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Abstract: Often, in a real practice environment, classical methods for tuning 

controllers do not provide the desired performance of the control strategy, as they do 

not account for changes in the parameters of the controlled process. Sometimes, there 

is no possibility for the rapid implementation of a new control algorithm, and the 

designer only has access to the current tuning of the introduced parameters. This 

paper presents an approach for assessing control performance in cases where the 

controller is designed for nominal operating conditions, aiming to reduce the control 

error caused by changes in the parameters of the controlled process. A controller 

with three tuning parameters is considered, with research conducted on the possible 

correction of the overall proportionality coefficient. The issue of insensitivity and the 

performance of the transient processes of the closed-loop system is also addressed.  

Keywords: Control systems, Performance criteria, Robustness, Root contours. 

1. Introduction and research aim 

The practical need for rapid decision-making in control strategy and the introduction 

of intelligent elements of industrial automation for their implementation have led to 

the diminishing significance of classical control theory. Today, efforts are focused on 

the relatively global integration of the entire control system. This has prompted the 

scientific community to seek transformations of classical control theory by adapting 

it to the new situation. 

The advantage of transforming classical methods lies in the convenience of 

well-established scientific and applied knowledge and their known applications to 

different classes of controllable processes that fulfill complex performance criteria. 

This transformation enables a new interpretation of classical control theory through 

novel visualizations, new model representations, and the discovery of hidden 

beneficial relationships. These developments enhance engineering intuition, inspire 

the combination of various classical approaches, and ultimately lead to practically 

effective results [4, 12, 18]. 

This paper aims to propose a new approach for assessing control performance 

by adapting the capabilities of the complex plane to the study of system robustness. 
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This approach can be used for the rapid retuning of controller parameters within the 

system in situations where a parametric change in the controlled process has not been 

accounted for in the control strategy. 

The primary task of this research is to mathematically track and graphically 

represent the relationship between the proportionality coefficient and the robustness 

properties in the complex plane, as well as the system's performance in the time 

domain. 

1.1. Brief overview 

For over a century, the PID controller has been the focus of theoretical research and 

practical implementation using different physical technical bases [7, 14]. Its 

application in automation systems has given rise to numerous methods for 

determining tuning parameters to satisfy complex performance criteria concerning 

the behavior of transient response processes [8, 9, 22]. It turns out that during the 

tuning procedures [8], which are carried out quickly by a human operator, the risk of 

accumulating inaccurate data should be minimized. Such data could be used by 

training algorithms for maintenance and decision-making in industrial production.  

In practice, the theoretical analysis of automation processes controlled by PID 

regulators is rarely used. The difficulty arises from the fact that the mathematical 

model of the controlled process is not always accurate. Consequently, when a 

situation occurs, tuning is almost always performed experimentally and most often 

involves tuning the proportional gain. Typically, the mathematical models of 

controllers in modern SCADA systems implement form representation in which the 

proportional gain affects all control parameters [10]. 

There are various methods for analyzing and representing uncertainty in the 

parameters of the controlled process, as well as numerous approaches for tuning 

controllers for systems with uncertain parameters. Often, these methods rely on a 

priori known variations in the parameters of the controlled process, meaning the 

controller does not adapt to these changes but accounts for them in advance [1, 23]. 

Fundamentally, these methods are typically derived by transforming classical control 

approaches into modern control methods that consider changes in the controlled 

object [9, 16]. One such possibility is the development of methodologies that combine 

robust principles with the root locus method, where the beneficial effect is directly 

observable and gives meaningful application to the scientific-theoretical foundation 

in a practical environment [19, 22]. The root locus method is widely used as it enables 

the real design of automation systems without relying on experimental methods based 

on extrapolation practices, which would otherwise lead to time loss due to returning 

[2, 13, 24]. 

1.2. Brief comparison and explanation 

The use of the complex plane for analyzing control systems with uncertain parameters 

requires the discovery of transformations of well-known methods, providing 

solutions that incorporate interval polynomials [6, 12].  



 85 

In [15], an LMI technique for root positioning in second-order linear systems 

affected by uncertainty is described. In [20, 21], the problem of synthesizing stable 

characteristic polynomials that describe the dynamics of control systems under 

interval uncertainty is examined through the lens of the root locus. [11] presents an 

extended representation of the root locus method, incorporating polynomials with 

complex coefficients. In reference [4, 15], the concept of a robust root locus is 

introduced, providing a broader view of uncertainty in the control system, while in 

[9], root contours obtained from the components of the control algorithm are studied, 

but for systems with certain parameters. In [17], the authors derive another group of 

root contours, with the focus of the development being directed towards stability 

margins – gain and phase margin for control systems with certain coefficients. 

These scientific studies provide the basis for further developing the concept of 

a robust root locus and the use of root contours in the present paper. Original research 

proposed in this paper is the consideration of changes in the parameters of the 

controlled process and the subsequent performance analysis of the system's 

robustness when the proportional gain coefficient in the control algorithm changes. 

The proposed research solution offers a canonical approach for the rapid retuning of 

the proportional gain, thus preventing the accumulation of unreliable data for training 

and processing in many industrial applications. 

2. Root contours 

2.1. Problem formulation 

The engineering tool for analysis presented in this paper is conceptually related to the 

root locus method [4, 5, 12, 16]. This classical method is used for the analysis and 

synthesis of control systems, assuming a system with certain parameters. It is also 

indirectly used for evaluating key performance specifications of the transient 

responses by deriving geometric relationships in the complex plane based on the 

location of the dominant roots. When the parameters of the controlled process change, 

classical methods assume practice with a family of characteristics or a family of root 

loci. 

In Fig. 1, the configuration of a closed-loop control system is presented, 

consisting of 𝐶(𝑠) – the transfer function of the controller; 𝐺(𝑠) – the transfer 

function of the controlled process; 𝑘𝑒 is a free parameter that varies from 0 to infinity. 

The set of solutions to the characteristic equation (1), for 0 ≤ ∞ gives the values of 

the roots of the closed-loop system and represents the traditional root locus. 
 

 
Fig. 1. Block-diagram of feedback control system 

 

(1)   𝐻(𝑠) = 1 + 𝑘𝑒𝐶(𝑠)𝐺(𝑠) = 0.  
By limiting the coefficient 𝑘𝑒 to a finite interval 𝑘𝑒 ∈ 𝑎 segment of the root 

locus is obtained. It should also be noted that this formulation can be applied to any 
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parameter of the control system, belonging to both the controller and the controlled 

process. The visualization of segments obtained through the solution of (1) for 

arbitrary 𝑘𝑒 is known in references as root contours [12]. 

Let the transfer function of the controlled process 𝐺(𝑠) have the following form 

(2), and the controller 𝐶(𝑠) be represented by the following transfer function (3),  

Fig. 1, 

(2)   𝐺(𝑠) = ((𝑠 + 𝑎)(𝑠 + 𝑏))
−1

,  

(3)   𝐶(𝑠) = (𝑘𝑒(𝑠 + 𝑎𝑖)(𝑠 + 𝑏𝑖))𝑠
−1.  

The tuning parameters for the controller 𝐶(𝑠) are 𝑎𝑖 , 𝑏𝑖, and 𝑘𝑒. They are 

determined based on the desired performance criteria of transient responses (PC) (4), 

and the nominal values of the parameters of the controlled process 𝐺 (2), where 

𝑎 = 𝑎∗ and  𝑏 = 𝑏∗, 𝑎𝑖 = 𝑎∗ and 𝑏𝑖 = 𝑏∗, 

(4)   PC: {𝜎 = const, 𝑡𝑠
2% = const, [𝑡], 𝜀(∞) = 0}.   

An interesting case is when the parameters of the controlled process 𝐺(𝑠), (2) 

change within an a priori known range, 

(5)   𝑎 ∈ [𝑎−,  𝑎+] and 𝑏 ∈ [𝑏−, 𝑏+].  
In that case, the chosen tuning of the controller parameters will not be able to 

satisfy the specified performance criteria (4) for all possible combinations of changes 

in the controlled process parameters (5). The characteristic equation of the closed-

loop system in the situation arising from (5), where 𝑎𝑖 ≠ 𝑎∗, and 𝑏𝑖 ≠ 𝑏∗, will have 

the form  

(6)   𝐻(𝑠) = 𝑠3 + (𝑎 + 𝑏)𝑠2 + 𝑎𝑏𝑠 + 𝑠2 + (𝑎𝑖 + 𝑏𝑖)𝑠 + 𝑎𝑖𝑏𝑖 = 0.    
In the root locus plane, a set of root loci will be observed, providing solutions 

to (6), obtained as a result of the change in the controlled process parameters (5), 

while the controller parameters remain constant.  

2.2. Generation of root contours 

An original analysis of the situation that has arisen, which helps in taking further 

actions, is the visualization of segments of the root trajectory obtained based on the 

a priori information about the change in the parameters (5). For this purpose, the 

characteristic equation (6) is modified into two equations (7) and (8) concerning the 

variable parameters (5) of the controlled process (2), 

(7)   𝐻(𝑠) = 1 + 𝑎
𝑠2+𝑏𝑠

𝑠3+𝑏𝑠2+𝑠2+(𝑎𝑖+𝑏𝑖)𝑠+𝑎𝑖𝑏𝑖
= 0,  

(8)    𝐻(𝑠) = 1 + 𝑏
𝑠2+𝑎𝑠

𝑠3+𝑎𝑠2+𝑠2+(𝑎𝑖+𝑏𝑖)𝑠+𝑎𝑖𝑏𝑖
= 0.   

The variants of the characteristic equations (7) and (8) are used to outline the 

root contours in the complex plane by specifying the ranges of variation of the 

variable parameters a and b (5). In this way, this change is modeled and graphically 

represented in the complex plane.  

The root contours can conveniently be denoted as 𝐶𝑠
𝑧,𝑝

,  where 𝑧 indicates that 

there is uncertainty, 𝑝 is the parameter for which the contour is visualized, and 𝑠 is 

the complex plane. 
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These contours can take a variety of shapes, sizes, and positions in the complex 

plane, depending on the specific model of control system and the uncertainty in the 

parameters of the controlled process. 

3. Study of robustness 

The positioning of the root contours, obtained by modeling the uncertainty in the 

control system due to changes in the controlled process parameters (2) and (5) within 

the complex plane, allows for a new evaluation of the system's robustness from the 

root locus perspective. This relationship enables a swift assessment of control 

transient performance response in the time domain.  

The primary measure of the robust properties of systems is mathematically 

defined by the sensitivity function 𝑆(𝑠) and the complementary sensitivity function 

𝑇(𝑠), as shown in Fig. 1: 

(9)   𝑆(𝑠) = (1 + 𝑘𝑒𝐺(𝑠)𝐺(𝑠))−1,  

(10)   𝑇(𝑠) = 𝑘𝑒𝐺(𝑠)𝐺(𝑠)(1 + 𝑘𝑒𝐺(𝑠)𝐺(𝑠))−1.      

Robustness, as a property of control systems, is synonymous with insensitivity 

or reduced sensitivity of the control system to parametric changes in the controlled 

process. The mathematical expressions that represent this property use the sensitivity 

function 𝑆(𝑠) and the complementary sensitivity function 𝑇(𝑠) (9), (10). These 

functions are defined in the complex domain and are directly represented in the 

frequency domain (𝑠 = 𝑗𝜔), for a given frequency range dependent on the dynamics 

of the control system, where 𝜔𝑙 < 𝜔 < 𝜔ℎ [8], 

(11)   NP = sup
𝜔

|𝑦0(𝑗𝜔)𝑆(𝑗𝜔)|,     NP ≤ 1,    𝑦0(𝑗𝜔) = (𝑗𝜔)−1,    

(12)   RS = sup
𝜔

|𝑤𝑇(𝑗𝜔)𝑇(𝑗𝜔)|,   RS ≤ 1, 𝑤𝑇(𝑗𝜔) = 𝐺(𝑗𝜔) − 𝐺∗(𝑗𝜔),   

(13)   RP = sup
𝜔

(|𝑦0𝑆(𝑗𝜔)| + |𝑤𝑇𝑇(𝑗𝜔)|),     RP ≤ 1,⍱𝜔𝜖[𝜔𝑙: 𝜔ℎ].   

Condition (11) is known as the nominal performance condition, while 

conditions (12) and (13) are respectively known as the conditions for robust stability 

and robust performance. In expressions (9) and (10), the denominator coincides with 

the characteristic equation (1). This means that the sensitivity function 𝑆(𝑠) and the 

complementary sensitivity function 𝑇(𝑠) have a direct representation in the complex 

plane through the mobility of the roots obtained from the characteristic equation (1) 

and, accordingly, through the root contours 𝐶𝑠
𝑧,𝑝

. From (9), it follows:  

(14)   1 + 𝑘𝑒𝐺(𝑠)𝐺(𝑠) = 𝑆−1(𝑠).  

The equation shows that each position of the closed-loop system roots, 

determined by 𝑘𝑒, is directly related to the inverse sensitivity 𝑆−1(𝑠) of the control 

systems. From the robust stability condition (12), it can be written as  

(15)   𝑤𝑇(𝑠) = 𝑇−1(𝑠).    

This equation shows that the difference in the control system parameters 𝑤𝑇(𝑠) 

s is directly related to the inverse function of the complementary sensitivity 𝑇−1(𝑠). 

In turn, the complementary sensitivity function 𝑇(𝑠) from (10) can be expressed 

through the equation 

(16)   𝑇(𝑠) = 𝑆−1(𝑠)𝑘𝑒𝐺(𝑠)𝐺(𝑠).   

From which (15) takes the form of the next equation: 
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(17)   𝑤𝑇(𝑠) = (𝑆−1(𝑠)𝑘𝑒𝐺(𝑠)𝐺(𝑠))
−1

.  

The equation shows that the difference in the control system parameters 𝑤𝑇(𝑠) 

is directly related to the inverse sensitivity function 𝑆−1(𝑠). Analyzing expressions 

(14)-(17) and their expected development in the complex plane leads to the following 

conclusions that must be considered when making decisions regarding changes in the 

parameters of controlled process 𝐺(𝑠), (5) and controller 𝐶(𝑠), tuned for the nominal 

operating mode of the control system.  

• The sensitivity function𝑆(𝑠) and the complementary sensitivity function 

𝑇(𝑠) depend on the free parameter of the control system  𝑘𝑒. 

• At small values of the coefficient 𝑘𝑒, the magnitude of the sensitivity function 

S(s) increases. This means that the control system is sensitive to changes in the 

parameters of the controlled process. On the other hand, at large values of the 

coefficient  𝑘𝑒, the magnitude of the sensitivity function 𝑆(𝑠) will decrease, which 

means that the system will become insensitive to changes in the parameters of the 

controlled process. 

• Since 𝑆(𝑠) + 𝑇(𝑠) = 1, the magnitude of the sensitivity function 𝑆(𝑠) and 

the magnitude of the complementary sensitivity function 𝑇(𝑠) can range from 0 to 1. 

The goal of any control system is to achieve  𝑆(𝑠) ≈ 0 and 𝑇(𝑠) ≈ 1. 

• Regarding the complementary sensitivity function 𝑇(𝑠), for large values of  

𝑘𝑒, its magnitude approaches 1, whereas for small values, it tends to 0. 

These conclusions are fully confirmed when verifying the strictness of the 

conditions in the frequency domain, given by (11)-(13). In the time domain, 

increasing the coefficient  𝑘𝑒 can lead to transient responses with significantly higher 

time response speed, oscillations, and even loss of stability, especially when it is 

associated with the proportional gain of the controller. This is independent of the fact 

that the control system is characterized by low sensitivity. 

4. Numerical example 

The performance criterion (4) of the system studied from Fig. 1 has a specific form 

in the presented numerical example: 

(18)   PC: {𝜎 = 0, [%], 𝑡𝑠
2% = 4, [𝑠], 𝜀(∞) = 0}.   

The parameters of the controlled process (2) change within the range, 

(19)   𝑎 ∈ [1.5: 2.5] и  𝑏 ∈ [0.5: 1.5].  
In the nominal mode, the values are 𝑎∗ = 2, 𝑏∗ = 1. The controller 𝐶(𝑠) is 

tuned for the nominal mode as follows, by matching the poles of the transfer function 

of the controlled process 𝐺(𝑠) with the zeros of the transfer function of the controller 

𝐶(𝑠),  

(20)   𝑎𝑖 = 𝑎∗ = 2, 𝑏𝑖 = 𝑏∗ = 1,  𝑘𝑒 = 1.   

The characteristic equation, which corresponds to the nominal operating mode, 

has the form 

(21)   𝐻(𝑠) = 1 + 𝑠−1 = 0.  

Fig. 2 shows a set of root locus plots with changes in the parameters of the 

controlled process (19), controller parameters are  𝑎𝑖 = 2, 𝑏𝑖 = 1, and constructed 
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for 0 ≤ 𝑘𝑒 ≤ ∞. The points mark the values for the nominal tuning of the controller 

in the control system, with a proportional gain coefficient  𝑘𝑒 = 1.  

 

 
Fig. 2. Root Locus of control systems (uncertainty parameters) 

 

The visualization in Fig. 2 shows that, with changes in the parameters of the 

controlled process (19), the system with the settings (20) will maintain stability, but 

the performance in the time domain will not meet the performance criterion (18).  

The indirect performance specifications of the transient responses, which are 

considered in the complex plane, lie within the boundaries 𝜉 ∈ [0.72: 1] and  
𝜔𝑛 ∈ [1: 3.2], as shown in Fig. 2, and explain the variations in the transient responses 

of the closed-loop control system.  

Fig. 3 shows the transient responses with changes in the parameters of the 

controlled process (19), where the nominal operating mode (20) is marked with a 

bold line, corresponding to the points and roots of the closed-loop system from  

Fig. 2. 

 
Fig. 3. Transient performance of control systems (uncertainty parameters, 𝑘𝑒 = 1 
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The visualization in Fig. 3 demonstrates a significant change in the control 

performance in the time domain with the variation of the parameters of the controlled 

process 𝐺(𝑠).  

The zone of variation in the direct performance specifications, overshoot 𝜎(%), 

and settling time 𝑡𝑠
2 %(s), is conditionally marked as 𝑍 in Fig. 3.  

It is formed by the change in the parameters of the controlled process 𝐺(𝑠), (19) 

and will further be used for a visual quantitative-qualitative assessment of the 

magnitude of the uncertainty in the parameters of the controlled process in the time 

domain.  

Along the segment of 𝑍 there will be a value determined by the change in the 

settling time  𝑡𝑠
2%, while in height, it will have a value determined by the length of 

the segment defined by the change in the maximum value of the output  𝑦max, where: 

𝑍: {|𝑡𝑠
2%|, |𝑦max|},  |𝑡𝑠

2%| = 𝑡𝑠max

2%⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝑡𝑠min

2%⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,  |𝑦max| = 𝑦max
max⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∩ 𝑦max

min⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.    

For a proportional gain coefficient 𝑘𝑒 = 1, the zone will have a value of 

 𝑍: {6.35,0.12}, as shown in Fig. 3.  

In the complex plane, the zone 𝑍 can also be interpreted and manipulated 

through the root contours (𝐶𝑠
𝑧,𝑘𝑒), obtained by considering the uncertainty in the 

parameters of the controlled process (19) and concerning the proportional gain 

coefficient 𝑘𝑒.  

Fig. 4 shows the root locus for the studied system  𝐶𝑠
𝑧,1

, described in Fig. 1 and 

by (2), (3), and (19), with, 𝑘𝑒 = 1. 
 

 
Fig. 4. Root contour of closed loop system, 𝑘𝑒 = 1 

 

To plot the root contour 𝐶𝑠
𝑧,1

 in the complex plane in Fig. 4, the following 

equations are required, which represent modifications of the characteristic equation 

of the closed-loop control system (6): 

(22)   𝐻𝑎𝑏−(𝑠) = 1 + 𝑎
𝑠2+0.5𝑠

𝑠3+1.5𝑠2+3𝑠+2
= 0, 𝑎 ∈ [1.5: 2.5] , 𝑏 = 0.5,    

(23)   𝐻𝑎
𝑏+

(𝑠) = 1 + 𝑏
𝑠2+1.5𝑠

𝑠3+3.5𝑠2+3𝑠+2
= 0, 𝑎 ∈ [1.5: 2.5], 𝑏 = 1.5,     
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(24)   𝐻𝑏𝑎−(𝑠) = 1 + 𝑎
𝑠2+1.5𝑠

𝑠3+2.5𝑠2+3𝑠+2
= 0 , 𝑏 ∈ [0.5: 1.5], 𝑎 = 1.5,    

(25)   𝐻𝑏
𝑎+

(𝑠) = 1 + 𝑏
𝑠2+2.5𝑠

𝑠3+3.5𝑠2+3𝑠+2
= 0 , 𝑏 ∈ [0.5: 1.5], 𝑏 = 2.5.    

The zone, defined by the root contour in Fig. 4, represents segments of the root 

loci obtained from the solutions of equations (22)-(25). It provides information on 

whether, with the change in (19), the system will remain within the stability zone in 

the complex plane.  

In the example considered, the system retains stability when the parameters of 

the controlled process 𝐺 are changed, as described by (19), which indicates that the 

condition for robust stability (12) will be satisfied in the frequency domain.   

The size of this zone, defined by the root contour 𝐶𝑠
𝑧,1

 is an indication of the 

varying performance of the transient responses, as shown in Fig. 3. The opposite 

statement is also valid.   

The graphical representation of the mathematical conditions for robust stability 

and robust performance (11)-(13), with a proportional gain coefficient 𝑘𝑒 = 1 is 

shown in Fig. 5. 

 

 
Fig. 5. Bode diagram of nominal performance, robust stability, robust performance, 𝑘𝑒 = 1 

 

From the graph shown in Fig. 5, it can be seen that the considered control system 

with the tuned parameters (20) has nominal performance, NP = 0 dB and robust 

stability, RS = −1.58 dB, for frequency values within the entire range of the study 

𝜔𝑙 < 𝜔 < 𝜔ℎ.  However, it does not have robust performance, RP = 5.28 dB. This 

fact is indirectly reflected in Fig. 3, with the zone 𝑍: {6.35,0.12},  and in Fig. 4, with 

the root contour 𝐶𝑠
𝑧,1

.  Equations (14)-(17) are generally valid for all control systems 

and show that, to reduce the uncertainty (19) and consequently the difference in 

performance between the time and frequency domains, this is achieved by increasing 

the value of the proportional gain coefficient 𝑘𝑒.  

Furthermore, as the value of 𝑘𝑒 increases, a qualitative study of the control 

system’s properties in the complex plane is conducted through the root contours 𝐶𝑠
𝑧,𝑘𝑒 
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(22)-(25).  In the frequency domain, this is done by checking the conditions for robust 

stability and performance (11)-(13). A comparison of the performance in the time 

domain is also made, using the information provided by the zone  𝑍: {|𝑡𝑠
2%|, |𝑦max|}.  

• Case  𝑘𝑒 = 2. 

The root contour 𝐶𝑠
𝑧,2

, compared with the root contour 𝐶𝑠
𝑧,1

 from Fig. 4, shows 

a change in shape. The continuation of the contour to the left of the imaginary axis 

indicates that, in the time domain, the system will exhibit greater time response speed, 

as shown in Fig. 6. 

The check of the robust conditions (11)-(13) and their comparison with those 

from Fig. 5 shows that robust performance RP = 2.5 dB has not been achieved for 

𝜔𝑙 < 𝜔 < 𝜔ℎ, but the maximum value of condition (13) decreases. Robust stability, 

RS = −1.58 dB and nominal performance, NP = −6.02 dB are present, with a 

noticeable decrease in the maximum value of condition (11), as shown in Fig. 7. 

Zone Z has values 𝑍: {4.05,0.11} . Compared to Fig. 3, with a higher 

proportional gain coefficient, the uncertainty zone decreases, as shown in Fig. 8. 

• Case  𝑘𝑒 = 3. 

The root contour 𝐶𝑠
𝑧,3

 changes its shape with an increase in 𝑘𝑒. Overall, its area 

visually decreases, while its extension to the left of the imaginary axis increases. In 

the time domain, this is expected to result in a faster time response speed and closer 

performance specifications for the transient responses of the closed-loop control 

system, as shown in Fig. 9. 

In the frequency domain, the following maximum values of conditions (11)-(13) 

are recorded: NP = −9.54 dB, RS = −1.58 dB, RP = 1.34 dB. The condition for 

robust performance is violated, and the maximum value of nominal performance 

continues to decrease, as shown in Fig. 10. 

As the coefficient increases, zone Z has values 𝑍: {2.51,0.1}. It decreases, 

corresponding to the smaller values of  NP and RP and the reduced area of 𝐶𝑠
𝑧,3

. The 

transient responses are characterized by a faster time response speed, as shown in 

Fig. 11. 

• Case 𝑘𝑒 = 5. 

The defined root contour 𝐶𝑠
𝑧,5

 is modified as lines, decreasing in size and 

extending along the real axis in a negative direction. In the time domain, a smaller 

uncertainty and greater time response speed are expected, while in the frequency 

domain, it approaches the fulfillment of condition (13), as shown in Fig. 12. 

The maximum values of the conditions (11)-(13) recorded in Fig. 13 are:  

NP = −14 dB, RS = −1.58 dB, RP = 0.285 dB. The condition for robust 

performance is still not met, but it shows that with an increase in the coefficient 𝑘𝑒, 

it will be satisfied, while the maximum value of nominal performance continues to 

decrease, as shown in Fig. 13. 

The zone has values 𝑍: {1.91,0.08}, which indicates that the uncertainty has 

decreased, and the time response speed has increased, as shown in Fig. 14. 
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• Case  𝑘𝑒 = 10 

The significant increase in the proportional gain coefficient, 𝑘𝑒 = 10 defines 

the contour  𝐶𝑠
𝑧,10

, in which uncertainty is virtually absent. This is an indication of 

insensitivity, both in the time and frequency domains, as shown in Fig. 15. 

The graphical visualization of the conditions (11)-(13) in Fig. 16 shows that they 

are satisfied. Increasing the proportional gain coefficient 𝑘𝑒 in the control system 

leads to insensitivity of the output signal to changes in the parameters of the 

controlled process. Accordingly, the robustness indicators have the following values: 

NP = −20 dB, RS = −1.58 dB, RP = −0.599 dB, as shown in Fig. 16. 

The fulfillment of the robust conditions (11)-(13) leads to an even further 

reduction of the zone 𝑍: {1.29,0.05}. The direct performance specifications are very 

close to the transient responses family shown in Fig. 17, and it can be conditionally 

concluded that there is insensitivity of the transient responses of the closed-loop 

control system to changes in the parameters of the controlled process, as shown in 

Fig. 17. 

The following general conclusions can be drawn: 

• Figs 6, 9, 12, and 15 show that as the value of the proportional gain 

coefficient 𝑘𝑒 increases, the zone defined by the root contours  𝐶𝑠
𝑧,𝑘𝑒 changes shape. 

Graphically, it becomes smaller, and for 𝑘𝑒 = 10 it virtually disappears in the 

complex plane (Fig. 15). This indicates the achievement of insensitivity in the control 

system to parametric uncertainty in the controlled process. 

• Figs 7, 10, 13, and 16 show that the high values of the proportional gain 

coefficient 𝑘𝑒 reduce the maximum value of the modulus RP (13), with the condition 

for robust performance (13) being fully satisfied at 𝑘𝑒 = 10, as shown in Fig. 16.  

These conclusions indicate that, in the time domain, the control system's 

performance will have similar direct performance specifications.  

• Figs 8, 11, 14, and 17 show that the zone 𝑍: {|𝑡𝑠
2%|, |𝑦max|}, decreases, which 

means that increasing the proportional gain coefficient 𝑘𝑒 virtually reduces the 

uncertainty in the control system caused by changes in the parameters of the 

controlled process. The direct performance specifications have very similar values, 

which is an indication of control system performance under uncertainty. 

Table 1 summarizes all the indicators for clarity in the presented study and the 

conclusions drawn. 
 

Table 1 
𝑘𝑒 NP (dB) RS (dB) RP (dB) 𝑍: {|𝑡𝑠

2%|, |𝑦max|} 
1 0 –1.58 5.28 {6.35, 0.12} 
2 –6.02 –1.58 2.5 {4.05, 0.11} 
3 –9.54 –1.58 1.34 {2.51, 0.1} 
5 –14 –1.58 0.285 {1.91, 0.08} 

10 –20 –1.58 –0.599 {1.29, 0.05} 

 



 94 

 
Fig. 6. Root contour for  𝑘𝑒 = 2 

 

 
Fig. 7. Bode diagram of nominal performance, robust stability, robust performance, 𝑘𝑒 = 2 

 

 
Fig. 8. Transient performance of control systems (uncertainty parameters), 𝑘𝑒 = 2 
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Fig. 9. Root contour for  𝑘𝑒 = 3 

 

 
Fig. 10. Bode diagram of nominal performance, robust stability, robust performance, 𝑘𝑒 = 3 

 

 
Fig. 11. Transient performance of control systems (uncertainty parameters), 𝑘𝑒 = 3 
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Fig. 12. Root contour 𝑘𝑒 = 5 

 

 
Fig. 13. Bode diagram of nominal performance, robust stability, robust performance, 𝑘𝑒 = 5 

 

 
Fig. 14. Transient performance of control systems (uncertainty parameters), 𝑘𝑒 = 5 
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Fig. 15. Root contour, 𝑘𝑒 = 10 

 

 
Fig. 16. Bode diagram of nominal performance, robust stability, robust performance, 𝑘𝑒 = 10 

 

 
Fig. 17. Transient performance of control systems (uncertainty parameters), 𝑘𝑒 = 10 
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5. Conclusion 

The research showed that rapid current correction aimed at reducing uncertainty is 

achieved by increasing the proportional gain. This results in close transient response 

specifications and robust properties, but it leads to significantly faster dynamics, 

which is undesirable. Maintaining low sensitivity of the control system and 

acceptable performance of the transient responses requires a compromise or the 

introduction of algorithms that use robust, adaptive, or other mechanisms accounting 

for parametric uncertainty in the controlled process.  

This paper provides a new perspective on the relationship between robustness 

representations in the frequency domain and the subsequent behavior of the system 

in the time domain, in terms of the overall proportional gain. The generalized 

conclusions are generally valid for control systems, regardless of their structure, 

control algorithm, and uncertainty caused by disturbances in the controlled process. 

A limitation may arise from the order of the modeling transfer function of the closed-

loop control system in combination with the size of the uncertainty in the controlled 

process.   

The conducted research provides a starting point for exploring innovative 

methodological and new combinations of methods that simultaneously reduce the 

region defined by the root contours while maintaining the desired performance 

criteria of transient responses, confirmed by the robustness requisites. 
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