different values and observing the convergence 

speed and accuracy. 

During the model training process, several important parameters were utilized 

to optimize and adjust the model’s learning capability, including Beta_1, lr, and 

Dropout. Beta_1 is a parameter in the Adam optimization algorithm that determines 

the exponential decay rate of the first moment estimate, helping the model update 

gradients more stably and efficiently. In the paper, a Beta_1 value of 0.5 was chosen 

to balance convergence speed and learning stability. The lr controls the adjustment 

speed of the model’s weights after each gradient update. This value was set 

differently for each model: 0.0002 for CGAN and 0.005 for Transformer, ensuring 

optimal convergence speed while preventing oscillations or slow convergence. 

Additionally, Dropout was used as a regularization technique to mitigate overfitting 

by randomly dropping some neurons during training. In the paper, the Dropout value 

was set at either 0.5 or 0.6, depending on the model and dataset, to enhance 

generalization and model robustness when applied to real-world data. 
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4.3.2. Model training 

We trained the DNN model with the three datasets HNMU1, HNMU2, and VNU, 

training the model for 1000 epochs. The images of the loss values for HNMU1, 

HNMU2, and VNU are shown respectively in Fig. 7. The principle for selecting the 

best model is that the model with the lowest average of train loss and validation loss 

will be chosen. Based on this principle, for the HNMU1 dataset, the model selected 

at epoch 357 has a train loss of 0.0363 and a validation loss of 0.5976. For the 

HNMU2 dataset, the model selected at epoch 934 has a train loss of 0.0002 and a 

validation loss of 0.0016. For the VNU dataset, the model selected at epoch 791 as a 

train loss of 0.0351 and a validation loss of 0.1696. Although the experimental results 

already allow for selecting the best model, the charts provide deeper insights into the 

training process and enhance the transparency and reliability of the experiment. 

 
(a)                                                (b)                                          (c) 

Fig. 7. Training the DNN model: on the HNMU1 dataset (a); on the HNMU2 dataset (b);  

on the VNU dataset (c) 

We trained the GAT model with the three datasets HNMU1, HNMU2, and 

VNU, training the model for 1000 epochs. The images of the loss values for HNMU1, 

HNMU2, and VNU are shown respectively in Fig. 8. The principle for selecting the 

best model is the model with the lowest average of train loss and validation loss. 

Based on this principle, for the HNMU1 dataset, the model selected at epoch 154 has 

a train loss of 0.3432 and a validation loss of 0.4730. For the HNMU2 dataset, the 

model selected at epoch 891 has a train loss of 0.0433 and a validation loss of 0.0976. 

For the VNU dataset, the model selected at epoch 557 has a train loss of 0.3635 and 

a validation loss of 0.6443. 

 
(a)                                                (b)                                          (c) 

Fig. 8. Training the GAT model: on the HNMU1 dataset (a); on the HNMU2 dataset (b);  

on the VNU dataset (c) 

We trained the Transformer model for 1000 epochs for the three datasets 

HNMU1, HNMU2, and VNU. The training graphs of the models for the three datasets 
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HNMU1, HNMU2, and VNU are shown respectively in Fig. 9. The principle for 

selecting the best model is to take the average of the training loss and validation loss, 

and the epoch with the smallest value will be chosen. Based on this principle, for the 

model in Fig. 9a, the model selected at epoch 132 has a train loss of 0.0849 and a 

validation loss of 0.1451. For the model in Fig. 9b, the model selected at epoch 275 

has a train loss of 0.0405 and a validation loss of 0.0481. For the model in  

Fig. 9c, the model selected at epoch 44 has a train loss of 0.2905 and a validation loss 

of 0.2547. 

 
(a)                                                (b)                                          (c) 

Fig. 9. Training the Transformer model: on the HNMU1 dataset (a); on the HNMU2 dataset (b);  

on the VNU dataset (c) 

For LATCGAd model, the number of epochs for training the CGAN model for 

the three datasets HNMU1, HNMU2, and VNU is 5000 epochs. The training graphs 

of the models are shown respectively in Fig. 10. The principle for model selection is 

that the CGAN model with the smallest FID value (FID is a method for assessing the 

difference between generated data and real data) will be chosen.  

(9) FID = ||𝜇𝑟 −  𝜇𝑔||2 + 𝑇𝑟(𝛴𝑟 +  𝛴𝑔 − 2(𝛴𝑟𝛴𝑔 )
1

2, 

where 𝜇𝑟, 𝜇𝑔 are the average vector of features of real-world data and generated data. 

𝛴𝑟, 𝛴𝑔 are the variance matrix of real-world data and generated data. Tr is the trace 

of the matrix, i.e., the sum of the elements on the main diagonal of the matrix. ||.|| is 

the Euclidean distance between two vectors. 

Based on this principle, for the model in Fig. 11a, the model was selected at 

epoch 1073 because it has an FID of 0.2561. For the model in Fig. 11b, the model 

was selected at epoch 511 because it has an FID of 8.900. For the model in Fig. 11c, 

the model was selected at epoch 929 because it has an FID of 2.5141. 

 
(a)                                                (b)                                          (c) 

Fig. 10. Training the CGAN model (in the LATCGAd model): on the HNMU1 dataset (a);  

on the HNMU2 dataset (b); on the VNU dataset (c) 
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(a)                                                (b)                                          (c) 

Fig. 11. FID values: on the HNMU1 dataset (a); on the HNMU2 dataset (b); on the VNU dataset (c) 

We will then train the Transformer model for 1000 epochs for the three datasets 

HNMU1, HNMU2, and VNU. The training graphs for the models for the three 

datasets HNMU1, HNMU2, and VNU are shown respectively in Fig. 12. The 

principle for selecting the best model is to take the average of the training loss and 

validation loss, and the epoch with the smallest value will be chosen. Based on this 

principle, for the model in Fig. 12a, the model selected at epoch 71 has a train loss of 

0.2677 and a validation loss of 0.1237. For the model in Fig. 12b, the model selected 

at epoch 962 has a train loss of 0.0361 and a validation loss of 0.0018. For the model 

in Fig. 12c, the model selected at epoch 61 has a train loss of 0.3878 and a validation 

loss of 0.2793. 

 
(a)                                                (b)                                          (c) 

Fig. 12. Training the Transformer model (in the LATCGAd model): on the HNMU1 dataset (a); on the 

HNMU2 dataset (b); on the VNU dataset (c) 

4.3.3. Experimental results 

Experimental results on the three datasets (HNMU1, HNMU2, and VNU) show that 

the LATCGAd model outperforms traditional models (Decision Tree, SVM, Logistic 

Regression) and deep learning models (DNN, GAT, and standard Transformer). 

On the HNMU1 dataset, LATCGAd achieves an accuracy of 95.56%, 

significantly higher than Decision Tree (89.64%), SVM (84.64%), Logistic 

Regression (92.86%), DNN (93.57%), and GAT (82.14%) (Table 10). In addition to 

accuracy, the model also improves Precision (72.50%), Recall (74.78%), and  

F1-score (73.61%), demonstrating its ability to reduce errors and correctly classify 

almost all true positive samples, outperforming all compared models. 

On the HNMU2 dataset, LATCGAd maintains the highest performance with an 

accuracy of 96.97%, surpassing standard Transformer (95.15%), Decision Tree 

(89.70%), SVM (82.42%), Logistic Regression (74.55%), DNN (86.06%), and GAT 

(90.91%). The model also maintains a well-balanced Precision (73.26%) and Recall 

(74.09%). However, Decision Tree achieves a higher Precision (94.65%), likely due 

to its conservative approach in making predictions, which also increases the risk of 
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overfitting. Although Decision Tree has the highest Recall (79.26%), LATCGAd 

remains more stable and generalizes better, thanks to synthetic data from CGAN 

(Table 11). 
 

Table 10. Prediction Results on the HNMU1 Dataset 

Method Accuracy Precision Recall F1-score 
Decision tree 89.64 39.77 48.09 42.90 

SVM 84.64 35.95 45.31 38.77 
Logistic Regression 92.86 43.13 49.05 45.71 

DNN 93.57 69.07 74.15 71.35 
GAT 82.14 34.81 44.57 37.46 

Transformer 93.57 44.71 47.96 46.26 
LATCGAd 95.56 72.50 74.78 73.61 

 

Table 11. Prediction Results on the HNMU2 Dataset 

Method Accuracy Precision Recall F1-score 
Decision tree 89.70 94.65 79.26 82.48 

SVM 82.42 66.76 51.63 54.15 
Logistic Regression 74.55 59.08 64.47 58.77 

DNN 86.06 68.28 69.35 68.12 
GAT 90.91 57.96 55.20 56.07 

Transformer 95.15 72.26 73.30 72.72 
LATCGAd 96.97 73.26 74.09 73.66 

On the VNU dataset, LATCGAd achieves an accuracy of 87.65%, 

outperforming Decision Tree (83.95%), SVM (83.95%), Logistic Regression 

(71.60%), DNN (74.07%), GAT (81.48%), and standard Transformer (86.42%). A 

key advantage is that Precision increases to 95.56%, significantly surpassing the other 

models, indicating its high reliability in predicting positive cases and minimizing 

false positives (Table 12). However, Recall is 58.73%, slightly lower than DNN 

(66.91%) and Transformer (61.41%). This trade-off is justified by its optimized 

Precision, making it suitable for applications requiring high confidence in identifying 

critical cases. The F1-score of LATCGAd on the VNU dataset reaches 67.62%, 

surpassing most machine learning models, though slightly lower than standard 

Transformer (67.89%). 

Table 12. Prediction Results on the VNU Dataset 

Method Accuracy Precision Recall F1-score 

Decision tree 83.95 67.59 55.08 59.06 

SVM 83.95 52.19 50.83 51.05 

Logistic Regression 71.60 64.91 64.83 59.44 

DNN 74.07 58.19 66.91 60.71 

GAT 81.48 62.63 61.49 61.68 

Transformer 86.42 80.83 61.41 67.89 

LATCGAd 87.65 95.56 58.73 67.62 

A key factor influencing the experimental results is the differences in 

characteristics among the three datasets: HNMU1, HNMU2, and VNU. Each dataset 

varies in size, number of features, and class imbalance levels, which directly impact 

the models’ performance. 
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Specifically, the HNMU1 dataset has the largest sample size (932 samples) but 

a limited number of features (21 features, with only three survey-based features). As 

a result, the model primarily relies on academic scores from the first two years. While 

this enables the model to quickly identify learning trends, it also increases the risk of 

missing additional insights from non-academic factors. By balancing the data with 

CGAN, LATCGAd significantly improves accuracy and F1-score compared to other 

models. 

The HNMU2 dataset is smaller (551 samples) but contains 62 features 

(including 34 survey-based features), providing a more comprehensive view of 

students. This allows LATCGAd to capture multidimensional relationships between 

academic and non-academic data. As a result, HNMU2 achieves the highest accuracy 

(96.97%), while maintaining a balance between Precision and Recall, demonstrating 

that rich and diverse data plays a crucial role in enhancing model performance. 

In contrast, the VNU dataset has the smallest sample size (271 samples) but 

includes 72 features. Despite the dataset’s high feature richness, its small size makes 

the model more susceptible to overfitting. The high Precision (95.56%) indicates that 

LATCGAd is highly effective in reducing false positives, but the low Recall 

(58.73%) suggests that some true positive samples were missed, likely due to the 

limited training data. The differences in size and composition across these datasets 

highlight the necessity of data balancing and augmentation using CGAN, particularly 

when working with small or highly imbalanced datasets. Additionally, this 

underscores the importance of feature selection and analysis in optimizing deep 

learning model performance. 

In summary, LATCGAd demonstrates superior accuracy and overall 

performance across all three datasets, particularly in the context of small and 

imbalanced data, thanks to the combination of data generation from CGAN and 

model optimization through Adaptive Layer Normalization. 

As previously discussed, educational datasets are often limited by 

confidentiality constraints and data collection challenges, resulting in small sample 

sizes that are not publicly available. While the proposed model has shown superior 

performance when evaluated on three independent datasets from two universities, the 

comparison results remain somewhat unsatisfactory due to the lack of inheritance 

from prior published research. This limitation is an important consideration for future 

educational research, particularly in the context of data sharing and the integration of 

existing findings. 

5. Conclusion 

The LATCGAd model proposed in this paper introduces a novel approach to 

addressing challenges in educational predictive analytics, particularly when working 

with small and imbalanced datasets. By combining CGAN’s ability to generate 

synthetic data with Transformer’s strength in capturing complex relationships, the 

proposed model significantly enhances prediction accuracy and generalization 

capability. The integration of Adaptive Layer Normalization (AdaLN) further 
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improves stability and mitigates overfitting, enabling the model to perform 

consistently across diverse educational datasets. 

Experimental results on three real-world datasets (HNMU1, HNMU2, and 

VNU) demonstrate the superiority of LATCGAd over traditional machine learning 

models and other deep learning approaches. Notably, the model achieves 96.97% 

accuracy on the HNMU2 dataset, showcasing its ability to leverage synthetic data for 

enhanced predictive performance. These findings confirm that LATCGAd is a 

reliable framework for improving learning analytics and providing practical solutions 

for educational institutions in forecasting and enhancing student outcomes. 

Future research could further refine the model by incorporating additional data 

sources, optimizing the CGAN architecture, or extending the LATCGAd framework 

to domains beyond education. The combination of data augmentation and deep 

learning continues to unlock significant potential in solving complex predictive tasks 

across various fields. 
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