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Abstract: A quantitative approach to inventory integration and production 

management is applied. Quantifying the relationships between inventory and 

production allows for minimizing inventory costs and maximizing production. A 

general optimization problem is derived that integrates inventory and production 

decisions. The optimization is formalized as a bi-level problem.  The inventory and 

production objective functions are hierarchically integrated. The solution to the bi-

level problem provides both optimal arguments for inventory size and production 

volumes. The problem is applied to the inventory of agricultural products that meet 

the required nutritional content for animal feed. The inventory delivery costs are 

minimized and nutritional content is maximized to meet the given nutritional level of 

the animal feed. Empirical results provide advantages for the bi-level solutions 

obtained. A sensitive analysis of the inventory is performed and the corresponding 

changes in the feed content are evaluated.  

Keywords: Bi-level formalization, Inventory management, Integration between 

inventory and production tasks, Production optimization. 

1. Introduction  

The production of goods must be supported by effective support with raw materials, 

which is a prerequisite for the quantity and quality of final products. The obligation 

to supply raw materials in production is assigned to the inventory management task. 

Effective linkages and integration of inventory and production are key prerequisites 

for successful enterprise management. Integrating inventory and related production 

cases such as production type planning, machine scheduling, meeting just-in-time 

requirements, demand management, and decisions based on quantitative decisions 

derive optimal solutions for the entire enterprise operations.  

The inventory process is aimed at ensuring a smooth supply of raw materials 

needed to produce goods. Supply is concerned with attempts to reduce costs incurred 

in the process of supplying and transporting raw materials. Furthermore, inventory 

management is responsible for keeping these resources safe from loss, theft, or 

unauthorized use. These inventory process requirements are formalized in the costs 

of shipping, transportation, holding, and storage. The optimization process in 
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inventory management is aimed at minimizing all these different sets of costs, which 

is beneficial for the overall management of the business entity. By its very nature, the 

inventory process incurs costs. This is the opposite economic direction of the 

production process, which is directed towards the flow of resources into the business 

organization. Therefore, an optimal inventory policy can reduce the costs incurred 

for [1]:  

• increasing profits by reducing financial costs; 

• to maintain no exceeded quantities of spare parts for production engines; 

• timely delivery of resources favors the time for production of goods and 

flexible changes of the production plan according to the dynamic requirements of the 

market; 

• reorganization of production technology by increasing the production of 

goods; 

• assessment and maintenance of a minimum level of additional resources to 

cover losses from shortages. 

For inventory management, an appropriate set of formal relations is used, which 

are applied to define and solve optimization problems. In particular, inventory 

optimization provides quantitative solutions for the optimal volumes of materials with 

minimal costs; reducing losses in warehouse storage, considering the warehouse 

limitation, and finding the sequences of new delivery [2].  

Since production technology is strongly influenced by the results of inventory 

processes, overall business management must coordinate and integrate tasks related to 

production resource supply. Such integration should be formalized into a general 

optimization problem that will benefit the business entity’s performance. By having a 

formally defined optimization problem, the business can respond appropriately to 

market changes and fluctuations in demand.  

Inventory management is closely related to the requirements created by 

production technology. Therefore, it is worthwhile to integrate resource supply with 

commodity production into a general optimization problem, as market behavior 

implements dynamic changes in commodity demand.  

The added value of the paper concerns the formalization of the integration of the 

two important tasks of business management: inventory and production. The 

formalization is performed with a bi-level optimization problem. The solutions to such 

problems give simultaneously optimal values of two-objective functions. The set of 

constraints satisfies the requirements of both optimization criteria. The bi-level 

problem is applied to the composition of nutrients in cow feed. This favors cow 

farming milk production. Empirical evaluation of the bi-level solutions and 

comparisons show superior results in minimizing inventory costs and increasing the 

nutritional value of feed.  

The paper contains six sections. After the introduction, the second section 

presents an overview of potential solutions integrating the inventory and production 

task. An analysis of the applied formal modeling is performed. Most of the solutions 

belong to the definition and solution of a general optimization problem. Section three 

presents the formal definition of our bi-level problem. It contains two hierarchically 

ordered optimization problems for minimizing inventory costs and maximizing 
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production. In section four, the bi-level problem is applied to the nutrient composition 

of cow feed with the inventory of agricultural products.  Numerical results from the 

solution of the optimization problem are presented. In section five, a sensitivity 

analysis of the optimization solutions is presented. It assesses changes in stocks and 

nutrient content in response to increases in market prices of agricultural products. The 

final section 6 concludes that an increase in market prices of agricultural products can 

be quantitatively offset by an increase in another and this can preserve the nutritional 

content of the feed. Future developments are discussed for the application of bi-level 

optimization to simultaneously minimize the required power from the electrical grid 

and maximize the use and storage of photovoltaic generation.   

2. Literature review of solutions for integration of inventory and 

production tasks  

To obtain quantitative solutions for both stocks and production, a suitable numerical 

problem must be derived. The estimation of quantitative relationships between the 

parameters of the inventory and the production processes is a prerequisite for defining 

an optimization problem aimed at minimizing costs and/or maximizing returns. A 

formal definition of such a problem is presented in [3], where a linear integer 

optimization problem is described and solved. 

The problem simultaneously estimates the values of resources and the resulting 

quantities of goods. A similar approach to integrating inventory and production 

activities is formalized in [4]. The result of such a formalization gives the optimal 

supply values of supplies for inventory.  

The integration of inventory and production is formalized in [5] with the 

application of Markov chains. The defined formal model aims to maximize the 

quality of goods during their production. In [6], a kind of integration of several 

processes related to production is derived. These processes are sequentially linked 

and relate to the supply of inventory, logistics operations, and the production of 

goods. In [7], the intensity of good production following changes in market 

requirements is defined as an optimization problem. The formalization applied to this 

problem involves statistical estimates of the parameters of average demand and its 

standard deviation. Additionally, correlations between the required volume of 

resources and the number of goods produced are evaluated. The defined optimization 

problem contains statistical parameters and it is combinatorial by definition. A 

heuristic algorithm for its solution, based on the ant colony algorithm is presented in 

[7]. Further analysis of the supply of materials and the production of goods and the 

integration of these two tasks into a common economic chain is presented in [8]. This 

analysis is carried out for the production of predetermined goods: textile, food 

production, and flour products. The administrative processes of business 

management have an impact on inventory and production processes. In [9] explicit 

recommendations for administrative management to improve inventory and 

production are presented.  

The importance of integrating the production and distribution planning model 

into the supply chain is discussed in [10]. The practical case that is solved is the 
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production of a set of orders for different customers on a single machine. A bi-level 

formalization is applied that defines the planning parameters for the production of 

different orders. In [11], the same integration task between the production schedule 

and delivery schedule is formalized as an optimization problem. Integration is 

achieved at the production stage, as all parts of the products are stored at retail and 

then the set of different parts is delivered to the customers. The problem of production 

and distribution in a multitier supply chain network is considered in [12]. A bi-

objective problem is presented that integrates the tasks of production planning and 

production allocation in a multi-level supply chain network with multiple product 

types and multiple periods. In [13], manufacturing is integrated with concurrent tasks 

in the customer supply chain. This study evaluates the interactions between 

manufacturing management and related decisions regarding supply chain strategy, 

requirements, and intensity. In [14], a bi-level formalization for resource support of 

a set of projects is implemented.  

Manufacturing enterprise management policies aim to integrate production with 

inventory management by achieving just-in-time delivery resources. This can reduce 

material storage costs and reduce the amount of excess and residual materials from 

the production stage. The formalization of the inventory process is discussed in [15]. 

An optimization problem is defined and an iterative delivery algorithm is 

implemented. The peculiarity of the algorithm is that it gives a greater production 

gain as the iterative calculations increase. In [16] the inventory process is optimized 

for the case of constant production levels. In this way, inventories are closely related 

to the rate of production, which favors the retention of unnecessary resources.  

Inventory can significantly affect the production process. This is the reason for 

deriving integration solutions between these two processes. An overview of the works 

dealing with the so-called integrated production of supplies can be found in [17].  

Solutions for integration between inventory and production are derived for different 

cases and industries. In [18], an optimization problem for the textile industry was 

developed. In [19] such integration is applied to perishable goods that need a short 

time between delivery and preservation. The formalization of inventory rules is 

usually different depending on the applied production processes. The formalization 

of the production is related to the goods and the internal rules for the production of 

the specific goods. However, inventory relationships are common to this activity. An 

overview of the concepts that formalize inventory relations can be found in [20].  

The analysis of the formal modeling and the definition of the problem related to 

production and/or inventory concludes that a formalization of optimization should be 

applied. Optimization can take the form of optimal control [21], and application of 

optimization models and methods [22]. Optimization can be supported by simulation 

[23] and the use of cluster shapes [24]. The extension of optimization with more than 

one objective function is addressed through the use of dual-step maximization [25] 

and with bi-level formalization and optimization [26].  

The overview above illustrates that successful business process management 

requires optimizing the relationship between the inventory process and the production 

of goods. Such optimization requires deriving quantitative relationships that must be 

introduced as formal relations in an optimization problem. The solution to the 
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optimization problem will give optimal inventory volumes along with the volumes of 

goods coming with production.    

This study provides a formal description of the integration between inventory 

and production tasks. Integration refers to the supply of raw materials. Production is 

taken as the amount of required nutritional content for animal feed.  The supply of the 

necessary products to ensure predetermined levels of nutrition is formalized in a 

general optimization problem. This problem is defined hierarchically and its formal 

relations are applied to bi-level optimization. Solutions to the bi-level problem 

estimate the volumes of optimal raw material stocks that will be used precisely to 

satisfy the requirements.  

The inventory problem evaluates arguments that relate to the volume of resources 

that must be supplied for production. Production has arguments that affect the supply 

of inventory. The specific problem being defined estimates the minimum agricultural 

resources that are required to prepare a predetermined content of animal feed. The 

inventory in this case is agricultural products. Production goods are the nutrition in the 

food of the animals. Thus, the solution to the bi-level problem can benefit business 

outcomes such as minimizing inventory costs and maximizing nutritional content. 

Therefore, the formulation of the bi-level problem is performed through a hierarchical 

integration of two sub-problems: the upper one aims at minimizing inventory costs, 

and the lower one performs production maximization. Both subproblems are related 

to general constraints that formalize the fractions of resources that are required to 

prepare the contents of animal feed.    

The solution to the bi-level problem extends the results of the classical inventory 

problem since its arguments give the optimal production values for the expected 

inventory volumes. Therefore, the bi-level problem estimates the optimal supply 

volumes and its output as a nutrition content. 

3. Materials and methods  

3.1. Definition of the bi-level optimization for integration of the production and 

inventory  

The inventory process explicitly considers that raw materials must be supplied from 

the market and the resource costs are independent of the supply inventory process [27].  

Inventory optimization aims to minimize the costs of delivery requests, transportation, 

and storage in the warehouse. The parameters to be considered for the inventory 

process are recommended in [28] as:  

• Initial price for delivery order K [BGN/per 1 order]; 

• Purchase costs for inventory; 

• Transport costs to the storage location; 

• Costs for storing inventory in warehouse h [BGN/per 1 resource quantity]; 

• Potential costs from loss and spoilage of materials. 

Purchasing and transportation costs depend on market behavior. They do not 

depend on management decisions about inventory. Therefore, these costs are not taken 

into account in inventory management. Potential losses from warehouse storage can 

be considered as part of the total storage costs h.  
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Given the delivery costs K and the storage cost h, the inventory optimization 

problem aims to estimate the optimal volume of the resource y that gives the 

minimum cost per delivery set. This volume y must satisfy the desired quantity of 

demand D for that type of raw material.   

The classic form of inventory formalization problem applies Economic Order 

Quantity (EOQ) modeling [27-28]. The input parameters for the inventory are:  

• the delivery value K for the inventory request; 

• the storage costs h for supplies to be stored in a warehouse.  

Therefore, the total inventory cost is calculated by the sum   

Total_costs = 𝐾 + ℎ𝑦, 

and y is the volume of the resource provided for the inventory. 

The solution to the optimization problem is the volume y that minimizes the 

total delivery cost but must satisfy the requested quantity of resources for the demand 

D. Since the warehouse for storing inventory has capacity limitations, the inventory 

process must be performed repeatedly over time, illustrated in Fig. 1. On the vertical 

axis is the volume of inventory y, which changes with consumption from production.  
 

 
Fig. 1. Consistent execution of inventory over time 

 

The volume of inventory y decreases linearly, assuming constant consumption 

from the production process. The slope of the decline depends on the value of demand 

D. Higher demand makes the slope of the decline steeper.  

Economic Order Quantity (EOQ) modeling assumes that a new inventory order 

of y will be placed when the current value of y reaches the horizontal axis or 𝑦 = 0. 

An ideal inventory process then occurs and immediately the new inventory volume y 

is introduced into the warehouse and the production process.  

The period 𝑇0 between two sequential processes of inventory can be formalized 

in terms of demand D and volume of the stock y or T0: 

(1)   T0  =  D/y.   

This formalization of the inventory process is a static EOQ because demand D is 

assumed to be constant over time.   

The value of the holding cost calculated for one delivery period T0 is the product 

ℎ. Here it is assumed that the average volume of the inventory resource for a period 

T0 is y/2 (Fig. 1).  

The rate of stock reduction y is defined by the demand D for the production. A 

new inventory is required when the current level is y = 0. The average holding cost 

 

 

 

 

 

 

 

 

 

 



 132 

is h
𝑦

2
  as y varies between the value 0 and y. The sequence of the inventory series has 

a period 𝑇0. Therefore, the cost per delivery for inventory RC(y) per cycle T0 is 

(2) RC(𝑦) =
𝐾+ℎ(

𝑦

2
)𝑇0

𝑇0
.  

The inventory costs for one cycle are formally found by substituting the 

relationship (1) into (2) or  

(3)  RC(𝑦) =
𝐾𝐷

𝑦
+ ℎ

𝑦

2
.  

This relationship is used to estimate the optimal inventory value opt for one period 

T0 that minimizes RC(y):  

(4) 𝑦opt = arg {
𝑑RC(𝑦)

𝑑𝑦
=  0 = −

𝐾𝐷

𝑦2 + 
ℎ

2
},  

or       

(5) 𝑦opt =  √
2 𝐾𝐷

ℎ
.  

The relationship (5) is the value of the optimal inventory volume. It is derived 

from the assumptions of the EOQ model for a constant demand value D. The value 

𝒚opt gives the volume of the resource that must be supplied for one inventory period 

T0. 

To extend the inventory modeling to supply m types of resources  

𝑦𝑗 , 𝑗 = 1, … , 𝑚, the optimization relation (4) must be decomposed into m 

independent equations. Since the production of one type of good generally requires 

several types of resources, the inventory warehouse must accommodate all of these 

resources.  

Since the warehouse is technologically limited in capacity, it is necessary to add 

constraints on the volume of stored materials to the inventory problem (4). This 

complicates the original problem (4) and the inventory optimization takes the form  

(6) min
𝑦

{RC(𝑦) =  ∑ (
𝐾𝑗𝐷𝑗

𝑦𝑗
+  ℎ𝑗  

𝑥𝑦

2
)𝑚

𝑗=1  },   

∑ 𝑎𝑗𝑦𝑗  ≤ 𝑑𝑚
𝑗=1 . 

The solution of (6) is a vector 𝐲 = (𝑦1, … , 𝑦𝑚), with each component 

corresponding to the type of resource. The values of the coefficients 𝑎𝑗, 𝑗 = 1, … , 𝑚, 

give the relative space required in the warehouse per unit volume of resource j.  

Problem (6) is a nonlinear optimization problem and must be solved with 

appropriate nonlinear algorithms, which increases the computational time for its 

solution.  

For the integration of the production with the inventory, problem (6) should 

include additional relations, coming from the production process. A simple form of 

such relations can be taken in linear form describing what part of inventory resource 

is used for the production of one good or   

(7) ∑ 𝑎𝑖𝑗𝑥𝑖  ≥  𝑦𝑗
𝑁
𝑖 , 𝑗 = 1, … , 𝑚,  

where the coefficients 𝑎𝑖𝑗 give the volume of the resource 𝑦𝑖 that is needed for the 

product 𝑥𝑗, where j=1,…, m, is the number of product.   
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Relations (7) should formalize the characteristics of production in terms of the 

fractions of resources used for the different products. 

This study aims to derive relationships between the required amounts of 

inventory resources that must satisfy the production of goods, according to a certain 

demand for goods. Since a product from production requires a set of inventory 

resources, integrating inventory and production can benefit business management by 

reducing inventory costs and increasing production returns.  

The optimization problem that addresses the integration of inventory and 

production in this study is defined as a bi-level optimization problem. This problem 

creates a hierarchical relationship between two subproblems. The low-level problem 

is defined to maximize the return of production, given the inventory resources 

provided. The upper-level subproblem estimates the optimal inventory volumes 

required by the low-level problem. Therefore, the two optimization subproblems are 

formally interrelated. The solution of each depends on the solutions of the other.  

3.2. Definition of the production optimization sub-problem   

The objective function in production can be chosen in content for minimization of 

the production costs or to maximize the production income. The formal relations for 

these two cases can be described with the sums 

(8) min
𝑦𝑗

∑ 𝑐1𝑗
𝑦𝑗

𝑚
𝑗   or  max

𝑦𝑗

∑ 𝑐2𝑗
𝑦𝑗

𝑚
𝑗 , 

where 𝑐1𝑗 and 𝑐2𝑗 are the respective costs of producing and costs for selling the 

product. Additional constraints can be added for the Lower Bound (LB) and Upper 

Bound (UB) for the type of inventory, required for each product or 

(9) LB𝑗  ≤  𝑦𝑗  ≤  UB𝑗,  j = 1,…, m.  

The production problem can be complicated by additional constraints, which can 

correspond to the technological process of the production of a good. In this research, 

our problem for the integration of the inventory and the production is addressed for 

the preparation of food for the cows in a dairy farm. The cow food should have such 

nutritional elements, to stimulate the milk supply. For this case, the inventory problem 

has to evaluate the volumes of appropriate agricultural products. The nutrition content 

of these agricultures must give the needed nutrition content. The target of the 

optimization is to have minimal costs of the inventory and to maximize the content of 

nutrition elements in the food.  

3.3. Integration of inventory and production subproblems in common bi-level 

optimization problem   

The bi-level optimization problem is defined as the interconnection between two 

optimization problems. The solution of the upper-level problem changes the solutions 

of the lower-level problem and vice-versa, the low-level problem makes changes to 

the upper problem, Fig. 2.  

The modifications made to the two problems can be formalized by changes to 

their objective functions and/or to their set of constraints. The low-level problem 

makes changes to the upper-level by its arguments x. Accordingly, the low-level 

solutions are influenced by the upper solutions y. The benefit from the bi-level 
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optimization comes from the extended space of problem arguments (x, y) that have 

corresponding optimal values. The optimization is performed by satisfying two 

objective functions of the upper and lower problems in hierarchical order. This makes 

the optimization richer towards optimal requirements. Finally, the constraints of the 

bi-level problem are the intersection of the two constraints of the upper and lower 

problems, which means that more constraints are taken into consideration for the  

bi-level problem in comparison with its constituent parts. The formal description of 

the bi-level problem has the form (10) and we make its interpretation in the meaning 

of integration of inventory and production.  

 
Fig. 2. Bi-level optimization as two interrelated subproblems 

 

The production problem is aimed at maximizing an objective function, formally 

defined as a function 𝐹(𝐱), where the vector 𝐱 = (𝑥1, … , 𝑥𝑛) affects the n nutrients in 

the food. The objective function 𝐹(𝐱) estimates the profit from including these 

nutrients in the food. In this study, a linear objective function 𝐹 = 𝐜T𝐱 is used for the 

case of simplifying the computational estimates in a bi-level problem. The value of 

the components 𝐜 = (𝑐1, … , 𝑐𝑛) gives the relative gain from the nutrient  

𝑥𝑗, 𝑗 = 1, … , 𝑛. Additional constraints for the production problem are the inequalities 

that give the relationship between the required amount of agricultural product bj,i  to 

obtain a nutrient with volume xi as 

(10) ∑ 𝑏𝑗,𝑖𝑦𝑗 ≥  𝑥𝑖
𝑚
𝑗=1 ,    𝑗 = 1, … , 𝑚,   𝑖 = 1, … , 𝑛. 

For the storage of the food x in a limited space, similar inequalities can be added 

as in the inventory problem in (6) for the production one as  

(11) ∑ 𝑔𝑖𝑥𝑖  ≤ 𝑓 𝑛
𝑖=1 , 

where 𝑔𝑖 is the relative space requirement for nutrient xi and f is the available holding 

space. 

Therefore, the production problem takes the form   

(12) max
𝑥

{𝐹(𝐱(𝒚))},   

with constraints (10) and (11). The bi-level optimization problem targets the joint 

solution of the inventory and production subproblems (6) and (8). The bi-level 

optimization contains a common set of inequalities (10), which have to be satisfied 

by both subproblems (6) and (8). The explicit formal definition of the bi-level 

problem, which integrates the inventory and the production is  

(13) min
𝑦

{RC(𝒚(𝒙)) =  ∑ (
𝐾𝑗𝐷𝑗

𝑦𝑗
+  ℎ𝑗  

𝑦𝑗

2
)𝑚

𝑗=1 },  

 

 

 

 

 

 

 

 

      

 

 



 135 

∑ 𝑎𝑗𝑦 ≤ 𝑑 𝑚
𝑗=1 , 

∑ 𝑏𝑗,𝑖𝑥𝑗 ≥  𝑦𝑖 ,𝑚
𝑗=1  𝑗 = 1, … , 𝑚, 𝑖 = 1, … , 𝑛, 

subject to  max
𝑥

{F = 𝐜𝐓𝐱},  

∑ 𝑔𝑖𝑦𝑖  ≤ 𝑓𝑛
𝑖=1 ,  

∑ 𝑏𝑗,𝑖𝑥 ≥  𝑦𝑖
𝑚
𝑗=1 , 𝑗 = 1, … , 𝑚, 𝑖 = 1, … , 𝑛.  

The arguments of the bi-level problem (13) are both production arguments х and 

inventory arguments y. Inventory resources y minimize inventory costs, but their 

volumes yield food volumes x, which maximizes production profit.  

4. Numerical simulation with bi-level optimization  

The optimal nutrition elements for the cow food x and the optimal volumes of 

agricultural resources y are given as solutions to the bi-level optimization problem. 

The production process takes place for the preparation of the content of the food 

for the animals in a livestock farm. The feed must contain the necessary nutritional 

components that the animal must have in its diet. However, the nutritional 

components do not exist in pure form and must be taken from various agricultural 

products. Thus, our interpretation of inventory refers to the volumes of products to 

be delivered. However, their supply must correspond to the required content of 

nutritional elements. In this way, production targets the achievement of the optimal 

level of nutritional components. The inventory optimization targets the minimization 

of the costs of product delivery. However, their quantity should maximize the level 

of nutritional elements of the feed prepared from the supplied inventory.  

For the definition of the bi-level problem, the inputs used are taken from 

publicly available data on cow husbandry requirements. Three types of vegetables 

and fruits are considered. Nutrient items are selected for calories and carbohydrates. 

This data is taken from virtual sources [29-31]. The numerical values are given in 

Table 1. 
 

Table 1. Input data for the parameters of the inventory-production optimization problem  
Argu-
ments 

Veget-
ables 

Calories 
Calor value, 

100 g 
Carbo-
hydrate 

Carbo-value, 
mg 

Inventory 
prices 

Values, BGN per 1 
kg 

𝑥1 carrots 𝑏1 41 𝑎1 9.58 𝑐1 0.23 
𝑥2 apple 𝑏2 52 𝑎2 13.81 𝑐2 0.34 
𝑥3 orange 𝑏3 55 𝑎3 11 𝑐3 0.28 

 

The nutritional requirements insist that calories 𝑦1 must be four times the 

carbohydrate content 𝑦.  

Numerically, the inventory problem takes an analytical form as  

min
𝑥

{∑ (
𝐾𝑖𝐷𝑖

𝑦𝑖
+  ℎ𝑖  

𝑦𝑖

2
)𝑁

𝑖=1  }, 

∑ 𝑎𝑖𝑗𝑦𝑖  ≥  𝑥𝑗,𝑁
𝑖  𝑗 = 1, … , 𝑚,  

or 

min
𝑦1,𝑦2,𝑦3

{|0.023  0.034 0.028|. |

1/𝑦1

1/𝑦2

1/𝑦3

| + |0.23  0.34  0.28 |. |

𝑦1

𝑦2

𝑦3

|}, 
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|𝑏1  𝑏2 𝑏3  |. |

𝑦1

𝑦2

𝑦3

|  ≥  𝑥1,   |𝑎1  𝑎2 𝑎3  |. |

𝑦1

𝑦2

𝑦3

|  ≥  𝑥2. 

The component of the delivery cost 𝐾𝑖𝐷𝑖 are taken equal to inventory prices 𝑐𝑖 

or 𝐾𝑖𝐷𝑖 = 𝑐𝑖 , 𝑖 = 1, … , 𝑁 = 3.  Operating costs are estimated at 10% of inventory 

costs, ℎ𝑖 = 0.1 𝐾𝑖, 𝑖 = 1, … ,3. 

The low-level problem targets the maximization of  𝑥1
2 +  𝑥2

2, 𝑖 = 1, 2, with the 

production goal function. The last is defined in a square form: 𝑥1
2 +  𝑥2

2. Therefore 

the numerical form of the low-level problem is 

min
𝑥1, 𝑥2

{−(𝑥1
2 + 𝑥2

2)}, 

𝑥1 +
1

4
 𝑥𝑦2 ≤ 𝑔 = 10 ,  𝑥1  ≤ 10 , 𝑥2  ≤ 10 . 

The value g=10 mg is selected according to the requirements for the preparation 

of one set of cow feed.  

The solution of the bi-level problems gives y=(0.0669 kg; 0.0722 kg; 0.637 kg) 

vegetables that will provide; x=(10 cal; 3.44 mg) per feed dose. The inventory value 

is 12.55. The production value is calculated with the sum (𝑥1
2 + 𝑥2

2 ) as 175.19. 

This solution meets the requirements of minimization of the inventory costs and 

at the same time gives the maximal content of possible nutrition elements. The benefit 

of bi-level optimization is that it gives simultaneously results for the inventory and 

the production tasks. These solutions are evaluated considering the interconnections 

between the two problems of inventory and production. By varying the parameters of 

the bi-level problem, we can evaluate the sensitivity of the solutions to nutrient 

content requirements and assess the inventory cost when the prices on the market 

change.   

5. Assessment and sensitivity analysis of the bi-level problem 

The sensitivity analysis was performed to estimate the changes in inventory volumes 

𝑦1, 𝑦2, 𝑦3 according to the changes in the nutrient content. Formally, the nutrient 

content is changed by several values of the coefficient g. Then solving the bi-level 

problem the inventory and production costs are valued for g. The nutritional value g 

is changed from g=0.5 to g=3. This means that the solutions to the bi-level problem 

(10) are solved for the case of half the required food concentration (g=10), up to a  

3-fold increase in this concentration (g=3×10=30). In Fig. 3 the corresponding 

volumes of supplies 𝑦1, 𝑦2, 𝑦3 for the increase of g. 

It can be seen that the increase in the nutritional content x1, x2 requires a 

corresponding increase in the initial supplies 𝑦1, 𝑦2, 𝑦3. Accordingly, the amount of 

production given in Fig. 4 also increases. 

The inventory cost follows a decreasing tendency. Although the supplies 

𝑦1, 𝑦2, 𝑦3  increase, the total inventory costs do not follow an increasing tendency. 

This reason comes from the component 
𝐾𝑖𝐷𝑖

𝑦𝑖
 of the inventory goal function. With the 

increase in the volume 𝑦𝑖, this gives a decrease in the cost’s components 
𝐾𝑖𝐷𝑖

𝑦𝑖
 and 

respectively decreasing impact on total cost inventory. This can be explained from 
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practical considerations that the inventory cycles are reduced, due to the higher 

inventory delivery y. Inventory costs related to the increasing nutrient concentration 

g are given in Fig. 5. 
 

 
Fig. 3. Increase in inventory in line with increasing nutrient concentration g 

 

 
Fig. 4. Increase in production level as nutrition increases g 

 

 
Fig. 5. Inventory costs to increase nutrition g 

 

An additional type of sensitivity analysis is made by the delivery price of the 

product. The price of 𝑦1 is changed from 0.8 up to 1.2 from its current value of 

c(1)=0.23. The corresponding behavior of the inventories 𝑦1, 𝑦2, 𝑦3 is given in  

Fig. 6. It follows that when the cost price c(1) is lower than its nominal value, each 

raw material 𝑦1, 𝑦2, 𝑦3  has an increasing character for its stock. But when the price 

c(1) exceeds its nominal value, all supplies decrease in amount. The corresponding 

production value graph is given in Fig. 7. The behavior of the output of food 

components follows the supply dynamics 𝑦1, 𝑦2,. At a lower price of c(1) below the 
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nominal value, the production components increase. But when the costs c(1) are 

higher their nominal level of production falls.    
 

 
Fig. 6. Changes in supply quantities 𝑦1, 𝑦2, 𝑦3 relative to cost change c(1) 

 

 
Fig. 7. Value of production with change in cost price c(1) 

 

The value of inventories is inversely proportional to changes in cost c(1), Fig.8. 

If the c(1) is lower than its nominal level, the stock price declines. In the other case, 

because the cost price c(1) increases, the total inventory cost also increases.   

 

 
Fig. 8. Inventory value versus price variation c(1) 

 

Therefore, the inventory costs are positively correlated with the dynamical 

behavior of the market for its increase or decrease level.   

The results of the sensitive analysis provide evidence that bi-level optimization 

gives useful quantitative results according to changes in market parameters for 

inventory and production. However, the benefit of the bi-level problem comes from 

the evaluation of quantitative solutions for both arguments about inventory and 

production management.   
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6. Conclusions and future work 

This study derives an optimization problem that integrates inventory requirements 

and objectives for the production task. The optimization problem is in a hierarchical 

form at two levels. At each level, a corresponding inventory delivery problem with 

cost minimization and a production problem with output maximization is solved. 

Both optimization problems are related to general constraints formalizing the 

necessary inventory resources for the production of a good.  The application of this 

bi-level optimization problem is applied to the case of supplying agricultural products 

with minimal costs for the nutritional containing of the feed to cows on a dairy farm. 

The production good is the nutrient that is needed for the food. The bi-level problem 

integrates inventory and production, allowing to minimize the cost of inventory 

products but maximizing the nutrients needed for the cows’ food. The inventory 

problem is defined based on EOQ modeling. The production problem is aimed at 

maximizing the nutritional elements. The solution of the bi-level problem has a 

positive effect from an economic point of view in terms of simultaneous optimization 

of inventory and production. 

The added value of the paper is the definition of a bi-level optimization problem, 

which integrates two important business management tasks: inventory and 

production. The benefit of the bi-level problem is that it quantifies solutions and 

provides quantitative recommendations for inventory and production. This 

formalization gives minimum inventory costs, but at the same time maximizes 

production output. The advantage of this optimization is the mutual integration of the 

obtained optimal solutions. The resulting problem has been applied to the assessment 

of food resources for animal feed that maintain an optimal level of nutrition. A 

potential complication of this formalization could be assuming additional constraints 

on the stochastic nature of inventory in terms of lead times and the random nature of 

production requests.  

The applied approach is not limited to the example considered here but can be 

used in various application areas such as optimal charging of electric vehicles, which 

is also the subject of further research. A future direction for research and application 

is the simultaneous minimization of the required power from the electrical grid and 

the maximum use and storage from photovoltaic generation, which will minimize the 

operating costs of charging electric vehicles. 
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