
 119

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 25, No 2

Sofia • 2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2025-0015

An Analytical Study to Justify the Transformation from Traditional

to Software-Defined Network in Terms of QoS Parameters

Mahmood Jalal Ahmad Alsammarraie1, Haeeder Munther Noman2,

Ahmed Hefdhi Hussein Hussein2, Ali Abdulwahhab Abdulrazzaq2
1College of Engineering, Al-Iraqia University, Baghdad, Iraq
2Technical Instructors Training Institute, Middle Technical University, Baghdad, Iraq

E-mails: mahmood.j.ahmad@aliraqia.edu.iq Haider_monther@mtu.edu.iq

ahmed.ssal@mtu.edu.iq dr.ali.abdulwahhab@mtu.edu.iq

Abstract: Software-Defined Network is an emerging paradigm that has evolved to

address weaknesses in traditional networks in recent years. The idea behind this

technology is to separate the control plane from the data plane, making network

management and programmability more flexible and easier. This paper aims to

investigate the influence of the increasing number of pings (100-500) on two network

platforms: software-defined network and traditional network. Ping is defined as a

simple Internet application that lets users check whether a specific target IP address

is available and able to receive requests in computer network administration.

Moreover, Ping is also used as a diagnostic tool to make sure the host machine that

the user is attempting to contact is up and running. The simulation was carried out

using Mininet (the Mininet graphical user interface) to set up hosts and switches.

Results revealed that software-defined networks improved the total number of

packets received (22-40) %, average round-trip time (56-64) %, and reduced the total

number of dropped packets (83-58) %. Therefore, it can be concluded that software

software-defined network paradigm may be adopted for the network infrastructure’s

growing demand.

Keywords: Software-Defined Network (SDN), Software-defined network-based

controller (POX), Transport Layer Security (TLS), OpenFlow protocol, Round-Trip-

Time (RTT). Packet Internet or Inter-Network Groper (Ping).

1. Introduction

Initiated by emerging megatrends (such as big data) in information and

communication technologies, new Challenges for the Internet of the Future, like

access from anywhere, high bandwidth, and dynamic management, remain crucial

[1]. However, traditional approaches based on manual setup of proprietary devices

are error-prone and cannot fully utilize the capacity of the physical network

infrastructure [2]. Software-Defined Network (SDN) has been identified as one of the

mailto:mahmood.j.ahmad@aliraqia.edu.iq
mailto:Haider_monther@mtu.edu.iq
mailto:ahmed.ssal@mtu.edu.iq
mailto:dr.ali.abdulwahhab@mtu.edu.iq

 120

most promising solutions for the Internet in the future. SDN has two distinct

characteristics: the first is the separation of the control plane from the data plane, and

the second is providing programmability for developing network applications [3]. As

a result, SDN is set to provide a more efficient setup, better performance, and greater

flexibility to accommodate innovative network designs. The research aims to study

and clarify the concept of SDN as well as the OpenFlow protocol, which is described

as an idea a radical new approach to networking and proving the benefit of moving

to SDN by comparing the values of performance parameters between these networks

and traditional networks [4].

In 1997, the Active Networks Group proposed an innovative approach to

programmable network architecture, “Active Network”, where the switches perform

operations on demand. Data messages flow through it [5] to decouple network

services from devices and allow new services to be loaded into the infrastructure as

needed. Later, the Asynchronous Transfer Mode (ATM) was expanded to Develop

Control Asynchronous transfer mode (DCAN) Networks [6]. However, the goal was

to design and develop the infrastructure necessary to control and manage ATM

networks. The hypothesis concentrated on the control and management functions of

many devices (ATM switches in the case of DCAN) should be separated and

delegated to external entities dedicated to this purpose, which is the concept of SDN.

In the mid-2000s, 4D architecture was developed [7] with a clear separation between

the routing decision logic and the protocols that govern the interaction with network

elements, where the functions are divided. Network control is divided into four levels:

decision, dissemination, discovery, and data. In 2006, the IETF NETwork

CONFiguration Task Force (NETCONF) was proposed [8]. Later, in 2006, the

Ethane Project [9] was proposed, which defined a new network architecture for

corporate networks that consisted of a network of ethane switches that include flow

tables and a control unit. Through a secure channel, the unit can control the switches'

control communication and decide whether the packet should be forwarded or not.

However, to move from traditional networks to SDN, it must first be proven that this

transition will lead to great benefits of increasing performance, improving network

behavior, and making it more resilient for testing purposes, management, etc.

2. SDN

SDN is an approach that employs software-based controllers or Application

Programming Interfaces (APIs) to communicate with underlying hardware

infrastructure and direct traffic on a network. However, this model differs from

traditional networks, which use dedicated hardware devices (i.e., routers and

switches) to control network traffic. SDN can create and control a virtual network, or

control a traditional hardware – via software. While network virtualization allows

organizations to segment different virtual networks within a single physical network,

or to connect devices on different physical networks to create a single virtual network,

SDN enables a new way of controlling the routing of data packets through a

centralized server.

 121

2.1. SDN vs traditional

The key difference between SDN and traditional networking is infrastructure; SDN

is software-based, while traditional networking is hardware-based. Because the

control plane is software-based, SDN is much more flexible than traditional

networking as it allows administrators to control the network, change configuration

settings, provision resources, and increase network capacity all from a centralized

user interface, without the need for more hardware. There are also security

differences between SDN and traditional networking. Thanks to greater visibility and

the ability to define secure pathways, SDN offers better security in many ways.

However, because SDN uses a centralized controller, securing the controller is crucial

to maintaining a secure network.

2.2. SDN security threats

The logically centralized controller in SDN is responsible for making decisions

regarding packet routing. Hence, it is a heavily targeted point for malicious actions

and attacks within the SDN network. The main control plane's security threats are

listed below:

• Application Threats

Management plane applications may seriously compromise SDN security. In

general, the controller is in charge of application authentication, resource

authorization, appropriate separation, tracking, and auditing. Therefore, before

allowing access to any resource, applications must be sorted based on their security

implications. As a result, the controller’s northbound APIs should include a

customized security check for various application types.

• Scalability Threats

Every new flow in the data path requires the controller to implement a flow rule;

if there are too many new flows, the controller could soon experience a bottleneck.

• DoS & DDoS Threats

Distributed Denial of Service (DDoS) as well as Denial of Service (DoS) attacks

are the most difficult network threats. The purpose behind such attacks lies in the

capability to prevent authorized users from accessing network resources. DoS and

DDoS attacks cannot be prevented or mitigated by using multiple controllers because

this could cause all controllers to fail in sequence.

• Strategies to Address SDN Security Challenges

1. Adopt redundant architectural models: Use several SDN controllers to

reduce the possibility of bottlenecks and failures.

2. Employ Best Practices for Security: Use encryption, access controls, and

micro segmentation to safeguard the SDN environment.

3. Choose Vendor-Agnostic Solutions: Look for platforms that support open

standards and provide flexibility in multi-vendor ecosystems.

• Combining these methods into a complete SDN adoption plan is the most

efficient action. Organizations can overcome challenges and realize the full potential

of SDN by coordinating workforce development, security frameworks, and

technological solutions with business objectives.

 122

2.3. How SDN works

Here are the SDN basics: In SDN (like anything virtualized), the software is

decoupled from the hardware. SDN moves the control plane that determines where

to send traffic to software and leaves the data plane that forwards the traffic in the

hardware. This allows network administrators who use software-defined networking

to program and control the entire network via a single pane of glass instead of on a

device-by-device basis. There are three parts of a typical SDN architecture [10],

which may be located in different physical locations:

1. Infrastructure layer. Consists of switching devices (such as switches,

routers, etc.). The function of switching devices is that they are responsible for

collecting network status, temporarily stored in local devices, and sending it to

controllers. Network status takes account of information such as: Network topology,

traffic statistics, and network usage [11].

2. Control layer. Represents the intelligence of the network. The nodes in the

control layer are called controllers, which maintain an overview of the network

located in the infrastructure layer. Controller nodes can also be architecturally

classified into centralized and distributed. In centralized mode, one central control

node sends information, such as routing and other information, to all network devices

in the network; the centralized mode has the risk of a single point of failure [12]. In

distributed mode, there are many control nodes connected to network devices to

exchange information.

3. Application layer. Includes SDN applications usually created to satisfy user

requirements [13].

SDN is based on OPF. OPF is an open standard protocol that outlines how a

centralized controller governs and configures the control plane in an SDN network.

The data is kept in Mac and routing tables, which are handled by a variety of complex

switching and routing protocols. In conventional networks, these tables are used to

create the forwarding plane. The OpenFlow protocol provides centralized, consistent

rules that are capable of managing every flow table. A single or several OpenFlow

switches, each with one or more flow tables, make up an OpenFlow network [14].

The OpenFlow protocol was initially developed at Stanford University in 1998

to enable researchers to run experimental protocols in campus networks. Nowadays

OpenFlow protocol is added as a feature for commercial networking devices, it

provides a standard, non-regulated interface for manufacturers to access switches,

routers, and wireless access points. Moreover, these OpenFlow-enabled devices

provide access without requiring producers to reveal the inner workings of their

products.

3. Materials and methods

The work utilized-SDN-based controller of type POX. POX is an open-source

controller for creating SDN applications. The actual communication protocol

between the switches and controllers, OPF, can be effectively implemented with the

POX. Modeling of SDN is carried out through Mininet. Mininet is a Linux-based

simulation program used for rapid modeling in SDN to manage a set of hosts,

 123

switches, routers, and links using simulation to make a single system look like an

entire network. Hosts, switches, and controller modules are created using software as

an alternative of hardware. For the most part, their behavior is similar to separate

hardware components. Mininet provides a simple and cheap way to test networks for

developing OpenFlow applications, as it allows testing of large and complex

topologies without the need for a physical network to control virtualizing the network

and managing it from a single console, Mininet includes a network-aware Command

Line Interface (CLI), Mininet also provides a python API for creating and testing the

network. Finally, the ping tool was used to help in the discovery of the status of a

network device, that is, whether the device is alive or not. The research workflow

goes through two scenarios:

3.1. Scenario 1. SDN topology design

The SDN topology consisted of eight OpenFlow switches S1-S8 connected to a

central remote POX controller with an IP address. PORT (192.168.56.102, 6633),

eight hosts: h1-h8 with IP (10.0.0.1-10.0.0.8). 100-500 pings have been generated

and transmitted from h1 to h8 and repeated 10 times using the following command:

h1> ping 10.0.0.0.8 –l 64

64 bytes of data are sent in the ICMP echo request, and 66 bytes are received in

the ICMP echo reply message. Simply, ping is a computer network tool used to test

connectivity and the distance between two devices from each other. Technically

speaking, it sends a packet of information from one device to another over a network

and measures how long it takes to receive the response from the other device. This

design included a loop identical to traditional as shown in Fig. 1. POX is invoked to

establish the required connection within OpenFlow switches. In this scenario, POX

included the following modules:

1. OpenFlow.spanning_tree. This component creates a spanning tree by using

the discovery component to create a view of the network topology. It then turns off

flooding on switch ports that are not part of the tree. The STP is not particularly

related to this, though they aim to achieve comparable goals, which is a quite distinct

approach. The Spanning Tree component responds to changes in the network

topology. If a link is down, and there is an alternative link, it can maintain the

connection in the network by creating a new tree that enables flooding to occur at the

ports related to the alternative link. How this component builds a spanning tree is that

it goes through each switch, sees who the neighbors of this switch are, and checks to

see if the neighbor exists within the tree, if it does not exist, it adds the two switches

(current and neighbor) to the tree in addition to ports on the connection between them.

However, this component has two options that alter the start-up behaviour.

2. No-flood. This module turns off flooding on all ports as soon as a switch

connects.

3. Hold-down. This module stops flood control from being changed until the

full cycle of discovery has finished and all links have had a chance to be found.

 124

4. Forwarding. l2_learning. This module enables an OpenFlow switch to

function as a kind of L2 learning switch, as it installs flows that precisely match on

as many fields as possible.
5. OpenFlow. Discovery. This component helps to determine network topology

as it sends specifically designed LLDP messages out of OpenFlow switches [15].

When links go up or down, it raises events. Algorithm 1 outlined the SDN topology

mechanism. The following command should be issued to initialize the POX controller

from the controller console C0.

./pox.py log.level-- DEBUG Forwarding.l2_learning Openflow.spanning_tree ‐‐

no-flood ‐‐hold-down

Fig. 1. SDN topology

Table 1. Algorithm 1

Algorithm 1. SDN- Topology

Input: A Flow of packets arrives at each OpenFlow switch connected with the POX

controller

Output: POX controller invokes components to manage and control the network

While true do

 If there is NO match between the first packet in the flow and any flow entry in the

OpenFlow switch

 Then

 Forward the packet to the POX controller.

 Else if there is a match between the first packet and any flow

 entry in the OpenFlow switch

 Then

 Forward the packet to the destination.

 End if

Feed forward information back to the OpenFlow switch by POX

Update the flow table in the switch by POX

End while

End

 125

3.2. Scenario 2. Traditional topology design

The traditional topology consisted of eight legacy switches S1-S8 that operate as a

Systematic MAC-learning switch, where the speed of each port on any switch is

10000 Mbps, eight hosts: h1-h8 with IP 10.0.0.1-10.0.0.8. Similarly, 100-500 pings

have been generated and transmitted from h1 up to h8, repeated 10 times using the

following command:

h1> ping 10.0.0.0.8 – l 64

The STP is not activated on legacy switches and must be activated on every

switch to stop network loops while allowing redundancy. Moreover, it ensures that

there is a single effective path between two switches in the network, by closing

duplicate paths which may cause a loop, and when a failure occurs, alternative paths

are activated by reopening the paths which has been closed. However, no controller

is present in the traditional; instead, each switch operates independently. The

fundamental difference between the current and previous scenarios is that the current

scenario does not require a controller of any type under any platform to manage the

network. Rather, it only requires a layer_2 L2 switch. Based on MAC addresses, L2

switches are excellent at quickly forwarding Ethernet communications. L2 switches

build a dynamic MAC address table for effective data forwarding in the future by

learning the source MAC addresses and associated switch ports from incoming data

packets.

Fig. 2. Traditional topology

Table 2. Algorithm 2

Algorithm 2: Traditional Topology

While true do

 Start the blocking state on the switch port to stop forwarding frames or learning

MAC addresses.

 Sleep for 20 seconds.

 Start listening state by the switch port to listen to the Bridge Protocol Data

Unit.

 Sleep for 20 seconds.

 Start learning the state of the switch port to add MAC addresses to the routing

table.

 Sleep for 20 seconds.

 Start forwarding state by the switch port to forward packets.

End while

End

 126

4. Experimental results

The performance of both network topologies has been evaluated and compared with

emphasis on sending an increasing number of Ping (100-500) while ensuring the

same spanning tree. Based on the information gathered from Table 3-5 and Figs 3-8,

we may obtain the following:

• Dropped packets

SDN achieved better results as it recorded 5 dropped packets while traditional

recorded 30 dropped packets when 100 pings were sent from h1 to h8 in both SDN

and traditional. However, as the number of pings increased gradually up to 500 pings,

SDN recorded an obvious reduction in dropped packets to 70 packets and 135 packets

for traditional. This means that SDN develops performance as less data needs to be

retransmitted

• Average RTT

SDN accomplished a clear improvement regarding Average RTT over

traditional, as SDN started with 17.25 ms, opposite to 39.998 ms with traditional, as

100 pings are sent from h1 to h8 in both SDN and traditional. As the number of pings

increased up to 500, SDN accomplished 180 ms, opposite to 500 ms in traditional

500.

• Total No of Pkts_received

SDN achieved obvious progress regarding the Total number of Pkts_received.

SDN recorded 90 and 600 Pkts_received, whereas traditional recorded 70 and 428

Pkts_received, as a total number of pings is 100 up to 500, respectively.

This improvement of SDN over traditional networks concerning basic network

parameters is mainly due to several factors. In SDN, once the controller detects the

connections between the switches then it acquires the enough knowledge of the

current network status, It only works with the nearest unit and has no knowledge of

the current network state, so the switches have to learn topology first, and this is what

creates differences in measurements between SDN and traditional. The time switch

ports take between blocking, listening, and learning states, all the way to a routing

state, frame forwarding is non-existent and unnecessary with SDN topology due to

the knowledge of the controller console of the current state of the network.
Consequently, Fluctuations occur because in SDN, the time required to set up a

connection between OpenFlow switches and the controller console to discover the

connection between OpenFlow switches and build spanning trees is much less than

the time required for STP to approximate switching topology in traditional networks.

The results have been obtained through the percentage difference equation between

SDN and traditional values to demonstrate if there is an improvement or degradation

in performance, according to the following formula.

Percentage difference (%) = New value (SDN)-Old value (traditional) × 100%

Old value

However, if the difference between the new value (SDN) and the old value

(Traditional) in Tables 3-5 is positive, then there is a performance improvement. But

 127

if the difference is negative, then there is a reduction or degradation of basic network

parameters.

After doing the calculations, we discovered that the difference between SDN

and traditional is positive regarding the total number of received packets and

Average_RTT, which indicates that SDN improves these network parameters. On the

other hand, the difference between the SDN and traditional is negative regarding the

total number of dropped packets, which implies that SDN reduced or, in other words,

improved this network parameter.

Table 3. Total No of Pkts_received

No of ping Traditional SDN
Improvement

of SDN over Traditional

100 70 90 22 %

200 140 190 26%

300 270 355 23%

400 357 450 20%

500 428 600 40%

Fig. 3. Total No of Pkts_received vs No of ping

Fig. 4. Percentage improvement of SDN over traditional regarding the total No of Pkts_received

90
190

355

450

600

70 140

270

357
428

100 200 300 400 500

To
ta

l n
o

. o
f

P
kt

s_
re

ce
iv

e
d

No. of ping (100-500)

SDN-based network Traditional network

22%
26%

23%
20%

40%

100 200 300 400 500p
er

ce
n

ta
g
e

im
p

ro
v
em

en
t

 (
%

)

no. of ping(100-500)

 128

Table 4. Total No of Pkts_dropped

No of ping Traditional SDN
Reduction

of SDN over Traditional

100 30 5 83%

200 51 9 82%

300 75 17 77%

400 125 34 73%

500 165 70 58%

Fig. 5. Total No of Pkts_dropped vs the number of ping

Fig. 6. Percentage reduction of SDN over Traditional regarding the Total No Pkts_dropped

Table 5. Average RTT(msec)

No of ping Traditional SDN
 Improvement

of SDN over Traditional

100 39 17 56.857%

200 80 30 62.5%

300 150 56 62.5%

400 290 100 65.517%

500 500 180 64%

5 9 17 34

70

30
51

75

125

165

100 200 300 400 500

T
o
ta

l
m

o
.

o
f

P
k

ts
_

d
ro

p
p

ed

no. of ping(100-500)

SDN-based network Traditional network

83% 82% 77% 73%
58%

100 200 300 400 500p
er

ce
n

ta
g
e

re
d

u
ct

io
n

%

no. of ping(100-500)

Improvement of SDN over Traditional

 129

Fig. 7. Average RTT vs No of pings

Fig. 8. Percentage improvement of SDN over Traditional regarding Average_RTT

5. Conclusion

When it comes to network performance, SDN technology has shown greater

flexibility compared to traditional technology, which may be accomplished without

requiring the addition of new devices or manually configuring every device, and the

existence of the OpenFlow protocol enables the addition of an extra switch or router.

With a centralized controller, the SDN demonstrated an improved average RTT,

dropped packets, and received packets than a traditional network, keeping in mind

that this study is focused on a small-tree data center network. SDN security threats

such as application threat, scalability, DoS, and DDoS threats must be taken into

consideration and several actions should be taken like Adopting redundant

architectural models, Employing Best Practices for Security, and Choosing Vendor-

Agnostic Solutions However, the most effective way to implement SDN plan that try

to integrate these strategies into a comprehensive plan.

However, as a future work, it may be possible to design an SDN consisting of

several controllers connected to overcome single controller limitations, while

achieving synchronization between them, and then comparing performance with the

traditional network.

17 30 56 100 18039 80 150
290

500

100 200 300 400 500A
ve

ra
ge

 R
TT

 (
m

se
c)

no. of ping (100-500)

SDN Traditional

56.86%

62.50% 62.50%

65.52%
64%

100 200 300 400 500

p
er

ce
n

ta
g
e

im
p

ro
v
em

en
t

%

no. of ping(100-500)

Improvement of SDN over Traditional

 130

R e f e r e n c e s

1. S h a m u g a m, V., I. M u r r a y, J. A. L e o n g, A. S. S i d h u. Software Defined Networking

Challenges and Future Direction: A Case Study of Implementing SDN Features on OpenStack

Private Cloud. – IOP Conference Series: Materials Science and Engineering, Vol. 121, 2016,

012003. DOI: 10.1088/1757-899x/121/1/012003.

2. H u a n g, T., F. R. Y u, C. Z h a n g, J. L i u, J. Z h a n g, Y. L i u. A Survey on Large-Scale Software

Defined Networking (SDN) Testbeds: Approaches and Challenges. – IEEE Communications

Surveys & Tutorials, Vol. 19, 2017, No 2, pp. 891-917. DOI: 10.1109/comst.2016.2630047.

3. J i m e n e z, M. B., D. F e r n a n d e z, J. E. R i v a d e n e i r a, L. B e l l i d o, A. C a r d e n a s.

A Survey of the Main Security Issues and Solutions for the SDN Architecture. – IEEE Access,

Vol. 9, 2021, pp. 122016-122038. DOI: 10.1109/access.2021.3109564.

4. M c K e o w n, N. OpenFlow. – ACM SIGCOMM Computer Communication Review, Vol. 38,

2008, No 2, pp. 69-74. DOI: 10.1145/1355734.1355746.

5. A n e r o u s i s, N., P. C h e m o u i l, A. A. L a z a r, N. M i h a i, S. B. W e i n s t e i n. The Origin

and Evolution of Open Programmable Networks and SDN. – IEEE Communications Surveys

& Tutorials, Vol. 23, 2021, No 3, pp. 1956-1971. DOI: 10.1109/comst.2021.3060582.

6. N i s a r, K., E. R. J i m s o n, M. H. B i n A h m a d H i j a z i, A. A. A g. I b r a h i m, Y. J. P a r k,

I. W e l c h. A New Bandwidth Management Model Using Software-Defined Networking

Security Threats. – In: Proc. of 13th IEEE International Conference on Application

of Information and Communication Technologies (AICT’19), 2019.

DOI: 10.1109/aict47866.2019.8981784.

7. L a i, Y.-C., A. A l i, M. M. H a s s a n, M. S. H o s s a i n, Y.-D. L i n. Performance Modeling and

Analysis of TCP Connections over Software Defined Networks. – In: Proc. of IEEE Global

Communications Conference (GLOBECOM’17), 2017, DOI: 10.1109/glocom.2017.8254078.

8. Review for “Controller Placement Problem during SDN Deployment in the ISP/Telco Networks:

A Survey”. 2023. DOI: 10.1002/eng2.12801/v2/review1.

9. C a s a d o, M., N. M c K e o w n, S. S h e n k e r. From Ethane to SDN and Beyond. – ACM

SIGCOMM Computer Communication Review, Vol. 49, 2019, No 5, pp. 92-95.

DOI: 10.1145/3371934.3371963.

10. Á n g e l B a r r e r a P é r e z, M., N. Y. S e r r a t o L o s a d a, E. R o j a s S á n c h e z,

G. M a n c i l l a G a o n a. State of the Art in Software Defined Networking (SDN). – Visión

Electrónica, Vol. 13, 2019, No 1, pp. 178-194. DOI: 10.14483/22484728.14424.

11. L i, T., J. C h e n, H. F u. Application Scenarios Based on SDN: An Overview. – Journal of Physics:

Conference Series, Vol. 1187, 2019, No 5, 052067. DOI: 10.1088/1742 6596/1187/5/052067.

12. B l i a l, O., M. B e n M a m o u n, R. B e n a i n i. An Overview on SDN Architectures with Multiple

Controllers. – Journal of Computer Networks and Communications, Vol. 2016, 2016, pp. 1-8.

DOI: 10.1155/2016/9396525.

13. W a z i r a l i, R., R. A h m a d, S. A l h i y a r i. SDN-OpenFlow Topology Discovery: An Overview

of Performance Issues. – Applied Sciences, Vol. 11, 2021, No 15, 6999.

DOI: 10.3390/app11156999.

14. B e n a b b o u, J., K. E l b a a m r a n i, N. I d b o u f k e r. Security in OpenFlow-Based SDN,

Opportunities and Challenges. – Photonic Network Communications, Vol. 37, 2018, No 1,

pp. 1-23. DOI: 10.1007/s11107-018-0803-7.

15. L i a o, L., V. C. M. L e u n g. LLDP-Based Link Latency Monitoring in Software-Defined

Networks. – In: Proc. of 12th International Conference on Network and Service Management

(CNSM’16), 2016. DOI: 10.1109/cnsm.2016.7818442.

Received: 13.04.2025, First Revision: 30.04.2025, Second Revision: 12.05.2025,

Accepted: 19.05.2025

