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Abstract: Software-Defined Network is an emerging paradigm that has evolved to 

address weaknesses in traditional networks in recent years. The idea behind this 

technology is to separate the control plane from the data plane, making network 

management and programmability more flexible and easier. This paper aims to 

investigate the influence of the increasing number of pings (100-500) on two network 

platforms: software-defined network and traditional network. Ping is defined as a 

simple Internet application that lets users check whether a specific target IP address 

is available and able to receive requests in computer network administration. 

Moreover, Ping is also used as a diagnostic tool to make sure the host machine that 

the user is attempting to contact is up and running. The simulation was carried out 

using Mininet (the Mininet graphical user interface) to set up hosts and switches. 

Results revealed that software-defined networks improved the total number of 

packets received (22-40) %, average round-trip time (56-64) %, and reduced the total 

number of dropped packets (83-58) %. Therefore, it can be concluded that software 

software-defined network paradigm may be adopted for the network infrastructure’s 

growing demand.  

Keywords: Software-Defined Network (SDN), Software-defined network-based 

controller (POX), Transport Layer Security (TLS), OpenFlow protocol, Round-Trip-

Time (RTT). Packet Internet or Inter-Network Groper (Ping). 

1. Introduction 

Initiated by emerging megatrends (such as big data) in information and 

communication technologies, new Challenges for the Internet of the Future, like 

access from anywhere, high bandwidth, and dynamic management, remain crucial 

[1]. However, traditional approaches based on manual setup of proprietary devices 

are error-prone and cannot fully utilize the capacity of the physical network 

infrastructure [2]. Software-Defined Network (SDN) has been identified as one of the 
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most promising solutions for the Internet in the future. SDN has two distinct 

characteristics: the first is the separation of the control plane from the data plane, and 

the second is providing programmability for developing network applications [3]. As 

a result, SDN is set to provide a more efficient setup, better performance, and greater 

flexibility to accommodate innovative network designs. The research aims to study 

and clarify the concept of SDN as well as the OpenFlow protocol, which is described 

as an idea a radical new approach to networking and proving the benefit of moving 

to SDN by comparing the values of performance parameters between these networks 

and traditional networks [4].  

In 1997, the Active Networks Group proposed an innovative approach to 

programmable network architecture, “Active Network”, where the switches perform 

operations on demand. Data messages flow through it [5] to decouple network 

services from devices and allow new services to be loaded into the infrastructure as 

needed. Later, the Asynchronous Transfer Mode (ATM) was expanded to Develop 

Control Asynchronous transfer mode (DCAN) Networks [6]. However, the goal was 

to design and develop the infrastructure necessary to control and manage ATM 

networks. The hypothesis concentrated on the control and management functions of 

many devices (ATM switches in the case of DCAN) should be separated and 

delegated to external entities dedicated to this purpose, which is the concept of SDN. 

In the mid-2000s, 4D architecture was developed [7] with a clear separation between 

the routing decision logic and the protocols that govern the interaction with network 

elements, where the functions are divided. Network control is divided into four levels: 

decision, dissemination, discovery, and data. In 2006, the IETF NETwork 

CONFiguration Task Force (NETCONF) was proposed [8]. Later, in 2006, the 

Ethane Project [9] was proposed, which defined a new network architecture for 

corporate networks that consisted of a network of ethane switches that include flow 

tables and a control unit. Through a secure channel, the unit can control the switches' 

control communication and decide whether the packet should be forwarded or not.  

However, to move from traditional networks to SDN, it must first be proven that this 

transition will lead to great benefits of increasing performance, improving network 

behavior, and making it more resilient for testing purposes, management, etc.  

2. SDN 

SDN is an approach that employs software-based controllers or Application 

Programming Interfaces (APIs) to communicate with underlying hardware 

infrastructure and direct traffic on a network. However, this model differs from 

traditional networks, which use dedicated hardware devices (i.e., routers and 

switches) to control network traffic. SDN can create and control a virtual network, or 

control a traditional hardware – via software. While network virtualization allows 

organizations to segment different virtual networks within a single physical network, 

or to connect devices on different physical networks to create a single virtual network, 

SDN enables a new way of controlling the routing of data packets through a 

centralized server. 
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2.1. SDN vs traditional   

The key difference between SDN and traditional networking is infrastructure; SDN 

is software-based, while traditional networking is hardware-based. Because the 

control plane is software-based, SDN is much more flexible than traditional 

networking as it allows administrators to control the network, change configuration 

settings, provision resources, and increase network capacity all from a centralized 

user interface, without the need for more hardware. There are also security 

differences between SDN and traditional networking. Thanks to greater visibility and 

the ability to define secure pathways, SDN offers better security in many ways. 

However, because SDN uses a centralized controller, securing the controller is crucial 

to maintaining a secure network. 

2.2. SDN security threats  

The logically centralized controller in SDN is responsible for making decisions 

regarding packet routing. Hence, it is a heavily targeted point for malicious actions 

and attacks within the SDN network. The main control plane's security threats are 

listed below: 

• Application Threats 

Management plane applications may seriously compromise SDN security. In 

general, the controller is in charge of application authentication, resource 

authorization, appropriate separation, tracking, and auditing. Therefore, before 

allowing access to any resource, applications must be sorted based on their security 

implications. As a result, the controller’s northbound APIs should include a 

customized security check for various application types. 

• Scalability Threats 

Every new flow in the data path requires the controller to implement a flow rule; 

if there are too many new flows, the controller could soon experience a bottleneck. 

• DoS & DDoS Threats 

Distributed Denial of Service (DDoS) as well as Denial of Service (DoS) attacks 

are the most difficult network threats. The purpose behind such attacks lies in the 

capability to prevent authorized users from accessing network resources. DoS and 

DDoS attacks cannot be prevented or mitigated by using multiple controllers because 

this could cause all controllers to fail in sequence. 

• Strategies to Address SDN Security Challenges 

1. Adopt redundant architectural models: Use several SDN controllers to 

reduce the possibility of bottlenecks and failures. 

2. Employ Best Practices for Security: Use encryption, access controls, and 

micro segmentation to safeguard the SDN environment. 

3. Choose Vendor-Agnostic Solutions: Look for platforms that support open 

standards and provide flexibility in multi-vendor ecosystems. 

• Combining these methods into a complete SDN adoption plan is the most 

efficient action. Organizations can overcome challenges and realize the full potential 

of SDN by coordinating workforce development, security frameworks, and 

technological solutions with business objectives. 
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2.3. How SDN works 

Here are the SDN basics: In SDN (like anything virtualized), the software is 

decoupled from the hardware. SDN moves the control plane that determines where 

to send traffic to software and leaves the data plane that forwards the traffic in the 

hardware. This allows network administrators who use software-defined networking 

to program and control the entire network via a single pane of glass instead of on a 

device-by-device basis. There are three parts of a typical SDN architecture [10], 

which may be located in different physical locations: 

1. Infrastructure layer. Consists of switching devices (such as switches, 

routers, etc.). The function of switching devices is that they are responsible for 

collecting network status, temporarily stored in local devices, and sending it to 

controllers. Network status takes account of information such as: Network topology, 

traffic statistics, and network usage [11]. 

2. Control layer. Represents the intelligence of the network. The nodes in the 

control layer are called controllers, which maintain an overview of the network 

located in the infrastructure layer. Controller nodes can also be architecturally 

classified into centralized and distributed. In centralized mode, one central control 

node sends information, such as routing and other information, to all network devices 

in the network; the centralized mode has the risk of a single point of failure [12].  In 

distributed mode, there are many control nodes connected to network devices to 

exchange information. 

3. Application layer. Includes SDN applications usually created to satisfy user 

requirements [13].  

SDN is based on OPF. OPF is an open standard protocol that outlines how a 

centralized controller governs and configures the control plane in an SDN network. 

The data is kept in Mac and routing tables, which are handled by a variety of complex 

switching and routing protocols. In conventional networks, these tables are used to 

create the forwarding plane. The OpenFlow protocol provides centralized, consistent 

rules that are capable of managing every flow table. A single or several OpenFlow 

switches, each with one or more flow tables, make up an OpenFlow network [14].  

The OpenFlow protocol was initially developed at Stanford University in 1998 

to enable researchers to run experimental protocols in campus networks. Nowadays 

OpenFlow protocol is added as a feature for commercial networking devices, it 

provides a standard, non-regulated interface for manufacturers to access switches, 

routers, and wireless access points. Moreover, these OpenFlow-enabled devices 

provide access without requiring producers to reveal the inner workings of their 

products. 

3. Materials and methods 

The work utilized-SDN-based controller of type POX. POX is an open-source 

controller for creating SDN applications. The actual communication protocol 

between the switches and controllers, OPF, can be effectively implemented with the 

POX. Modeling of SDN is carried out through Mininet. Mininet is a Linux-based 

simulation program used for rapid modeling in SDN to manage a set of hosts, 



 123 

switches, routers, and links using simulation to make a single system look like an 

entire network. Hosts, switches, and controller modules are created using software as 

an alternative of hardware. For the most part, their behavior is similar to separate 

hardware components. Mininet provides a simple and cheap way to test networks for 

developing OpenFlow applications, as it allows testing of large and complex 

topologies without the need for a physical network to control virtualizing the network 

and managing it from a single console, Mininet includes a network-aware Command 

Line Interface (CLI), Mininet also provides a python API for creating and testing the 

network. Finally, the ping tool was used to help in the discovery of the status of a 

network device, that is, whether the device is alive or not.  The research workflow 

goes through two scenarios: 

3.1. Scenario 1. SDN topology design 

The SDN topology consisted of eight OpenFlow switches S1-S8 connected to a 

central remote POX controller with an IP address. PORT (192.168.56.102, 6633), 

eight hosts: h1-h8 with IP (10.0.0.1-10.0.0.8). 100-500 pings have been generated 

and transmitted from h1 to h8 and repeated 10 times using the following command: 
 

h1> ping 10.0.0.0.8 –l 64 
 

64 bytes of data are sent in the ICMP echo request, and 66 bytes are received in 

the ICMP echo reply message. Simply, ping is a computer network tool used to test 

connectivity and the distance between two devices from each other. Technically 

speaking, it sends a packet of information from one device to another over a network 

and measures how long it takes to receive the response from the other device. This 

design included a loop identical to traditional as shown in Fig. 1. POX is invoked to 

establish the required connection within OpenFlow switches. In this scenario, POX 

included the following modules: 

1. OpenFlow.spanning_tree. This component creates a spanning tree by using 

the discovery component to create a view of the network topology. It then turns off 

flooding on switch ports that are not part of the tree. The STP is not particularly 

related to this, though they aim to achieve comparable goals, which is a quite distinct 

approach. The Spanning Tree component responds to changes in the network 

topology. If a link is down, and there is an alternative link, it can maintain the 

connection in the network by creating a new tree that enables flooding to occur at the 

ports related to the alternative link. How this component builds a spanning tree is that 

it goes through each switch, sees who the neighbors of this switch are, and checks to 

see if the neighbor exists within the tree, if it does not exist, it adds the two switches 

(current and neighbor) to the tree in addition to ports on the connection between them. 

However, this component has two options that alter the start-up behaviour. 

2. No-flood. This module turns off flooding on all ports as soon as a switch 

connects. 

3. Hold-down. This module stops flood control from being changed until the 

full cycle of discovery has finished and all links have had a chance to be found. 
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4. Forwarding. l2_learning. This module enables an OpenFlow switch to 

function as a kind of L2 learning switch, as it installs flows that precisely match on 

as many fields as possible. 
5. OpenFlow. Discovery. This component helps to determine network topology 

as it sends specifically designed LLDP messages out of OpenFlow switches [15].  

When links go up or down, it raises events. Algorithm 1 outlined the SDN topology 

mechanism. The following command should be issued to initialize the POX controller 

from the controller console C0. 
 

./pox.py log.level-- DEBUG Forwarding.l2_learning Openflow.spanning_tree ‐‐

no-flood ‐‐hold-down  

 

 

Fig. 1. SDN topology 

Table 1. Algorithm 1 

Algorithm 1. SDN- Topology 

Input: A Flow of packets arrives at each OpenFlow switch connected with the POX 

controller 

Output:  POX controller invokes components to manage and control the network  

While true do  

     If there is NO match between the first packet in the flow and any flow entry in the 

OpenFlow switch   

        Then  

        Forward the packet to the POX controller.  

    Else if there is a match between the first packet and any flow 

                entry in the OpenFlow switch  

        Then  

        Forward the packet to the destination.  

    End if  

Feed forward information back to the OpenFlow switch by POX 

Update the flow table in the switch by POX  

End while   

End 
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3.2. Scenario 2. Traditional topology design 

The traditional topology consisted of eight legacy switches S1-S8 that operate as a 

Systematic MAC-learning switch, where the speed of each port on any switch is 

10000 Mbps, eight hosts: h1-h8 with IP 10.0.0.1-10.0.0.8. Similarly, 100-500 pings 

have been generated and transmitted from h1 up to h8, repeated 10 times using the 

following command: 

h1> ping 10.0.0.0.8 – l 64 

The STP is not activated on legacy switches and must be activated on every 

switch to stop network loops while allowing redundancy. Moreover, it ensures that 

there is a single effective path between two switches in the network, by closing 

duplicate paths which may cause a loop, and when a failure occurs, alternative paths 

are activated by reopening the paths which has been closed. However, no controller 

is present in the traditional; instead, each switch operates independently. The 

fundamental difference between the current and previous scenarios is that the current 

scenario does not require a controller of any type under any platform to manage the 

network. Rather, it only requires a layer_2 L2 switch. Based on MAC addresses, L2 

switches are excellent at quickly forwarding Ethernet communications. L2 switches 

build a dynamic MAC address table for effective data forwarding in the future by 

learning the source MAC addresses and associated switch ports from incoming data 

packets. 

 
Fig. 2. Traditional topology 

Table 2. Algorithm 2 

Algorithm 2: Traditional Topology 

While true do  

    Start the blocking state on the switch port to stop forwarding frames or learning 

MAC addresses. 

    Sleep for 20 seconds. 

    Start listening state by the switch port to listen to the Bridge Protocol Data 

Unit.  

    Sleep for 20 seconds. 

    Start learning the state of the switch port to add MAC addresses to the routing 

table.  

    Sleep for 20 seconds.  

    Start forwarding state by the switch port to forward packets.  

End while  

End  
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4. Experimental results 

The performance of both network topologies has been evaluated and compared with 

emphasis on sending an increasing number of Ping (100-500) while ensuring the 

same spanning tree. Based on the information gathered from Table 3-5 and Figs 3-8, 

we may obtain the following: 

• Dropped packets  

SDN achieved better results as it recorded 5 dropped packets while traditional 

recorded 30 dropped packets when 100 pings were sent from h1 to h8 in both SDN 

and traditional. However, as the number of pings increased gradually up to 500 pings, 

SDN recorded an obvious reduction in dropped packets to 70 packets and 135 packets 

for traditional. This means that SDN develops performance as less data needs to be 

retransmitted 

• Average RTT  

SDN accomplished a clear improvement regarding Average RTT over 

traditional, as SDN started with 17.25 ms, opposite to 39.998 ms with traditional, as 

100 pings are sent from h1 to h8 in both SDN and traditional. As the number of pings 

increased up to 500, SDN accomplished 180 ms, opposite to 500 ms in traditional 

500.  

• Total No of Pkts_received  

SDN achieved obvious progress regarding the Total number of Pkts_received. 

SDN recorded 90 and 600 Pkts_received, whereas traditional recorded 70 and 428 

Pkts_received, as a total number of pings is 100 up to 500, respectively.  

This improvement of SDN over traditional networks concerning basic network 

parameters is mainly due to several factors. In SDN, once the controller detects the 

connections between the switches then it acquires the enough knowledge of the 

current network status, It only works with the nearest unit and has no knowledge of 

the current network state, so the switches have to learn topology first, and this is what 

creates differences in measurements between SDN and traditional. The time switch 

ports take between blocking, listening, and learning states, all the way to a routing 

state, frame forwarding is non-existent and unnecessary with SDN topology due to 

the knowledge of the controller console of the current state of the network. 
Consequently, Fluctuations occur because in SDN, the time required to set up a 

connection between OpenFlow switches and the controller console to discover the 

connection between OpenFlow switches and build spanning trees is much less than 

the time required for STP to approximate switching topology in traditional networks. 

The results have been obtained through the percentage difference equation between 

SDN and traditional values to demonstrate if there is an improvement or degradation 

in performance, according to the following formula. 
 

Percentage difference (%) =  New value (SDN)-Old value  (traditional) × 100% 

Old value 
 

However, if the difference between the new value (SDN) and the old value 

(Traditional) in Tables 3-5 is positive, then there is a performance improvement. But 
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if the difference is negative, then there is a reduction or degradation of basic network 

parameters. 

After doing the calculations, we discovered that the difference between SDN 

and traditional is positive regarding the total number of received packets and 

Average_RTT, which indicates that SDN improves these network parameters. On the 

other hand, the difference between the SDN and traditional is negative regarding the 

total number of dropped packets, which implies that SDN reduced or, in other words, 

improved this network parameter.   

Table 3. Total No of Pkts_received 

No of ping Traditional  SDN 
Improvement 

of SDN over Traditional 

100 70 90                 22 % 

200 140 190                 26% 

300 270 355                 23%  

400 357 450                 20% 

500 428 600                 40% 
 

 
Fig. 3. Total No of Pkts_received vs No of ping 

 

 
Fig. 4. Percentage improvement of SDN over traditional regarding the total No of Pkts_received 
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Table 4. Total No of Pkts_dropped 

No of ping Traditional SDN  
Reduction  

of SDN over Traditional 

100 30 5 83% 

200 51 9 82% 

300 75 17 77% 

400 125 34 73% 

500 165 70 58% 

 

 
Fig. 5. Total No of Pkts_dropped vs the number of ping 

 

 
Fig. 6. Percentage reduction of SDN over Traditional regarding the Total No Pkts_dropped 

Table 5. Average RTT(msec) 

No of ping Traditional  SDN 
       Improvement 

of SDN over Traditional 

100 39 17 56.857% 

200 80 30 62.5% 

300 150 56 62.5% 

400 290 100 65.517% 

500 500 180 64% 
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Fig. 7. Average RTT vs No of pings 

 

 
Fig. 8. Percentage improvement of SDN over Traditional regarding Average_RTT 

5. Conclusion 

When it comes to network performance, SDN technology has shown greater 

flexibility compared to traditional technology, which may be accomplished without 

requiring the addition of new devices or manually configuring every device, and the 

existence of the OpenFlow protocol enables the addition of an extra switch or router. 

With a centralized controller, the SDN demonstrated an improved average RTT, 

dropped packets, and received packets than a traditional network, keeping in mind 

that this study is focused on a small-tree data center network. SDN security threats 
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architectural models, Employing Best Practices for Security, and Choosing Vendor-

Agnostic Solutions However, the most effective way to implement SDN plan that try 

to integrate these strategies into a comprehensive plan. 

However, as a future work, it may be possible to design an SDN consisting of 

several controllers connected to overcome single controller limitations, while 

achieving synchronization between them, and then comparing performance with the 

traditional network.  
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