
 67 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 25, No 2 

Sofia • 2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2025-0012 

 

 

Achieving Efficient Prompt Engineering in Large Language 

Models Using a Hybrid and Multi-Objective Optimization 

Framework 

Sridevi Kottapalli Narayanaswamy, Rajanna Muniswamy  

Department of Information Science and Engineering, Vemana Institute of Technology, Bengaluru, 

Karnataka, India 

E-mails:   sridevi.kn23@gmail.com (corresponding author) mrajanna.ise@gmail.com 

Abstract: Prompt optimization is crucial for enhancing the performance of large 

language models. Traditional Bayesian Optimization (BO) methods face challenges 

such as local refinement limitations, insufficient parameter tuning, and difficulty 

handling multi-objectives. This study introduces a hybrid multi-objective 

optimization framework that integrates BO for global exploration and a Genetic 

Algorithm for fine-tuning prompt hyperparameters using evolutionary techniques. 

The Non-dominated Sorting Genetic Algorithm II is employed to identify Pareto-

optimal solutions, balancing accuracy, efficiency, and interpretability. The 

framework is evaluated using the GLUE benchmark dataset with BERT-based 

tokenization for structured input representation. Experimental results demonstrate 

that the proposed model achieves 95% accuracy, 85% efficiency, and 79% 

interpretability across three benchmark datasets, outperforming conventional  

BO-based methods. The findings confirm that the hybrid approach significantly 

enhances search efficiency, refinement, and multi-objective optimization, leading to 

more effective and robust prompt optimization. 

Keywords: Bayesian optimization, BERT, Evolutionary algorithm, Large language 

model, Prompt engineering. 

1. Introduction 

A Large Language Model (LLM) is an Artificial Intelligence (AI) program built on 

deep learning, especially a neural network called a transformer model, trained on the 

language collected from the Internet. This is also known as the Generative Language 

Model (GLM) and uses the Generative Pre-trained Transformer model (GPT). 

Prompt engineering generates and refines prompts to get desired responses from 

LLM. This also provides an essential guide to LLM for creating useful and relevant 

user output [1-2]. Prompt engineering can pre-train the LLM and Vision Language 

Model (VLM). Fine-tuning is the approach by which pre-trained language models are 

fine-tuned to downstream tasks, optimizing the model for specific necessities [3]. In 
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recent times, a wide range of language tasks received robust training through LLMs 

like GPT-3 and ChatGPT [4]. The prompt engineering develops and improves the 

accuracy and responsiveness of the designed prompt. It includes roles, context, input, 

output format, and examples [5]. Still, the user struggles to control the output from 

the LLM, and the traditional approach to prompt crafting becomes time-consuming 

and inefficient [6]. 

To analyze their application and adaptability, LLMs have to be combined with 

Evolutionary Computation (EC) [7]. Since LLMs, such as the GPT series from 

OpenAI, can understand and generate human language, they are very important in 

enhancing the power of EC [8]. Most of the approaches used the Bayesian filtering 

method to estimate the optimal solution and update the components of the probability 

distribution [9]. Significant progress was achieved by empowering LLMs to exercise 

foresight and retrace their steps for holistic decision-making with the recently 

developed Tree of Thoughts (ToT) [10]. Recent advances in effective prompt 

engineering for LLMs are encouraging, but significant research gaps remain in terms 

of balancing accuracy, computational cost, and interpretability. To address these 

challenges, the proposed model presents a hybrid multi-objective optimization 

framework for prompt engineering. The framework is designed to improve the 

efficiency of prompt optimization, allowing LLMs to produce even more accurate 

and interpretable responses with significantly less computational overhead. The 

major contributions of the work are summarized as follows: 

• The research introduces a hybrid optimization framework that integrates a 

Bayesian Optimization (BO) for efficient exploration and a Genetic Algorithm (GA) 

for refining high-performing prompts. 

• The proposed model uses Bidirectional Encoder Representations from 

Transformer (BERT-based) tokenizer for text preprocessing and tokenization to 

ensure proper input segmentation. BO is used for global exploration to improve 

search efficiency, and EA fine-tunes prompt configuration, which leads to improved 

optimization outcomes. 

• The proposed model uses the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) multi-objective optimization technique to achieve a Pareto-optimal 

solution, balancing accuracy, efficiency, and interpretability, thus identifying the 

Pareto-optimal prompt solution. 

The rest of the paper is organized as follows: Section 2 explores the existing 

research. Section 3 introduces the Hybrid and Multi-Objective Optimization 

Framework for Efficient Prompt Engineering in LLMs. Section 4 illustrates the 

outcomes and outlines the purpose of the discussion. Section 5 presents the paper’s 

conclusion. 

2. Literature survey 

This section provides related work on prompt engineering in an LLM. 

K l y u c h n i k o v  et al. [11] developed the Neural Architecture Search Benchmark 

for LLMs. It addresses the reproducibility issues and the high computational cost of 

neural architecture. However, the large neural network required high-performance 
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clusters and a complex search space. Z h a o  et al. [12] proposed prompt tuning for 

the Metonymy Resolution (PromptMR) to identify the metonymy expression within 

the sentences, which highlights the limitation of the time-consuming and resource-

intensive use of the fine-tuned model. The model struggled to deliver satisfactory 

results and was not generalized to other NPL tasks. The authors of [13] demonstrated 

how to solve the Multi-Armed Bandit (MAB) problem in non-stationary situations 

using BO with LLMs. An LLM-based technique that permits an adjustable ratio of 

exploration and exploitation. This study needs efficient and developed algorithms or 

methods to reduce the computational resources.  

A h m e d  et al. [14] introduced the prompt engineering framework MED-

Prompt for medical prediction on clinical notes. Several pre-trained models like 

BERT, BioBERT, and clinicalBERT were used to guide the process. Furthermore, 

efficient algorithms and optimization techniques are required to reduce 

computational requirements and training time. L i u  et al. [15] sought to integrate the 

LLM with the conventional evolutionary search operator to speed up the evolving 

population’s convergence. However, the integrated LLM and EA faced a high 

computational cost, and future work focused on reducing the time and enhancing the 

performance accuracy. S o r o k i n, S a f i n  and N e j a t i  [16] explained the 

theoretical justification of why Pareto optimization-based testing is insufficient for 

including failure-inducing regions within a search domain. Henceforth, it uses 

benchmarking systems to evaluate search-based testing algorithms, which can help 

to avoid the high cost of system executions. The authors of [17] improved the 

usability of the Adverse Outcome Pathways Wiki (AOP-Wiki) collection by 

adjusting its information into a Labelled Property Graph (LPG) schema. This work 

also used the LLM’s generating power to tackle the problem of creating database-

specific queries. Henceforward, it enhances the prompt generation methodology to 

improve accuracy and consistency. The work [18] compared the fine-tuned BERT 

and LLM to evaluate the applicability and robustness of the intelligent design support 

systems. It faced issues with handling the short sentences in the dataset. This study 

needs development in refining the prompting techniques. This study needs efficient 

and developed algorithms or methods to reduce the computational resources. 

Thus, by analyzing the existing works, we observe that the existing works have 

focused on BO, which results in inefficient search mechanisms. Most of the works 

were optimized for accuracy by neglecting critical trade-offs like computational 

efficiency and interpretability. To overcome these limitations, we propose a hybrid 

multi-objective framework that optimizes global exploration with refined tuning, and 

the critical optimal trade-offs result in efficient, prompt optimization that balances 

accuracy, efficiency, and interpretability while reducing computational overhead. 

3. Proposed methodology 

The proposed methodology introduces a hybrid multi-objective optimization 

framework for improving prompt engineering in LLMs, as shown in Fig. 1. This 

structured pipeline begins with collecting the General Language Understanding 

Evaluation (GLUE), a benchmark dataset comprising six standard NLP datasets. The 
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model utilizes the MNLI, SST-2, and QQP data from the benchmark. The collected 

data then undergoes the BERT tokenization, which preprocesses it to structure the 

raw text into structured input representations. Then, BO performs global search 

exploration and identifies high-performing prompts, which are fine-tuned by GA 

using an EA. Finally, a multi-objective optimization algorithm incorporates  

NSGA-II to optimize the refined prompts and find the Pareto optimal solutions, 

ensuring an optimal balance between accuracy, efficiency, and interpretability. 

 

 
Fig. 1. Workflow of the proposed methodology 

3.1. Dataset description 

The present study uses a General Language Understanding Evaluation (GLUE) 

benchmark as a dataset. GLUE [19] is a set of tools for natural understanding system 

training, improvement, and analysis. It contains six standard datasets related to 

natural language understanding comprehension, such as textual entailment, question 

answering, paraphrase identification, and natural language inference. We only 

employed three of those for our investigation (MNLI, SST-2, and QQP). Here is a 

quick description of the datasets:  

• Multi-Genre Natural Language Inference (MNLI) 

The MNLI is an extensive collection of 433k phrase pairings with textual 

entailment information annotated, and the dataset enables exploration into a variety 

of natural language sources from both written and spoken. The task is to determine 

whether a hypothesis sentence is semantically equivalent (entailment), not 

semantically equivalent (contradiction), or neither (neutral) based on a given premise. 

• Stanford Sentiment Treebank (SST-2) 

This dataset contains 67,000 sentences from movie reviews with sentiment 

annotations by humans. It only has sentence-level labels and employs the two-way 

(positive/negative) class split. 
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•  Quora Question Pairs (QQP) 

The QQP dataset contains more than 400,000 lines of possible question-

duplicate pairs from the question-answering website Quora. The main objective of 

this dataset is to ascertain if two questions are entailments. It indicates that the same 

information can be used to answer them. The statistics measure for these datasets is 

displayed in Table 1. 

Table 1. Statistics of the GLUE benchmark dataset 

Dataset 
Number of 

sentences 

Number of 

tokens 

Vocabulary 

size 

Average tokens per 

sentence 

Out-of-vocabulary 

rate 

MNLI 848,739 17,989,715 41,701 21.20 0.30% 

QQP 903,686 13,287,371 69,796 14.70 0.25% 

SST-2 68,569 959,762 7,319 14.00 0.10% 

3.2. Tokenization 

The process of dividing text into smaller units, known as tokens, which can be words 

or subwords, is known as tokenization. It is a fundamental operation in NLP that 

converts raw text into a structured format that can be processed effectively by ML 

models. The model employs BERT for tokenization since it can capture contextual 

representations of words to understand their relationships, improving prompt 

effectiveness. The BERT tokenization process is as follows. Initially, raw text data is 

pre-processed by WordPiece tokenization to break tokens typically into words or 

subwords. Special tokens are then added to the tokenized text. As such, a 

classification token ([CLS]) is added at the beginning of the sequence, and a separator 

token ([SEP]) is added at the end of the token sequence [20]. Finally, each token is 

converted to its appropriate ID based on the BERT vocabulary. Additionally, an 

attention mask is formed while generating the tokenized sequence.  

 

 
Fig. 2. Process of BERT tokenization 

 

This mask labels the actual tokens to be differentiated from the padding tokens 

so that only the meaningful input is processed by the model and ignores the padding. 

Through these processes, BERT tokenization transforms raw text into a structured 
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and consistent format. The illustration of the tokenization process using BERT is 

given in Fig. 2. 

3.3. Hybrid optimization framework 

The hybrid framework combines the BO for global search space exploration and a 

Genetic Algorithm (GA) for fine-tuning, achieving a balance between exploration 

and exploitation. The BO identifies high-performance prompts by search space 

exploration, while the GA refines these solutions with an evolutionary approach to 

ensure enhanced adaptability and fine-tuned performance [21]. This combination 

results in enhanced optimization results. 

3.3.1. Bayesian optimization  

The BO algorithm is an optimization algorithm based on probability that applies to 

high-dimensional problems with expensive objective functions [22]. It explores the 

search space efficiently by constructing a surrogate probabilistic model to 

approximate the objective function. It determines the most informative solution 

available for the optimizer at the expense of reducing the number of expensive 

solutions for the objective function. The optimization problem is formulated by the 

equation  

(1) 𝑏 = argmin𝑏∈𝐵 𝑓(𝑏).  
Here, 𝐵 represents a search space involved in the optimization process, 𝑏 is a 

combination of the hyperparameters in 𝐵, and 𝑓(𝑏) represents the objective function 

of the problem. Once the output of each set of new parameters is seen in each 

iteration, the surrogate model is updated so that it can effectively balance exploration 

and exploitation. 

In this study, BO is used to identify high-performing prompt solutions from a 

large search space effectively. However, while BO focuses on global exploration, it 

never performs local refinement. To enhance the optimization of selected prompts, 

the model employs GA to refine the obtained solutions further. Thus, BO is not only 

responsible for searching optimal prompts but also for selecting prompts that undergo 

structured variation through the GA fine-tuned using the crossover and mutation 

process. This ensures that optimized prompts are computationally efficient and also 

adaptable across diverse NLP tasks. 

3.3.2. Fine-tuning using Genetic Algorithm (GA) 

GA is a natural evolutionary process that is referred to as survival of the fittest in 

evolutionary theory. In this study, GA refines and optimizes prompts by iteratively 

improving high-performing prompts identified by BO [23]. The search space is 

represented as a grouping of individuals known as chromosomes. Gene refers to the 

set of characteristics that identify an individual. To select the most suitable 

parameters, the fitness of each chromosome is evaluated with the fitness function. To 

ensure natural selection, the evaluation process uses Mutation and crossover. The best 

individuals are chosen to progress through crossover, mutation, or selection until a 

new population is formed. As a result, the optimization problem’s solution is 

determined to be the best member identified. 
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Here, the EA refines the solution identified by Bayesian Optimization (BO) by 

examining more localized search areas. After BO has explored the global search 

space, EA is employed to evolve improved solutions over multiple generations. 

Bayesian optimization is used for global exploration within the search space, and the 

EA exploits it by refining solutions through local optimization and evolutionary 

strategies. 

3.4. Fitness function 

Each optimized prompt is evaluated based on the texts generated by the 

corresponding Text LLM. The evaluation process involves comparing the prompt’s 

intended objective with independent NLP classifier predictions. The probability 

scores for the correct class are employed as the objective value in both optimization 

and final evaluation. These probability scores are obtained from multiple independent 

classifiers trained on different datasets. During evaluation, we ensure that redundant 

or semantically similar generated responses are filtered out to maintain the diversity 

and effectiveness of the optimized prompts.  

Accuracy is measured based on performance metrics on benchmark datasets, as 

in the equation  

(2) 𝐴(𝑃) =
1

𝑁
∑ 𝑃correct(𝑖)𝑁

𝑖=1 , 

where 𝑃correct(𝑖) represents the probability score for the corrected class.  

Efficiency is measured as a normalized metric, which includes inference time, 

FLOating Point operation (FLOPs), and memory consumption, as expressed in the 

equation  

(3) 𝐸(𝑃) = 1 −
Inference time (𝑃)

max (Inference time)
, 

where Inference time (𝑃) represents 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 taken per query, and 

max(Inference time) is the normalization factor ensuring consistency across 

different configurations. While this provides a relative measure of efficiency, the 

normalization factors for FLOPs and memory are embedded in the overall efficiency 

calculation. They are not explicitly separated, making direct mapping to real 

hardware cost challenging. 

Interpretability measures how clear and c𝑜𝑛cise the prompt depending on the 

prompt length and readability score, as shown in the equation 

(4) 𝐼(𝑃) = 1 −
Prompt Length (𝑃)

max(Prompt Length)
, 

where Prompt Length (𝑃) represents the number of words in the prompt and 

max(Prompt Length) ensures normalization. 

3.5. Multi-optimization technique 

Multi-objective optimization is essential in prompt engineering, where trade-offs 

exist between accuracy, computational efficiency, and interpretability [24]. In this 

study, the proposed model employs the NSGA-II to identify Pareto-optimal solutions, 

ensuring a balanced trade-off between these conflicting objectives. The main aim is 

to achieve a balance between accuracy, efficiency, and interpretability, guaranteeing 

an optimal trade-off among these competing factors. NSGA-II preserves these 
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solutions within the Pareto front so they can be selected according to trade-off 

preferences. NSGA-II operates based on the concept of non-domination and Pareto 

optimality.  

Pareto selection. The model utilizes the NSGA-II [25] algorithm to rank 

prompts from the evaluation set 𝐹𝑒𝑣𝑎𝑙, forming the Pareto front, which represents the 

optimal trade-offs between multiple conflicting objectives. The ideal scenario in 

prompt engineering would be to identify a single optimal prompt that optimizes all 

objectives, but that is rarely feasible in practice. Instead, the Pareto optimal selection 

method provides a set of solutions that are the best possible trade-offs among 

competing goals. 

The NSGA-II uses non-dominated sorting to rank prompts based on their 

performance across the objective front. A prompt 𝑐 is non-dominated if no other 

prompt 𝑑 exists, as expressed in the equation 

(5) 𝑓𝑖(𝑑) ≥ 𝑓𝑖(𝑐)  and    ∃𝑘, 𝑓𝑘(𝑑) > 𝑓𝑘(𝑐), 

where 𝑓𝑖 represents the objective functions. This method selects solutions that are not 

necessarily optimal for all objectives but are optimal for the inherent trade-offs. 

In addition to selecting the top-n solutions ranked by NSGA-II, we also include 

the top-n-performing solutions from each objective that were excluded from the 

Pareto ranking. This inclusion is based on the assumption that highly specific 

objective solutions can contribute useful features in the next generation during 

genetic operations like combination. By combining these solutions, we ensure that 

different prompt structures contribute to the evolutionary process, resulting in more 

efficient and adaptive prompts. 

4. Results and discussion 

This section presents the performance of the hybrid and multi-objective optimization 

for efficient, prompt engineering in LLMs. The model has been implemented on the 

Python 3.12 platform with Windows 10, Intel(R) Xeon(R) CPU E5-1650 v3 @ 

3.50GHz, memory 32.0 GB, Graphics = NVIDIA Quadro M2000, and Visual Studio 

Code – v1.86. 

4.1. Performance evaluation of the multi-objective optimization 

Fig. 3 depicts the performance of the multi-objective optimization in terms of three 

criteria such as accuracy, interpretability, and efficiency. The NSGA-II algorithm 

obtains an effective accuracy of 95% in finding near-optimal solutions to the multi-

objective problem. The proposed model demonstrates the effective use of 

computational resources, providing quality solutions with an efficiency rate of 85% 

and an interpretability of 79%. 
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Fig. 3. Performance metrics of the NSGA-II Algorithm 

4.1.1. Trade-Off Visualization of NSGA-II Algorithm 

Table 2 provides the performance evaluation of the NSGA-II Algorithm across three 

tasks (i.e., SST-2, MNLI, and QQP) and clusters (Cluster 1, 2, and 3). Since NSGA-

II is a multi-objective optimization algorithm, it does not produce a single best 

solution; instead, it generates a set of Pareto-optimal solutions, which are grouped 

into clusters, where each cluster represents an optimized prompt configuration with 

a unique balance of accuracy, efficiency, and interpretability. Notably, QQP Cluster 

2 has the best interpretability (0.89) and the fastest processing time (95 ms/query), in 

addition to its excellent accuracy of 98.8%. In comparison to other clusters, SST-2 

Cluster 3 and QQP Cluster 3 have the best accuracy (99% and 99.5%, respectively), 

good interpretability scores, and somewhat slower processing times. MNLI clusters 

typically perform somewhat worse on all parameters; MNLI Cluster 3 has the slowest 

efficiency and the lowest accuracy.  

Table 2. Performance analysis of the NSGA-II algorithm in the dataset 

Task Cluster-ID Accuracy (%) Efficiency (%) Interpretability (%) 

 Cluster 1 98.5 110 88 

SST-2 Cluster 2 97.2 105 85 

 Cluster 3 99 115 86 

 Cluster 1 96.8 120 82 

MNLI Cluster 2 97.5 110 8 

 Cluster 3 95.9 125 83 

 Cluster 1 99.2 100 87 

QQP Cluster 2 98.8 95 89 

 Cluster 3 99.5 110 88 

 

Fig. 4 shows the 3D visualization of the multi-objective optimization. It shows 

the effect of dynamic refinement on performance.   
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Fig. 4. 3D visualization of the multi-objective optimization   

4.1.2. Multi-objective trades off with Pareto front  

The Pareto front is obtained from the multi-objective optimization process. Fig. 5 

shows the trade-off among multiple conflicting objectives. In this graph, objective 1 

and objective 2 are the optimal solutions, and the Pareto front represents the red line 

with a circular marker that contains the optimal solution. These solutions are non-

dominated, which means improved objective results. The green and blue points in the 

graph are the optimal solutions obtained by the NSGA-II Algorithm. It highlights the 

boundary of achievable trade-offs and makes an efficient decision-making tool in 

multi-objective optimization problems. 

 
Fig. 5. Pareto graph obtained from the NSGA-II Algorithm 

4.1.3. Convergence analysis of hybrid framework 

Fig. 6 presents the convergence of loss during the optimization iteration for BO and 

GA. It highlighted the efficiency of the hybrid framework in reaching the optimal 

solution. 
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Fig. 6. Convergences of loss  

4.2. Result of the proposed model’s performance across different datasets 

To assess the generalizability of the model, we validate our proposed model with 

another external dataset, which involves more complex reasoning tasks and longer 

prompts that were not part of the training dataset. We use the GSM8K dataset from 

Kaggle as an external validation dataset. The GSM8K Linguistically Diverse 

Training & Test Set consists of 8000 questions and answers that have been created to 

simulate real-world scenarios in grade school mathematics. Each question is paired 

with one answer based on a comprehensive test set. The questions cover topics such 

as algebra, arithmetic, probability, and more. The proposed model evaluates its 

performance metrics on the GLUE dataset and the external dataset. We compare the 

performance metrics of our proposed model datasets with this external dataset to 

obtain the model’s generalizability. 

Table 3. Generalization performance of the proposed model: Metrics 

Metrics GLUE Dataset GSM8K Dataset 

Accuracy (%) 95 94 

Efficiency (%) 85 81 

Interpretability (%) 79 77 

 
Table 3 demonstrates that the model’s performance on the GSM8K dataset [26] 

was not significantly different from the GLUE datasets [19]. It shows that our 

proposed model is better generalized across various datasets. The successful 

validation of our model using the GSM8K dataset (external dataset) highlights its 

potential as a reliable tool for prompt optimization. 

4.3. Comparison of prompt length 

The proposed model inserts the sentences from the datasets SST-2, MNLI, and QQP 

into the initial prompt and optimized prompt. It showed how the prompts were 

adapted to different data, with the optimized prompts providing a clearer and more 

effective way to phrase the task for the mode. If the optimized prompts were either 

shorter or more concise, it would efficiently reduce the complexity and computational 

cost of LLM. 
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Fig. 7. Comparison of initial prompt Vs optimized prompt 

Fig. 7 illustrates the comparison of the initial prompt vs the optimized prompt 

with three tasks. In this graph, the optimized prompt is shorter than the initial prompt. 

So, it is proven that our model efficiently reduces the complexity and computational 

cost. 

4.4. Comparison with Baseline approaches 

This section compares the performance of the proposed hybrid approach with 

standalone baseline models. 

Table 4. Comparison analysis of the proposed model with baseline approaches 

Techniques 
Accuracy 

(%) 

Efficiency 

(%) 

Interpretability 

(%) 

Convergence 

speed (s) 

Bayesian Optimization for Prompt 

Engineering (BOPE) 
87 80 75 500 

Prompt bench 88 78 72 520 

Optimization by PROmpting (OPRO) 89 79 74 480 

Evolutionary Prompt Search (EPS) 90 81 77 470 

Evolutionary optimizer 93 82 76 460 

RL-based proximal policy 

Optimization (PPO) 
92 83 78 450 

BO+GA+NSGA-II (Proposed) 95 85 79 410 
 

Table 4 illustrates the performance of different prompt optimization methods 

across four key metrics, including accuracy, efficiency, interpretability, and 

convergence rate. Traditional techniques such as BOPE and Prompt Bench provide 

good baselines with moderate results in all measures, while OPRO utilizes a learned 

model to improve slightly over prompt generation. Evolutionary approaches such as 

Evolutionary Prompt Search and LLM as an Evolutionary Optimizer show consistent 

improvements across all domains, especially interpretability and convergence. PPO-

based reinforcement learning achieves a robust equilibrium with quicker convergence 

and improved overall scores. Specifically, the proposed hybrid approach combining 

BO, GA, and NSGA-II outperforms others by offering the highest accuracy (95%), 

efficiency (85%), and interpretability (79%) with the fastest convergence rate  

(410 s). These outcomes demonstrate the effectiveness of combining global search, 
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local tuning, and multi-objective optimization in generating high-quality, well-

balanced prompts effectively. 

4.5. Ablation study 

The ablation study evaluates the model's performance with and without the hybrid 

optimization algorithms on three metrics: accuracy, efficiency, and interpretability. 

Table 5 shows the difference between the three metrics with and without hybrid 

optimization. With a hybrid optimization algorithm: The method with all components 

(BO, GA, and NSGA-II) achieves a very high accuracy of 95% with 85% efficiency 

and 79% interpretability. Without BO, there is a slight drop in the model's three 

metrics. Achieves 90% accuracy with 75% efficiency and 72% interpretability. 

Without GA: Removing the GA leads to a significant drop in accuracy (from 95% to 

85%). The efficiency improves slightly (from 75% to 80%). The interpretability score 

drops to 70%. Without NSGA-II: without multi-objective optimization, NSGA-II 

leads to a decrease in accuracy of 88%, with 78% efficiency and 74% interpretability. 

Fig. 8 shows the bar graph representation of the ablation study. 

Table 5. Comparison of metrics with and without proposed optimization algorithms 

Components Accuracy Efficiency Interpretability 

BO+GA+NSGA-II (Proposed) 95% 85% 79% 

Without BO 90% 75% 72% 

Without GA 85% 80% 70% 

Without NSGA-II 88% 78% 74% 

 

 
Fig. 8. Performance metrics of the ablation study evaluation 

4.6. Statistical test 

The proposed model utilizes the Wilcoxon signed-rank test to strictly examine the 

statistical significance of the observed difference between the proposed hybrid 

method and its ablated variants. The obtained P-value serves as a key assessment 

measure of the importance of the model performance disparities among the compared 

models. Moreover, Table 6 presents the results of the Wilcoxon signed rank test, thus 

reinforcing the differences observed. 
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Table 6. Wilcoxon signed-rank test results 

Comparison W-statistic P-value Sample size Significant level (𝛼) 

Proposed vs Without BO 1 0.043 5 0.05 

Proposed vs Without GA 1 0.031 5 0.05 

Proposed vs Without NSGA-II 2 0.078 5 0.05 

4.7. Discussion 

In this study, we evaluated the performance of the NSGA-II Algorithm in optimizing 

multi-objective optimization problems with prompt optimization in LLMs. The 

proposed hybrid optimization framework integrating BO, GA, and NSGA-II attains 

95% accuracy, 85% efficiency, and 79% interpretability over benchmark datasets. 

The Pareto front analysis (Fig. 5) illustrates that the proposed approach effectively 

balances accuracy, efficiency, and interpretability, resulting in an optimal solution. 

The combination of BO and GA improves the search process and hyperparameter 

optimization, resulting in an efficient prompt optimization process. Prompt length 

optimization (Fig. 7) significantly minimizes the consumption of resources by 

producing shorter and more efficient prompts without any loss of performance. 

Additionally, the ablation study (Fig. 8) identifies the importance of each component 

in the proposed approach. Finally, the pie chart analysis in Fig. 8 visually represents 

the relative contribution of each optimization component (BO, GA, and NSGA-II) to 

the final performance improvements. 

5. Conclusion 

The study introduced a hybrid multi-objective optimization framework to enhance 

prompt engineering in LLMs through the combination of BO, GA, and NSGA-II. 

Compared to traditional methods that are based on BO, the proposed approach 

enhances the search process, improves hyperparameter tuning, and optimizes trade-

offs. It balances accuracy, efficiency, and interpretability effectively. In various 

experimental validations on the GLUE benchmark dataset, our proposed hybrid 

framework achieved an accuracy of 95%, an efficiency score of 85%, and an 

interpretability score of 79%, better than the performance of other approaches. In 

addition, the Pareto front analysis and trade-off visualizations provide a valuable 

decision-making tool for decision-makers to understand the attainable trade-offs 

between conflicting objectives. In future work, we will plan to incorporate user-

centric evaluations to validate the interpretability of optimized prompts through 

human studies, ensuring that improvements align with actual human preferences and 

perceptions. 
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