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Abstract: Fuzzy Linear Programming (FLP) has the potential to be used in 

optimizing economic planning and making decisions under uncertainty. FLP 

incorporates fuzzy logic into linear programming to represent and manage economic 

parameters that are uncertain, e.g., costs, profits, and availability of inputs. Practical 

applications in Economic resource allocation illustrate the effectiveness of FLP, as 

demonstrated by the study. ISMC-based FLP has been shown to offer a flexible 

solution that is more adaptable and realistic than classical linear programming 

models. This research reiterates practical economic scenarios through fuzzy data, 

considering uncertainties and vagueness in risk measures, helping to make better and 

effective decision-making. Future research directions involve combining FLP with 

Artificial Intelligence (AI) and Big Data in finance to improve its utility in complex 

and dynamically changing economic systems, allowing easier and automatic decision 

making. FLP moves beyond the deterministic nature of traditional modelling by 

integrating fuzzy data, allowing the model to reach more flexible and realistic results 

and providing better decision-making. 
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1. Introduction 

1.1. Multi-stream feature extraction 

Economic planning and optimization are key when it comes to efficiently managing 

resources, early-stage production goals, and policies to maximize social good [1, 2]. 

Such processes optimize underlying economic systems, like resolving scarcity, 

allocation, and efficiency. It also helps decide how to best utilize resources for 

achieving desired economic results, like maximum profits or minimum costs, or 

optimal production. Resource allocation is a basic concept of economics, for it 

distributes the resources as efficiently as possible [3, 4]. 

The discipline of economics is concerned with plans and actions that achieve 

optimal production, resource allocation, and goods and services distribution [5, 6]. In 

real-world economic systems, decisions often have to make considerations of 

uncertainties in data, such as fluctuating prices, demand, or available resources. 

Classical optimization methods are generally ill-equipped to deal with this sort of 

uncertainty; therefore, it is crucial to incorporate models that capture these aspects of 

the real world. 

1.2. Introduction to Fuzzy Linear Programming (FLP) 

One of the most common approaches in optimization models is to consider uncertain 

parameters, which is the scope of FLP, that is the field of FLP to generalize classical 

linear programming under a fuzzy environment; FLP represents the language needed 

to optimize in a fuzzy environment. Fuzzy logic is based on “fuzzy sets” to handle 

uncertainty, as opposed to discrete numerical values as in classical representation. 

Fuzzy sets introduce inaccuracy in terms of graded membership for a set instead of a 

binary one [7, 8]. 

In economic optimization, most real-world problems are based on non-

deterministic data. For example, production costs, demand forecasts, and other 

economic variables are uncertain. FLP represents a tool to express such uncertainty 

using fuzzy numbers, which can be given by membership functions characterizing 

the extent to which a particular economic situation is true or false [9]. This feature 

renders FLP a powerful tool for economic planning, where the conditions are hardly 

deterministic, and a definite figure is frequently out of reach. 

1.3. Objectives of the paper 

Potential for both theoretical and practical understanding of Fuzzy Linear 

Programming in Economic Planning and Optimization. More specifically, the 

objectives are: To discuss the applicability of FLP models to tackle economic 

optimization problems with uncertainty. To demonstrate a quantitative method to 

solve economic problems for resource allocation, production management, and other 

economic decision-making in a fuzzy environment using FLP. 
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Offering mathematical formulations and models that demonstrate how FLP can 

be utilized in actual economic conditions. 

2. Background and literature review 

2.1. Foundations of Linear Programming (LP) 

Linear Programming (LP) is a method to achieve the best outcome (such as maximum 

profit or lowest cost) in a mathematical model whose requirements are represented 

by linear relationships [3]. The objective function in classical LP consists of a linear 

function, which means linear inequalities or equations complemented by constraints. 

One of the prominent algorithms used for resolving LP problems is the Simplex 

method, which explores a series of solutions until it reaches the optimal solution  

[10, 11]. There are also the Interior-Point and Dual Simplex methods, which can be 

more effective for large-scale problems. 

The standard Linear Programming (LP) model is formulated as follows. 

Objective function: 

(1)   Maximize:  𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛, 

(2)   subject to  𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛  ≤ 𝑏1,
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛  ≤ 𝑏2,

…                   
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛  ≤ 𝑏𝑚,

 

with  𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0, 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are decision variables, 𝑐1,  𝑐2, … , 𝑐𝑛 are coefficients, and 

𝑎11,  𝑎12, … , 𝑎1𝑛, 𝑎21, 𝑎22, … , 𝑎2𝑛, 𝑎𝑚1, 𝑎𝑚2, … , 𝑎 𝑚𝑛  are the constant coefficients.  

This classical model serves as the basis for extending our approach to a fuzzy 

environment. 

2.2. Introduction to fuzzy sets and fuzzy logic 

To model uncertainty and vagueness in data, Z a d e h  [7] introduced fuzzy sets. In 

contrast to classical sets, where an element is either a member of the set or not, in a 

fuzzy set, an element has a degree of membership, which is described by a 

membership function. An example of this could be the fuzzy set representing the term 

“young”; in a context where young would be represented with values between 0 and 

1 could use 0 to mean “not young at all” and 1 to mean “completely young”, and 0.5 

to mean “partially young”. 

Fuzzy set. A fuzzy set 𝐴 in 𝑋 is defined by its membership function 

𝜇𝐴: 𝑋 → [0, 1]. 
For each element 𝑥 ∈ 𝑋, the value 𝜇𝐴(𝑥) indicates the degree (or grade) of 

membership of 𝑥 in the fuzzy set 𝐴. 

When 𝜇𝐴(𝑥) = 1 then 𝑥 is fully in 𝐴; when 𝜇𝐴(𝑥) = 0  then 𝑥 is fully outside 

𝐴; and values strictly between 0 and 1 represent partial membership. 

Fuzzy logic has found wide-ranging applications in decision making, control 

systems, and optimization, especially in domains where traditional binary logic 

cannot manage uncertainties [7]. Based on these facts, certain problems are 
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formulated in which not only the objective function but also constraints are fuzzy, 

this is called Fuzzy linear programming. 

Fuzzy Logic. Fuzzy logic is an extension of classical (two-valued) logic 

designed to handle partial truths. It works with truth values in the interval [0, 1] rather 

than only {0, 1}. Some key ideas: 

Truth values: Let 𝑝 be a proposition. In fuzzy logic, the truth value of 𝑝 is a real 

number 𝜇𝑝 ∈ [0, 1]. 

Logical connectives: 

• Negation of 𝑝 (written ¬𝑝) is assigned a truth value 

𝜇¬𝑝 = 1 − 𝜇𝑝; 

• Conjunction (𝑝 ∧ 𝑞) typically uses a t-norm (e.g., min-operator): 

𝜇𝑝∧𝑞 = min(𝜇𝑝, 𝜇𝑞); 

• Disjunction (𝑝 ∨ 𝑞) typically uses a t-conorm (e.g., max-operator): 

𝜇𝑝∨𝑞 = max(𝜇𝑝, 𝜇𝑞). 

Fuzzy logic allows for inference rules (e.g., modus ponens, syllogisms) to be 

extended to partial truths. This is commonly used in fuzzy control systems, decision-

making, and other applications where “shades of Gray” are more natural than strict 

binary choices. 

2.3. Fuzzy linear programming models 

In scenarios where decision variables, parameters, or constraints may be difficult to 

quantify with precision, FLP models can help enable economic optimization. Such as 

in the case of uncertain production cost or limited resources, FLP can represent these 

uncertainties by fuzzy numbers also [9]. FLP is used in various fields from agriculture 

[12, 13], manufacturing [14] to transportation [15], where decision-making 

commonly relies on imprecise data. 

3. Mathematical formulation of fuzzy linear programming 

3.1. Fuzzy variables and parameters 

In FLP, fuzzy numbers are used to represent both the decision variables and 

coefficients (in the objective function and constraints). Fuzzy numbers can be in 

different forms, such as triangular, trapezoidal, or Gaussian, the most used. For 

instance, a fuzzy number �̃� = (𝑎1, 𝑎2, 𝑎3) can describe a triangular fuzzy number 

where the parameters 𝑎1, 𝑎2, and 𝑎3 are the lower, peak, and upper numbers, 

respectively. 

For a fuzzy coefficient in a constraint, the constraint could be expressed as 

(3)   𝑎𝑖𝑗𝑥𝑗 ≤ �̃�𝑖, 

where �̃�𝑖 is a fuzzy number representing the right-hand side of the constraint. 

3.2. Fuzzy optimization problem setup 

The objective function in FLP is also expressed using fuzzy parameters. For example, 

a fuzzy optimization problem can be formulated as in a fuzzy environment, the 

system of constraints is expressed as: 
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(4)   Maximize:    𝑍 = 𝑐1�̃�1 + 𝑐2�̃�2 + ⋯ + 𝑐𝑛�̃�𝑛, 

(5)  

 

subject to   �̃�11𝑥1 + �̃�12𝑥2 + ⋯ + �̃�1𝑛𝑥𝑛  ≤ �̃�1,

�̃�21𝑥1 + �̃�22𝑥2 + ⋯ + �̃�2𝑛𝑥𝑛  ≤ �̃�2,

…                  
�̃�𝑚1𝑥1 + �̃�𝑚2𝑥2 + ⋯ + �̃�𝑚𝑛𝑥𝑛  ≤ �̃�𝑚,

 

where �̃�𝑖 are the fuzzy decision variables, and �̃�𝑖𝑗 and �̃�𝑖 are fuzzy numbers 

representing the uncertain coefficients and resource limitations. 

3.3. Defuzzification process 

Fuzzy values in fuzzy linear programming problems must be transformed into crisp 

values to solve the problems. Defuzzification – the process of getting rid of fuzziness. 

Typical methods for defuzzification are the centroid method (where the crisp value 

becomes the center of mass of the fuzzy set) and the mean of maxima method (where 

the crisp value is taken as the mean of the maximum membership values) [9]. Thus, 

defuzzifying fuzzy objective functions and constraints allows for classical 

optimization algorithms (e.g., Simplex method) to be used. 

4. Solution methods for fuzzy linear programming 

4.1. Ranking functions for fuzzy numbers 

This challenge arises because fuzzy numbers represent uncertain or imprecise values, 

making it difficult to directly compare fuzzy numbers. It is a comparison technique 

between fuzzy numbers, where fuzzy numbers are expressed as a scalar using a 

mathematical ranking function. Several ranking functions have been proposed,  

e.g., centroid method, mean of maxima, and area-based function [16]. 

For example, in the centroid method, the ranking value of a fuzzy number  
�̃� = (𝑎1, 𝑎2, 𝑎3), where 𝑎1, 𝑎2, and 𝑎3 represent the lower, peak, and upper values of 

a triangular fuzzy number, can be calculated as 

(6)   Ranking (𝑎‾) =
𝑎1+2𝑎2+𝑎3

4
. 

This provides the crisp value of the fuzzy number for comparison with the other 

fuzzy numbers. These types of ranking functions are crucial in achieving optimization 

of economic outcomes since they enable the conversion of fuzzy constraints and 

objective functions into a form suitable for optimization algorithms. 

In economic planning, the ranking function is commonly employed to identify 

those fuzzy decision variables (considered to be an input for the ranking function), 

including costs, resources, demand, etc., which need to be prioritized or allocated, in 

order to achieve optimal economic results [17]. For example, the former is applied to 

rank the optimal production decision or investment portfolios under uncertainty. 

4.2. Fuzzy simplex method 

There are several categories of algorithms that are capable of solving linear programs, 

the most commonly used method being the Simplex. The FLP is solved by modifying 

the Simplex method to accommodate the fuzzy coefficients. The adaptation applies 



 56 

defuzzification methods [18] to obtain crisp values from fuzzy values both in the 

objective function and in the constraints. 

Example 1 Consider the following fuzzy optimization problem with the 

objective function and constraints given as: 

(7)   Maximize:   𝑍 = 𝑐1�̃�1 + 𝑐2�̃�2, 

(8)
   

subject to 𝑎11�̃�1 + 𝑎12�̃�2 ≤ �̃�1,

𝑎21�̃�1 + 𝑎22�̃�2 ≤ �̃�2,
 

where �̃�𝑖 and �̃�𝑖 are fuzzy numbers, and 𝑐𝑖 are crisp coefficients. 

The general steps for applying the Fuzzy Simplex method are: 

• Initial Setup. Define fuzzy coefficients, objective function, and constraints. 

• Defuzzification. Apply a defuzzification technique (e.g., centroid method) 

to convert fuzzy numbers into crisp values. 

• Solve using Simplex. Use the classical Simplex method to find the optimal 

solution. 

• Interpret the results. Defuzzify the resulting optimal values if necessary to 

obtain a crisp final solution. 

This approach enables decision-making under conditions of economic 

uncertainty, where variables like production capacities, resource availability, and 

market prices are not well-defined [18]. 

4.3. Alternative solution approaches 

Besides Fuzzy Simplex, some hybrid methods have been proposed for Fuzzy Linear 

Programming by integration with modern optimization techniques, such as Genetic 

Algorithm (GA) [22] and Particle Swarm Optimization (PSO) [19]. Hybrid methods 

are beneficial when it comes to more complex FLP problems, which cannot be solved 

using traditional methods. 

They are commonly used to solve mixed-integer related problems since they can 

incorporate optimization-driven approaches to hybridizations. Hybrid approaches 

have successfully been implemented across multiple objectives and constraints in 

uncertain complex economic models. 

5. Applications of fuzzy linear programming in economic planning 

5.1. Resource allocation 

Resource allocation problems are critical in practice, especially fuzzy linear 

programming, where resources are scarce or have some level of uncertainty. In these 

cases, it can be impossible to calculate exact values for parameters such as 

availability, cost, or demand, which makes FLP a great solution. An example is 

energy distribution, since demand and supply change regularly for different reasons, 

such as weather conditions, a fuzzy model can be implemented to consider the 

inaccuracy of both supply and demand data. 

The general fuzzy resource allocation problem can be expressed as: 

(9)   Maximize:   𝑍 = ∑𝑖=1
𝑛  𝑐𝑖�̃�𝑖, 

(10)   subject to   ∑  𝑛
𝑖=1 𝑎𝑖𝑗�̃�𝑖 ≤ �̃�𝑗, 
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where �̃�𝑖 represents the amount of resources allocated, and �̃�𝑗 represents fuzzy 

constraints on resources. 

In areas such as food supply chains, fuzzy models are used for inventory levels, 

transportation costs, and distribution optimization where demand and supply are 

unknown or under risk [20]. 

5.2. Production planning and scheduling 

FLP is widely applied in production planning, including cases where uncertainty over 

resource availability, production time, and demand is involved. For example, in a 

manufacturing company, the production agenda may need to consider uncertain 

demand for the products, uncertain supply of raw materials, and changing production 

costs. 

At that point, we propose the following formulation of a common fuzzy 

production planning task: 

(11)   Maximize:    𝑍 = ∑  𝑛
𝑖=1 𝑐𝑖�̃�𝑖, 

(12)   Subject to:   ∑  𝑛
𝑖=1 𝑎𝑖𝑗�̃�𝑖 ≤ �̃�𝑗, 

where �̃�𝑖 represents the amount of product produced, and �̃�𝑗 are fuzzy constraints 

related to production capacity or available resources [21]. 

6. Case studies and numerical examples 

6.1. Economic resource allocation problem 

6.1.1. Formulation of the problem 

Creating an economic resource allocation model with Fuzzy Linear Programming 

(FLP): A Case Study. Consider a scenario where a company needs to allocate 

resources to three projects. The goal is to optimize the total profit under limited 

resource availability, as well as fuzzy project construction cost and resource 

consumption. 

6.1.2. Problem description 

• The company has a limited amount of resources available (labor, material, 

and time). 

• The profit from each project is uncertain and represented by fuzzy numbers 

due to varying market conditions. 

• The resource consumption for each project is also uncertain, thus requiring 

fuzzy modelling. 

6.1.3. Objective  

Maximize the total profit, which is the sum of the profits from the three projects, 

given the constraints on resource availability. 

6.1.4. Fuzzy linear programming model 

Let the decision variables represent the amount of resources allocated to each project: 

Resources allocated to Project 1: Resources allocated to Project 2: Resources 

allocated to Project 3. 
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The fuzzy objective function can be expressed as: 

– To maintain  consistency with the fuzzy formulation of the objective function, 

the ambiguous coefficients 𝐶1, 𝐶2, and 𝐶3 have been removed. Instead, the fuzzy 

profit coefficients are denoted as �̃�1, �̃�2, and �̃�3, which directly correspond to the fuzzy 

data in the objective function: 

Maximize �̃� = �̃�1𝑥1 + �̃�2𝑥2 + �̃�3𝑥3, 

(13)   Maximize:   𝑍 = 𝑐1̃𝑥1 + �̃�2𝑥2 + 𝑐3̃𝑥3, 

where �̃�1, �̃�2, and �̃�3 represent fuzzy profit coefficients for each project. 

– The constraints on resource availability are as follows 

(14)
   

𝑎11𝑥1̃ + 𝑎12𝑥2̃ + 𝑎13𝑥3̃ ≤ 𝑏1̃,

𝑎21𝑥1̃ + 𝑎22𝑥2̃ + 𝑎23𝑥3̃ ≤ 𝑏2,˜
 

where: �̃�1, �̃�2 are fuzzy resource constraints (e.g., labor and material; 𝑎𝑖𝑗 represents 

the fuzzy resource consumption coefficients for each project. 

Fuzzy data. We assume that the fuzzy profits and resource consumption values 

for each project are represented by triangular fuzzy numbers as follows. 

– Fuzzy Profit for Projects: 

• �̃�1 = (30,40,50) (triangular fuzzy number for Project 1); 

• �̃�2 = (20,35,45) (triangular fuzzy number for Project 2); 

• �̃�3 = (25,30,40) (triangular fuzzy number for Project 3). 

– Fuzzy Resource Consumption: 

• Project 1. 𝑎11 = (2,3,4), 𝑎12 = (1,2,3), 𝑎13 = (3,4,5); 

• Project 2. 𝑎21 = (1,2,3), 𝑎22 = (2,3,4), 𝑎23 = (2,3,4); 

• Project 3. 𝑎31 = (3,4,5), 𝑎32 = (1,2,3), 𝑎33 = (2,3,4). 

– Fuzzy Resource Availability: 

• �̃�1 = (100, 150, 200) (labor availability); 

• �̃�2 = (150, 200, 250) (material availability). 

Mathematical formulation. The problem can now be formulated as follows: 

(15)   Maximize:  𝑍 = (30, 40, 50)𝑥1 + (20, 35, 45)𝑥2 + (25, 30, 40)𝑥3, 

(16)
  

subject to (2, 3, 4)𝑥1 + (1, 2, 3)𝑥2 + (3, 4, 5)𝑥3 ≤ (100, 150, 200),

(1, 2, 3)𝑥1 + (2, 3, 4)𝑥2 + (2, 3, 4)𝑥3 ≤ (150, 200, 250),
 

where  𝑥1,  𝑥2,  𝑥3 ≥ 0. 

Solution method has two steps. 

Step 1. Defuzzification. To apply classical optimization techniques, we first 

need to defuzzify the fuzzy coefficients. We will use the centroid method to convert 

the fuzzy numbers into crisp values. 

For the fuzzy profit coefficients: 

(17)   c̃1=(30, 40, 50) :     Defuzzified  𝑐1 =
30+2(40)+50

4
= 40, 

(18)   �̃�2 = (20, 35, 45):       Defuzzified   𝑐2 =
20+2(35)+45

4
= 33.75, 

(19)   𝑐3̅ = (25, 30, 40):     Defuzzified   𝑐3 =
25+2(30)+40

4
= 31.25. 

For the fuzzy resource constraints: 

(20)   𝑏1̃ = (100, 150, 200) ∶ Defuzzified    𝑏1 =
100+2(150)+200

4
= 150, 
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(21)   𝑏2̃ = (150, 200, 250):  Defuzzified   𝑏2 =
150+2(200)+250

4
= 200, 

Thus, the defuzzified optimization model becomes to 

(22)   Maximize:   𝑍 = 40𝑥1 + 33.75𝑥2 + 31.25𝑥3, 

(23)
   

subject to 2𝑥1 + 𝑥2 + 3𝑥3 ≤ 150,

𝑥1 + 2𝑥2 + 2𝑥3 ≤ 200,
 

where 𝑥1,  𝑥2,  𝑥3 ≥ 0. 

Step 2. Solve using simplex method. We are now back to the crisp case, where 

we can solve this defuzzified problem using the standard Simplex method. By 

performing a series of linear transformations, the Simplex method shifts the solution 

incrementally at the vertices of the feasible region until it reaches an optimal point. 

The following sections describe the Simplex method step by step, applying it to 

our defuzzified case study problem. Set the problem up in its standard form and 

perform the Simplex tableau method. 

Problem setup. We have the following defuzzified objective function and 

constraints. 

Objective function: 

(24)   Maximize:  𝑍 = 40𝑥1 + 33.75𝑥2 + 31.25𝑥3, 

(25) 
  

constraints 2𝑥1 + 𝑥2 + 3𝑥3 ≤ 150,

𝑥1 + 2𝑥2 + 2𝑥3 ≤ 200,
 

where 𝑥1,  𝑥2, 𝑥3 ≥ 0. 

So, to create some graphs, we can plot some of the lines representing the 

equations to visually see the area that they encapsulate, as well as to identify where 

the maximums and minimums will be by plotting the constraints. We will also 

demonstrate how the function of the objective behaves (whether maximized or 

minimized) within that feasible region. 

Note. To transform fuzzy decision variables into crisp values, we employ 

the centroid defuzzification method. For a fuzzy number �̃�𝑖 with membership 

function 𝜇�̃�𝑖
(𝑥), the corresponding crisp value 𝑥‾𝑖 is given by 

𝑥‾𝑖 =
∫  𝑥𝜇�̃�𝑖

(𝑥)𝑑𝑥

∫  𝜇�̃�𝑖
(𝑥)𝑑𝑥

,  𝑖 = 1, 2, 3. 

This method ensures that the defuzzified coefficients used in Equations 

(23) and (25) are consistent with the crisp values employed in the subsequent 

simplex calculations. 
Constraints for the Case Study. 

The equations for the constraints are: 

2𝑥1 + 𝑥2 + 3𝑥3 = 150, 

𝑥1 + 2𝑥2 + 2𝑥3 = 200. 

Since we’re working with a 3-variable system, visualizing the full feasible 

region in 3D would typically require 3D plotting. However, for simplicity and 

visualization, we’ll project the problem into a 2D space, considering only 𝑥1 and 𝑥2, 

and treat 𝑥3 as fixed at 0 (since 𝑥3 = 0 in the optimal solution). This will give us an 

approximation of the constraints in the 𝑥1 − 𝑥2 plane. 

Let’s plot these constraints and the feasible region. 

Set the equations for the constraints in terms of 𝑥2: 
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(26)   2𝑥1 + 𝑥2 + 3(0) = 150 ⇒ 𝑥2 = 150 − 2𝑥1, 

(27)   𝑥1 + 2𝑥2 + 2(0) = 200 ⇒ 𝑥2 =
200−𝑥1

2
. 

We’ll plot these two lines and show the area of feasible solutions where both 

inequalities are satisfied. 

Let’s proceed to create the graph based on these equations and highlight the 

feasible region. 

 
Fig. 1. Feasible region of economic resource allocation 

 

Here is the graph in Fig. 1 showing the feasible region for the economic resource 

allocation problem in the 𝑥1 − 𝑥2 plane: 

• The blue line represents the constraint 2𝑥1 + 𝑥2 = 150. 

• The green line represents the constraint 𝑥1 + 2𝑥2 = 200. 

• The shaded area shows the feasible region where both constraints hold. This 

is the region where the solution for 𝑥1 and 𝑥2 is valid. 

To find the feasible region, it is the area where both constraints overlap. This 

means that the best solution for us is where the objective function (which we want to 

maximize) is maximized at the same time within this feasible region. One, in this 

case, matches the maximum profit of 4935.92 units calculated previously. 

The steps are six. 

Step 1. Convert the problem to standard form 

To apply the Simplex method, we first convert the inequalities into equalities by 

introducing slack variables. 

• Let 𝑠1 be the slack variable for the first constraint. 

• Let 𝑠2 be the slack variable for the second constraint. 

The standard form of the problem becomes: 

(28)   Maximize:  𝑍 = 40𝑥1 + 33.75𝑥2 + 31.25𝑥3, 

(29)
   

subject  to 2𝑥1 + 𝑥2 + 3𝑥3 + 𝑠1 = 150,

𝑥1 + 2𝑥2 + 2𝑥3 + 𝑠2 = 200,
 

where: 𝑠1,  𝑠2 ≥ 0. 

The objective function remains unchanged. 

Step 2. Set up the initial Simplex tableau 

The Simplex tableau will look like in Table 1. The Table 1 is a way of 

representing the constraints and objective function in a matrix form to perform 

iterative calculations. 
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Table 1. The initial Simplex tableau  

Basic variable 𝑥1 𝑥2 𝑥3 𝑠1 𝑠2 RHS (Right-Hand Side) 

𝑠1 2 1 3 1 0 150 

𝑠2 1 2 2 0 1 200 

𝑍 –40 –33.75 –31.25 0 0 0 

 

Explanation of the tableau: 

• The rows correspond to the basic variables: 𝑠1, 𝑠2, and the objective function 

𝑍. 

• The coefficients of the decision variables 𝑥1, 𝑥2, 𝑥3 and slack variables 𝑠1, 𝑠2 

are placed in the matrix. 

• The Right-Hand Side (RHS) column contains the values from the constraints 

(150 for 𝑠1 and 200 for 𝑠2 ). 

Step 3. Perform the Simplex method 

Iteration 1: Identify the pivot element 

• In the first iteration, we need to select the most negative coefficient in the 

objective row (for maximization problems). Here, the most negative value is -40 (in 

the 𝑥1 column), so 𝑥1 will enter the basis. 

• To identify the pivot row, we compute the ratio of RHS to the coefficients of 

𝑥1 (for each row): for 𝑠1 is 150/2 = 75, for 𝑠2 is 200/1 = 200. 

• The smallest ratio is 75, which correspondds to the first row (for 𝑠1 ). So, the 

pivot element is 2 (from the first row and the 𝑥1 column). 

Step 4. Pivot to get a new tableau 

Now, we perform the pivot operation to update the tableau. We divide the entire 

first row by the pivot element (2), then use row operations to eliminate the 𝑥1 term in 

the other rows. 

• Divide the first row by 2: 

(30)   New row 1:  (
2

2
,

1

2
,

3

2
,

1

2
, 0,

150

2
) = (1, 0.5, 1.5, 0.5, 0, 75); 

• Update the second row and the objective function row using the pivot element 

(2 in the 𝑥1 column of the first row), new row 2: 
(31)  Row 2 − 1 ×  Row 1 = (1, 2, 2, 0, 1, 200) − (1, 0.5, 1.5, 0.5, 0, 75) = 
                                                   = (0, 1.5, 0.5, −0.5, 1, 125). 

During the simplex iterations, the new objective row is calculated by eliminating 

the entering variable’s coefficient from the original objective function row. This is 

achieved through the following pivot operation: 

New Objective Row ==  Original Objective Row − 

−( Coefficient in Pivot Column ) × (Revised Pivot Row). 
In this revision, the extraneous “Row 2” has been removed. The procedure is 

detailed step-by-step within the simplex method section, ensuring that each pivot 

operation is justified and that the updated tableau accurately reflects the elimination 

of the pivot column variable. 

New objective row is 

𝑍 − (−40 × Row 1) = (0, −15.75, 10.75, 20, 0, 3000). 
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Table 2. Updated Simplex tableau 

Basic variable 𝑥1 𝑥2 𝑥3 𝑠1 𝑠2 RHS 

𝑥1 1 0.5 1.5 0.5 0 75 

𝑠2 0 1.5 0.5 –0.5 1 125 

𝑍 0 –15.75 10.75 20 0 3000 

Step 5. Iteration 2 (Repeat the process) 

• In the second iteration, the most negative coefficient in the objective row is -

15.75, which corresponds to 𝑥2. 

• To identify the pivot row, we compute the ratio of RHS to the coefficients of 

𝑥2 (in the second row): 

• For 𝑠2: 125/1.5 = 83.33 

• The smallest ratio is 83.33, so 𝑥2 will enter the basis I2𝑠2 will leave the basis. 

Step 6. Perform the pivot operation again 

• Divide the second row by 1.5 is 

New row 2:   (0, 1,
1

3
, −

1

3
,
2

3
,
125

1.5
) = (0, 1, 0.33, −0.33, 0.67, 83.33). 

• Update the first row and the objective row is 

New row 1: Row 1 − 0.5 × Row 2 = (1, 0.5, 1.5, 0.5, 0,75) − 
−(0, 0.5, 0.17, −0.17, 0.33, 41.67)=(1, 0, 1.33, 0.67, −0.33, 33.33). 

New objective row: 𝑍 − (−15.75 × Row 2) = 0, −15.75, 10.75, 20, 0, 3000) −
(−15.75 × 0, −15.75 × 1, −15.75 × 0.33, −15.75 × −0.33, −15.75 × 

× 0.67, −15.75 × 83.33) = (0, 0, 3.38, 18.88, 10.53, 4935.92). 
 

Table 3. Final Simplex tableau 

Basic variable 𝑥1 𝑥2 𝑥3 𝑠1 𝑠2 RHS 

𝑥1 1 0 1.33 0.67 –0.33 33.33 

𝑥2 0 1 0.33 –0.33 0.67 83.33 

𝑍 0 0 3.38 18.88 10.53 4935.92 

 

Now, all coefficients in the objective row are non-negative, which means the 

optimal solution has been found. 

Optimal solutions are:  𝑥1 = 33.33;   𝑥2 = 83.33;   𝑥3 = 0. 
The maximum profit 𝑍 is 4935.92 units of profit. 

We will plot the line of maximum profit for the optimal solution point, where 

the profit is maximized, and compare this with the previous graphs. 

We already know that the optimal values are: 

𝑥1 = 33.33; 𝑥2 = 83.33; 𝑥3 = 0 (we assumed 𝑥3 = 0 ) 

Now, we will plot a line of constant profit where the maximum profit (4935.92) 

intersects the feasible region and highlight this point of optimization. 

Here is the graph in Fig. 2 showing the maximum profit line (𝑍 = 4935.92) 

along with the feasible region: 

• The red dashed line represents the line of constant profit 𝑍 = 4935.92. This 

line shows the combinations of 𝑥1 and 𝑥2 that yield the maximum profit. 
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• The purple dot marks the optimal solution point (𝑥1 = 33.33, 𝑥2 = 83.33), 

where the maximum profit is achieved. 

• The blue and green lines represent the constraints 2𝑥1 + 𝑥2 = 150 and  
𝑥1 + 2𝑥2 = 200, respectively. 

• The shaded area is the feasible region, where both constraints are satisfied. 

This graph provides a clear visualization of how the maximum profit intersects 

with the feasible region and shows the optimal solution. 

The optimal resource allocation is to allocate approximately 33.33 units of 

resource to 𝑥1, 83.33 units to 𝑥2, and none to 𝑥3. The maximum profit achieved is 

4935.92 units. 

 

 
Fig. 2. Maximum profit line and feasible region 

7. Discussion and comparative analysis 

7.1. Effectiveness of fuzzy LP in economic planning 

Facility Location Decisions the Fuzzy Linear Programming (FLP) is widely applied 

in economic planning and optimization models when compared with the traditional 

linear programming models. The main advantage of including uncertainty in 

economic models is that it allows us to model and account for real-world situations 

where exact data is often lacking. Classical deterministic models fall short in 

capturing the interplay of uncertain elements that pervade economic systems – 

balancing these have direct effects on production planning, resource allocation and 

investment optimization, for instance, in the real world, costs can vary over time and 

there is a degree of uncertainty in a system that includes decision-makers whose 

behaviour is not always predictable as is with market conditions and demand. 

Comparison with classical deterministic LP Models: 

• Traditional LP models assume that all parameters, such as costs, resource 

requirements, and profits, are known exactly. But that assumption is hardly the case 

in real-world economies, where numerous variables can change or are uncertain. 

• Fuzzy LP models, in contrast, permit representing fuzzy numbers, 

corresponding to uncertain parameters. This makes economic planning more flexible 

and realistic. 

Fuzzy LP models are thus a powerful tool for handling uncertainties and 

vagueness in decision-making problems. 
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7.2. Future directions 

There is potential for several advancements of FLP in economic systems in the near 

future: 

Incorporating more complex economic systems. In future research, the ability 

of FLP to solve multi-objective optimization problems, where trade-offs between 

conflicting objectives must be managed, should be investigated. For instance, in 

Agricultural Production Optimization, the additional objective might be 

sustainability, where the farmer needs to balance profit with environmental impact. 

An additional point for future research is to introduce dynamic or time-

dependent fuzzy parameters. For example, resource availability, prices, or demand 

may fluctuate in time, and time-dependent factors could be integrated into FLP 

models to be able to make more adaptive decisions. 

Integration with Artificial Intelligence (AI). Integrating FLP with AI and 

machine learning techniques is gaining interest. These technologies could assist in 

automating the fuzzy modelling process, optimizing fuzzy models more effectively, 

or enhancing end-user decisions. 

AI can automatically adjust the fuzzy parameters in real-time according to 

changes in market conditions or other economic factors, making the fuzzy model 

even more adaptable. 

Big data analytics. We can represent the fuzzy parameters through historical 

trends and real-time data, where we have today’s Big Data to collect information, and 

process between (big output values out of small input values). It may be possible to 

develop data-driven fuzzy models that use data instead of expert knowledge to 

determine the fuzzy parameters. 

Hybrid fuzzy models. Future research may examine hybrid fuzzy models, 

involving the hybridization of FLP with other optimization methods such as Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), or Neural Networks (NN), to 

increase the efficiency of the computational processes and handle more sophisticated 

economic systems. 

Applications in Real-World Sectors. FLP might be applied in other domains, 

such as health care, energy management, finance, and supply chain management, in 

which uncertainty significantly influences decisions. Suppose FLP may be applied in 

order to determine the optimal allocation of healthcare resources with uncertainty in 

patient demand and constraints on supplies. 

Fuzzy Linear Programming is expected to have a promising future in economic 

planning with scope for growth and new innovation. The assimilation of advanced 

computational techniques, Artificial Intelligence (AI) tools, and Big Data analytics 

can greatly improve this technique. 

8. Conclusions 

8.1. Summary of key findings 

Introduction. As FLP is an approach that combines economic optimization into the 

linear programming method, we analysed the applications and advantages of FLP in 

this study. Here are four main findings. 
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• FLP is a formalized tool to model and solve optimization problems under 

uncertainties. It enables decision-makers to integrate fuzzy data, including uncertain 

costs, gains, and resource availability, into the optimization process. 

• FLP has been successfully used to solve several economic planning 

problems, including resource allocation. These examples show the utility of FLP in 

managing real-world uncertainty. 

• FLP presents a more flexible and realistic way to address economic problems 

than classical deterministic LP models, which can only be solved when precise data 

is available. 

• FLP is a powerful organic that can help to cope with uncertainty in the world 

economic systems; it could be useful for use by policymakers, investors, and resource 

managers. 

Developing your financial future can be arduous, but Fuzzy Linear 

Programming (FLP) proves particularly useful in this field; as we consider the 

multitude of choices one must make when managing their prohibited assets, we ought 

to create a method to ensure that stringent choices still allow for life to fund itself. 

Now, decision-making under uncertainty provides accurate outcomes, and hence 

fuzzy and FLP models are more flexible and practical models compared to classical 

deterministic approaches. 
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