
 110

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 25, No 1

Sofia  2025 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2025-0007

Detecting the Inconsistency between Android Apps’ Data

Collection and Google Play’s Data Safety Using Static Analysis

Rawan Baalous, Alanoud Althobaiti, Dareen Alyoubi, Rama Alzahrani,

Mona Aljohani

Cybersecurity Department, University of Jeddah, Jeddah, Saudi Arabia

E-mails: rsbaalous@uj.edu.sa aalthubayti.stu@uj.edu.sa dalyubi.stu@uj.edu.sa

ralzahrani0647.stu@uj.edu.sa maljohani0169.stu@uj.edu.sa

Abstract: In the rapidly evolving landscape of Android mobile apps, ensuring user

data privacy remains paramount. Google introduced a Data Safety section on the

app listing page to display privacy and security practices in a short format. Thereby

enabling users to make informed decisions regarding the app’s download and usage.

Google left the responsibility of providing accurate and complete information on the

Data Safety section to the developers. This makes the credibility of the Data Safety

section questionable. A static analysis approach has been proposed to verify the

consistency between the Android app’s source code and its Data Safety section to

ensure that the app behaves as its Data Safety section promises. By analyzing 4980

apps, a significant 67.7% of the apps were found to have inconsistencies, indicating

potential misrepresentation of data collection practices. This research highlights the

need for rigorous verification of Data Safety information to enhance user trust and

privacy.

Keywords: Data Safety, Android privacy, Dangerous permissions, Privacy policies.

1. Introduction

Android users have access to a wide range of apps through the Google Play store.

Each app has metadata such as description, category, and a section titled Data Safety,

which offers information on privacy and security practices. Based on the metadata

provided by an app, users decide whether it is trusted for installation and use [1].

Google Play requires app developers to provide a privacy policy for each app.

Google reviews these policies and takes enforcement action for any violation [2].

Users ignore these policies because they are long and unnoticeable on the app listing

page. For this reason, Google announced that by July 20, 2022, all apps must have a

Data Safety section that explains their data collecting and sharing methods [3]. Unlike

privacy policies, Data Safety provides a simple, readable, concise, and noticeable way

to display information related to privacy and security practices taken by the app on

the app listing page.

mailto:rsbaalous@uj.edu.sa
mailto:dalyubi.stu@uj.edu.sa
mailto:ralzahrani0647.stu@uj.edu.sa

 111

The Data Safety section presents information on data collection, sharing, and

security practices in a user-friendly format. However, developers are responsible for

ensuring the accuracy and completeness of this information [3], creating a risk of

false or misleading disclosures. A recent study [4] highlights this concern, revealing

discrepancies in 80% of reviewed apps between Google Play’s Data Safety and their

privacy policies.

This study evaluates the compliance of Android apps’ Data Safety section with

their actual privacy practices, focusing on the consistency of data collection claims

with the app’s source code. Data sharing and other security practices are beyond the

scope of this work. To determine the data an app collects, it is crucial to identify the

permissions granted to it [5]. The AndroidManifest.xml file within the Android

Package Kit (APK) contains the permissions for accessing protected parts of the

system or other applications [6]. This work primarily focuses on dangerous

permissions, which access sensitive data like photo albums and locations [7].

Additionally, elements in the AndroidManifest.xml, such as the activity tag, may

indicate data collection. Data from the AndroidManifest.xml is systematically

compared with the Data Safety section to identify inconsistencies. To summarize, this

paper answers the following questions:

 RQ1. What user privacy-related data are collected by Android apps?

 RQ2. What information do the developers claim to collect as stated in the

Data Safety section?

 RQ3. How accurate is the information in the Data Safety section about data

collection when compared to the user privacy-related data collected actually by apps?

This study has the following contributions:

 Creation of a dataset of Android apps’ Data Safety sections and their APK

files.

 Analysis of the Data Safety section to extract data collection-related

information.

 Extraction of dangerous permissions from the source code using static

analysis.

 Extraction of data collection indicators within the declarations of the

activity elements from source code using semantic analysis.

 Comparison of information extracted from the source code with that obtained

from the Data Safety section to identify inconsistencies.

The rest of this paper is organized as follows: Section 2 provides background

information relevant to the study. Section 3 reviews related works. Section 4 presents

the methodology, including dataset collection, extraction of data collection-related

statements, source code analysis, and detection of inconsistencies. Section 5 reports

the results, followed by a discussion in Section 6. Finally, Section 7 concludes the

paper by summarizing the key findings.

2. Background

In this section, background information about apps’ permissions, APK files, and the

Data Safety section in Google Play are presented.

 112

2.1. Apps’ permissions

The Android permission system is a key security feature that controls access to

system resources and user privacy [8]. Apps must request permission to access

sensitive information, but many users consent without fully understanding them.

Some apps exploit this by requesting additional permissions to collect user data.

Android permissions are categorized into install-time, runtime, and special

permissions [9].

Each permission type defines the scope of restricted data and actions an app can

access upon system approval. Install-time permissions have minimal impact on the

system and other apps, granting limited access [9]. When declared, these permissions

are shown on the app’s details page in the store, and the system automatically grants

them. Runtime permissions, also known as dangerous permissions, grant apps access

to sensitive data or actions during runtime, posing higher risks to the system and other

apps. For instance, accessing a phone’s camera is a dangerous permission. When such

permission is requested, users are prompted to grant or deny access via a dialog.

However, if access is granted, the app may gain additional permissions within the

same group without further user consent [10]. Table 1 lists examples of dangerous

permissions [11].

Table 1. Dangerous permissions

Permission group Dangerous permissions

CALENDAR
READ_CALENDER

WRITE_CALENDER

CONTACTS

READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

LOCATION

ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

ACCESS_MEDIA_LOCATION

PHONE
READ_PHONE_STATE

READ_PHONE_NUMBERS

CALL_LOG
READ_CALL_LOG

WRITE_CALL_LOG

SENSORS BODY_SENSORS

MICROPHONE RECORD_AUDIO

ACTIVITY_RECOGNITION ACTIVITY_RECOGNITION

SMS

READ_SMS

SEND_SMS

RECEIVE_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

STORAGE

READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE

READ_MEDIA_AUDIO

READ_MEDIA_IMAGES

READ_MEDIA_VIDEO

2.2. APK file

Android uses a file format called APK. Android apps are created by compiling APK

files using Android Studio, the official development environment. The APK files

 113

contain all the code and assets for the software program [12]. The metadata of APK

files, including permissions and manifest information, is often targeted by Android

malware. Various types of Android malware exhibit differing attack capabilities and

possess distinct features that facilitate their classification and identification [13].

2.3. Data safety

Data Safety is one of the information that is required from Android developers on

the app’s listing page. On July 20, 2022, Google’s policy stated that all developers

must disclose how they collect and use users’ data by completing the Data Safety

form on the Play Console page [7].

Developers must ensure their apps have accurate and complete Data Safety

forms, including a link to their privacy policy [3]. While Google Play reviews apps

for policy compliance, it cannot determine how developers handle sensitive user data.

Google may take enforcement action if discrepancies are found between an app’s

behavior and its privacy policy declaration [2].

To publish an app on Google Play, developers must complete the Data Safety

form, even if the app doesn’t collect personal user data. The Data Safety section

includes details on data collection, sharing, and other security practices, as shown in

Fig. 1.

Fig. 1. Data Safety section

 114

3. Related works

Several studies have compared the actual behaviors of Android apps with the

information available on Google Play’s app listing page, focusing on aspects such as

the privacy policy, app description, and Data Safety section.

Several studies have focused on detecting inconsistencies between privacy

policies and actual app behaviors, such as [5, 14-17]. Z i m m e c k et al. [14] and

S l a v i n et al. [15] employed analogous methodologies to identify privacy policy

violations in Android apps by analyzing Android API calls. This approach proved

valuable in the detection of instances where API calls acquired personal data from

mobile devices. Different from the aforementioned methods, which primarily

emphasized privacy information obtained from API methods, W a n g et al. [16]

developed GUILeak. It is a novel framework capable of detecting violations relating

to information collected from Graphical User Interfaces (GUIs). By establishing

correlations between privacy-policy phrases and user input views, GUILeak

surpassed the confines of Android API-based violation detection, enabling the

identification of potential violations related to user input. The PermPress tool

developed by R a h m a n et al. [5] focused on evaluating the comprehensiveness of

permissions in Android apps. It specifically evaluated whether an app’s privacy

policy accurately reflected its dangerous permissions. This has been achieved through

a combination of machine learning techniques and human annotation of privacy

policies, enabling the identification of permission-related information. In contrast,

the PTPDroid tool developed by T a n and S o n g [17] has been designed to detect

privacy disclosures to third parties in Android apps. It employed an entity-sensitive

flow-to-policy consistency checking technique to identify violated privacy

disclosures. PTPDroid utilized static analysis to analyze data flows within the app’s

code and applied natural language processing to extract relevant declarations from

the privacy policy. By categorizing the identified data flows into different disclosure

groups, PTPDroid provided insights into the clarity and accuracy of privacy

disclosures.

Numerous studies have highlighted discrepancies between app descriptions and

the permissions requested, such as [18-20]. Researchers have used deep learning and

Natural Language Processing (NLP) to address this issue. For example, F e n g et

al . [18] have proposed AC-Net, an end-to-end framework that assessed the

consistency between app descriptions and permissions. F e i c h t n e r and G r u b e r

[19] have applied deep learning and NLP to design a Convolutional Neural Network

(CNN) for text classification, identifying significant words and phrases related to

dangerous permissions. This CNN also predicted whether apps required specific

permissions and flagged descriptions involving sensitive data or system features not

mentioned textually. Meanwhile, W u, C h e n and L e e [20] employed the Fidelity

Calculation for Description-to-Permissions (FCDP) approach, using quantitative

metrics to predict potential permission requests and found correlations between

requested and predicted permissions in the source code.

To date, to the best of our knowledge, no research has compared the Data Safety

section with an app’s actual behavior. However, K h a n d e l w a l et al. [21] have

conducted a comprehensive study of Google’s Data Safety section using a mixed-

 115

methods approach, including both quantitative and qualitative methods. They reached

out to developers via email to gain insights into their disclosure practices, revealing

significant inconsistencies between data collection and sharing practices. In contrast,

K h a n d e l w a l et al. [22] compare privacy practices in privacy labels with those in

privacy policies to assess consistency, aiming to evaluate how accurately developers

disclosed their practices across Apple and Android platforms. For Android, privacy

labels refer to the Data Safety section.

4. Methodology

This section outlines the approach used to detect inconsistencies between data

collection information in the Data Safety section and the actual data collection

practices of Android apps. An overview of the approach is shown in Fig. 2, consisting

of four parts, each detailed in separate subsections. The first part covers the process

of collecting a dataset of Android apps’ APKs and their Data Safety information from

Google Play. The second part explains how data collection-related details were

extracted from the Data Safety section. The third part focuses on analyzing the app

source code to extract dangerous permissions and other indicators of data collection.

The fourth part discusses how the extracted source code information is mapped to the

Data Safety data to detect inconsistencies. The procedures have been carried out in

the Google Collaboratory environment, selected for its support of various libraries

and ample storage capacity.

Fig. 2. Methodology for assessing the consistency between Data Safety and APK

4.1. Dataset collection

This section describes the process of building a dataset of Android app APK files and

their corresponding Data Safety information. Google-Play-Scraper [23], a Node.js

library, was used to crawl metadata from over 5000 apps across various Google Play

categories. The List.js method was modified to iterate through all app categories and

extract only app IDs and URLs. The results were manually inspected to ensure data

relevance.

In addition to List.js, the datasafety.js method was used to retrieve Data Safety

information for each app. It takes an app ID as input and returns the details in JSON

format. To improve efficiency, the script was customized for automation, allowing it

 116

to process the extracted app IDs and save the Data Safety information automatically,

eliminating the need for manual execution.

To enable static analysis, a Python script was developed to retrieve and

download the latest APK versions from APKPure, a website offering smartphone

software downloads [24]. The script automated the process, ensuring the systematic

acquisition of APK files for all applications in the dataset.

4.2. Extraction of data collection-related statements

An app’s Data Safety information is a standardized form filled out by developers [3],

where they select the types of data their apps collect by ticking corresponding

checkboxes, as shown in Fig. 3. Once published on the Google Play store, the Data

Safety section appears to users in the same standardized format (Fig. 1).

If two apps collect the same data, their Data Safety sections will be identical,

allowing for effective word-matching to extract data collection details.

Fig. 3. Data Safety form filling by developers

Fig. 4. Result of Google-Play-Scrapper

 117

The Data Safety information retrieved from the scraper, as detailed in

Section 4.1, is presented in JSON format, containing data collection, sharing, security

practices, and a privacy policy link (Fig. 4). Since this study focuses on data

collection, a Node.js script was developed to extract the “collectedData” object and

relevant data types from the “data” key. This process resulted in a structured

extraction of data collection-related terms from all apps in the dataset.

4.3. Source code analysis

To identify user data collection practices in Android apps, it is necessary to determine

the permissions they request [5]. These permissions are found in the

AndroidManifest.xml file within the APK. Since APK files are Java Archive (JAR)

packages, they must be decompiled to access their contents. Using APKtool, a reverse

engineering tool for Android apps [25], the downloaded APKs were decompiled to

extract the AndroidManifest.xml files.

By the time of writing this paper, Android’s official documentation defined 40

dangerous permissions [11], grouped into 15 permission categories. This study

considered 25 dangerous permissions across 10 groups, focusing on those directly

related to user data collection. For example, POST NOTIFICATIONS, a dangerous

permission that allows apps to post notifications but does not collect user data, was

excluded. Table I lists the considered permissions, and any reference to “dangerous

permission” in this paper pertains to these unless otherwise stated.

To extract dangerous permissions from AndroidManifest.xml, a script was

developed to target the uses-permission tag. Fig. 5 illustrates how permissions appear

in the file. If the script detects a dangerous permission, it assigns it a value of 1;

otherwise, it assigns 0. For instance, if the script detects the tags shown in Fig. 5, it

will return the following:

 RECORD AUDIO = 1

 ACCESS FINE LOCATION = 1

 WRITE EXTERNAL STORAGE = 1

 READ SMS = 1

 and for all the remaining permissions, it will assign 0.

Fig. 5. Snapshot of AndroidManifest.xml

WAKE LOCK and SET WALLPAPER were excluded as they are normal

permissions and not classified as dangerous.

 118

The extracted permissions can help detect inconsistencies in data collection-

related information within the Data Safety section, as discussed in Section 4.4.

However, these permissions alone do not fully capture all aspects of data collection

relevant to the Data Safety section. This limitation arises because not all data types

defined by Google for Data Safety are collected solely through permission grants

[26]. For instance, no specific permissions exist for data categories such as “political

or religious beliefs,” which are typically gathered through user input forms or other

interactive features within an app.

An app’s source code encapsulates essential components for its functionality,

including permissions, activities, and executed actions [27]. Each window displayed

by an app (e.g., a “Sign In” screen) is represented by a activity tag in the source

code [28]. Developers assign distinct Java class names to these activities, making it

possible to predict which windows will be displayed to users. This approach

facilitates the extraction of information related to data collection. Based on this, all

activity declarations were automatically extracted from each app in the dataset for

subsequent semantic analysis.

4.4. Detecting inconsistency

The findings from Sections 4.2 and 4.3 were used to identify inconsistencies between

an app’s data collection practices and the data collection-related information in the

Data Safety section. These findings informed the creation of a mapping guide linking

dangerous permissions to corresponding Data Safety keywords, as shown in Table 2.

The verification process first identifies dangerous permissions assigned a value of

“1” and then checks for the presence of relevant Data Safety keywords in the

extracted data collection information. If no corresponding keyword is found for any

permission marked as “1,” a violation is reported. If at least one permission violation

occurs, the app is classified as inconsistent.

Google categorizes all Data Safety data types into 14 distinct groups [3]. The

mapping to dangerous permissions verified most of these data types; however, a

subset spanning six Data Safety categories remained unverified. To assess the

consistency of these unverified data types, a semantic analysis was performed on the

extracted activity tag declarations.

Since activity tag declarations do not always correspond directly to a specific

data type, they were instead analyzed to determine whether they aligned with any of

the six unverified Data Safety categories. To facilitate this, Google’s definitions of

data types [3] were compiled into six category-specific texts. These texts were

tokenized using the Natural Language Toolkit (NLTK) [29], producing distinct word

sets for each category. For example, the “financial info” category consists of four

data types defined by Google [3]:

 User payment info. Details about financial accounts, such as credit card

numbers.

 Purchase history. Records of user transactions.

 Credit score. Information regarding a user’s credit score.

 Other financial info. Additional financial details, such as salary or debts.

 119

Table 2. Data safety keywords that point to dangerous permissions

Dangerous permissions Relevant Data Safety keywords

ACCESS_ FINE_ LOCATION Precise location

ACCESS_ COARSE_ LOCATION Approximate location

GET_ ACCOUNTS User IDs

READ_ MEDIA_ IMAGES Photos

READ_ MEDIA_ VIDEO Videos

ACCESS MEDIA LOCATION Photos-Videos-Precise location-Approximate location

BODY_ SENSORS Health info

ACTIVITY_ RECOGNITION Fitness info

READ_ CALENDER
Calendar events

WRITE_ CALENDER

READ_ CONTACTS
Contacts

WRITE_ CONTACTS

READ_ SMS

Contacts-SMS or MMS

SEND_ SMS

RECEIVE_ SMS

RECEIVE_ MMS

RECEIVE_ WAP PUSH

READ_ PHONE_ NUMBERS

Phone numbers-Contacts READ_ CALL_ LOG

WRITE_ CALL_ LOG

READ PHONE STATE Phone numbers-Contacts-Device or other IDs

READ MEDIA AUDIO Voice or sound recordings-Music files-Other audio files

RECORD AUDIO Voice or sound recordings-Music files-Other audio files

READ EXTERNAL STORAGE
Files and docs-Voice or sound recordings-Music files-Other

audio files-Photos-Videos

WRITE EXTERNAL STORAGE
Files and doc-Voice or sound recordings-Music files-Other

audio files-Photos-Videos

The definitions of data types were compiled into a single text to create a

reference for each category. This compiled text was then tokenized using NLTK to

extract distinct words relevant to the category.

The choice of using data type definitions as a reference for categories was

driven by the intent to narrow down to the specific meanings of category names and

avoid generality.

To enhance the accuracy of identifying relevant terms, Word2Vec [30] was

applied to generate synonyms for each word extracted by NLTK. These synonyms

acted as indicators for detecting whether an app’s activity tag declarations were

related to a specific Data Safety category.

To ensure reliability, an activity tag declaration was considered linked to a

Data Safety category only if at least six indicators from the category’s word set were

present within the extracted declarations. If the threshold was met, all data types

under that category were then checked against the app’s reported Data Safety section.

Fig. 6 provides a visual representation of the extracted activity tag declarations

and how the proposed semantic analysis method operates. The threshold of six

indicators was determined based on manual inspection of a representative sample

 120

from the dataset. This inspection aimed to establish a reasonable, credible, and logical

threshold to infer a category’s presence within the app’s functionality.

Once a category was identified, the corresponding data types were verified in

the Data Safety section. If at least one data type under the category was correctly

reported, the category was deemed consistent with the actual data collection

practices. However, if none of the data types under the identified category were found

in the Data Safety section, a violation was recorded, classifying the app as

inconsistent. This can be illustrated in our example presented in Fig. 6 as follows:

 Indicators found in activity tag declarations point to financial info.

 The Financial info category belongs to the set of categories not covered by

permissions.

 Total number of the found indicators = 7 (which exceeds the defined

threshold).

 A check for the existence of “User payment info, “Purchase history”, Credit

score, or Other financial info” in the Data Safety has been done. If none of the data

types are found to be reported in the Data Safety, then the app collection practices

for data under the “financial info” category are considered inconsistent with actual

collection practices.

Fig. 6. Semantic analysis of tag declarations of Grab – Taxi & Food Delivery app

5. Results

Out of the +5000 collected apps, 4980 APKs were successfully downloaded. Fig. 7

illustrates that only 3768 (75.7%) of the downloaded apps reported data collection in

Data Safety, constituting the set that will be evaluated in this section. The remaining

1212 (24.3%) apps were excluded from the study. 1222 (32.3%) of the evaluated apps

reported their data collection in Data Safety consistent with the actual collection

practices extracted from the source code. Among these 1222 apps, 8.7% were found

to be over-reporting. In this context, over-reporting refers to situations where apps

report the collection of a data type in Data Safety while not requesting the

corresponding permission. Despite the fact that 8.7% of consistent apps represent a

 121

relatively small number in the dataset, it still has the potential to affect users’ trust in

Data Safety.

Fig. 7. Percentage of apps reporting data collection in Data Safety consistently/inconsistently with

actual data collection (The Two Inner Layers). Percentage of consistent apps that over-report data

collection (Outer Layer)

Fig. 7 also shows that 2546 (67.7%) of evaluated apps were found to

be inconsistent. As previously explained, the proposed methodology deems

an app inconsistent if at least one permission or at least one category is

found to be in violation. To delve deeper into the reported inconsistencies,

Fig. 8 illustrates the violation rate per distinct permission. Permissions within the

STORAGE permission group show the highest rate of violations. Specifically,

WRITE EXTERNAL STORAGE and READ EXTERNAL STORAGE

permissions as they mapped to the largest number of data types across different

categories within Data Safety. Sequentially, permissions within the LOCATION

permission group indicate the second-highest rate of violations. This suggests that

developers can access sensitive data, including photos, videos, files, location, etc.,

without properly reporting their collection practices in the Data Safety. Thereby, users

may be misled into believing that these apps do not pose a threat to their privacy.

Moreover, a noticeable gap was observed between permissions belonging to the SMS

and CALL. LOG permission groups and other permissions. The violation rates of

permissions belonging to the SMS and CALL LOG permission groups range

between 0%-0.32%. At the same time, other permissions violation rates range

gradually between 1.09%-18.36%. When a violation rate is low, that means either the

permission is consistent with Data Safety or the permission is not requested in the

first place. The low violation rate of the permissions belonging to the SMS and

CALL LOG is mostly because they are not frequently requested, as discussed

later in the Discussion section.

Similarly, Fig. 8 shows the violation rate per distinct Data Safety category. The

high violation rates were observed in the Audio files, Photos and videos, and Files

and docs categories. On the other hand, Health and fitness, Device or other IDs, and

Personal info categories have lower violation rates, indicating their alignment with

the actual collection practices of the apps. For further examination, Table 3

enumerates the total number of detected violations related to both sets of data types

covered and not covered by dangerous permissions. It clearly states that most

 122

violations (66%) were detected during the consistency verification between requested

dangerous permissions and relevant data types in Data Safety. At the same time,

only 34% of the violations pertain to data types not covered by dangerous

permissions.

Table 3. Total number of detected violations

Number
Data types covered by

dangerous permissions

Data types not covered by

dangerous permissions

Number of detected

violations (10,444)
6895 (66%) 3549 (34%)

Fig. 8. Number of violations per dangerous permissions and Data Safety category

6. Discussion

This research detects violations in data collection-related information within Google

Play’s Data Safety section when compared to the source code of Android apps. The

paper employs static analysis of the source code of Android apps to extract dangerous

permissions and other indicators related to the user’s data collection. While the

majority of data types in Data Safety were validated by mapping them to dangerous

permissions, there was a subset of data types that remained unverified by the extracted

dangerous permissions. To address them, a semantic analysis was performed on

the activity tags declarations extracted from the source code to map the result to

those data types.

The proposed methodology reveals that 67% of the examined apps show

inconsistencies in the data collection-related information within the Data Safety

section when compared to the source code. This percentage is notably similar to and

slightly higher than the findings of K h a n d e l w a l et al. [22] and K h a n d e l w a l

 123

et al. [21]. In their respective studies, 55% of 346K and 41% of 539K apps had

violations in Data Safety when compared against the privacy policies and developers’

claims, respectively. According to K h a n d e l w a l et al. [22], the most inconsistent

categories with privacy policies were Personal info and App activity, with rates of

66% and 67%, respectively. Previous studies have also shown violations when

comparing privacy policies with source code [14-16]. This research reveals that

Audio files, Photos and videos, and Files and docs are among the most inconsistent

categories when compared to the app source code. Since our approach relies on

mapping data types to their corresponding permissions, it provides more accurate

verification when compared to prior works that rely on privacy policies or

interviewing developers.

Previous studies by F e n g et al. [18] and W u, C h e n and L e e [20] identified

that the most inconsistent permissions, when compared with app descriptions, were

from the LOCATION, SMS, and STORAGE permission groups. Similarly,

R a h m a n et al. [5] found that the most inconsistent permissions, when compared to

privacy policies, belonged to the STORAGE and CONTACTS permission groups.

Our results, illustrated in Fig. 8, mirror these findings. Permissions from STORAGE,

LOCATION, and CONTACTS permission groups have a relatively high violation

rate when compared to Data Safety. This implies that developers tend not to reveal

the privacy practices of such permissions. Thus, users who trust Data Safety to guide

their decisions on app downloads may be misled into believing that their privacy is

safeguarded.

Fig. 8 also shows that there is a notable disparity in the violation rate of

the permissions belonging to SMS and CALL LOG groups compared to other

permissions. At the end of 2018 [31], Google classified permissions belonging to

SMS and CALL LOG groups have restricted permissions, resulting in reduced

requests for these permissions. Google announced that apps not qualified for access

to these permissions must be removed from their manifest within 90 days following

the announcement. The variance in our findings, compared to those of F e n g et al.

[18], regarding these permission groups may be attributed to the temporal proximity

of their study conducted in 2019 with the Google announcement.

7. Conclusion

This study aims to detect the inconsistency between the data collection-related

information within the Data Safety section and actual data collection practices in the

app’s source code to ensure alignment and accuracy between the stated information

and the implemented practices. Following the proposed method, 4980 Android apps’

APKs were downloaded and compared against data collection-related information in

the Data Safety section. The comparison was conducted through an analysis of the

source code to extract the dangerous permissions and activity declarations and map

them to the relevant Data Safety statements. The results indicate that 32.3% of the

apps’ actual collection practices are consistent with the Data Safety section, whereas

a significant 67.7% of the analysed apps are inconsistent with the Data Safety section.

 124

The approach implemented in this paper is subject to certain limitations. In

particular, the methodology employed in this study focuses on static analysis of the

source code, disregarding runtime behavior and user interactions. Furthermore, this

study solely focuses on data collection within Data Safety. Future work may focus

on other key sections, such as data sharing and handling.

8. R e f e r e n c e s

1. B i l a l, A., H. T. M i r z a, I. H u s s a i n, A. A h m a d. Investigating Influence of Google-Play.

Application Titles on Success. – ACM Digital Library, Vol. 36, 2024, No C, p. 302.

2. Google Play Developer Help Community. Managing and Reporting Police Violations. Google Play.

Online. Accessed 14-May-2023.

https://support.google.com/googleplay/androiddeveloper/answer/9899142?hl=en
3. Google Play. Provide Information for Google Play’s Data Safety Section. Google Play, 14

December 2021. Online. Accessed 14-May-2023.

https://support.google.com/googleplay/androiddeveloper/answer/10787469?hl=en
4. Mozilla. Mozilla Study: Data Privacy Labels for Most Top Apps in Google Play Store are False or

Misleading. Mozilla, 23 February 2023.

https://foundation.mozilla.org/en/blog/mozilla-study-data-privacy-labels-for-most-top-

apps-in-google-play-store-are-false-or- misleading/
5. R a h m a n, M., P. N a g h a v i, B. K o j u s n e r, S. A f r o z, B. W i l l i a m s, S. R a m-p a z z i,

V. B i n d s c h a e d l e r. Permpress: Machine Learning-Based Pipeline to Evaluate

Permissions in App Privacy Policies. IEEE, 2022, p. 22.

6. Android Developers. App Manifest Overview. Online. Accessed 27-April-2023.

https://developer.android.com/guide/topics/manifest/manifest-intro
7. Y a n g, X., X. Z h a n g. A Study of User Privacy in Android Mobile AR Apps. – In: Proc. of 37th

IEEE/ACM International Conference on Automated Software Engineering, 2022.

8. A l m o m a n i, I. M., A. A. K h a y e r. A Comprehensive Analysis of the Android

Permissions System. – IEEE Access, Vol. 8, 2020, pp. 216671-216688.

DOI:10.1109/access.2020.3041432.

9. Android Developers. Permissions on Android. Online. Accessed 19 May 2023.

https://developer.android.com/guide/topics/permissions/overview

10. K h a t o o n, A., P. C o r c o r a n. Android Permission System and User Privacy – A Review of

Concept and Approaches. – In: 7th IEEE International Conference on Consumer Electronics –

Berlin (ICCE-Berlin’17), 2017. DOI:10.1109/icce-berlin.2017.8210616.

11. Android Developer. Manifest.permission. Online. Accessed 29 May 2023.

https://developer.android.com/reference/android/Manifest.permission

12. G i l l i s, A. S. What Is an APK File (Android Package Kit File Format)?: Definition from

TechTarget. WhatIs.com. Online. Accessed May 19, 2023.

https://www.techtarget.com/whatis/definition/APK-file-Android-Package-Kit-file-

format
13. N w a s r a, N., M. D a o u d, Z. H. Q a i s a r. ANFIS-AMAL: Android Malware Threat

Assessment Using Ensemble of ANFIS and GWO. – Cybernetics and Information

Technologies, Vol. 24, 2024, No 3, pp. 39-58.

14. Z i m m e c k, S., Z. W a n g, L. Z o u, R. I y e n g a r, B. L i u, F. S c h a u b, J. R e i d e n b e r g.

Automated Analysis of Privacy Requirements for Mobile Apps. – In: 2016 AAAI Fall

Symposium Series, 2016.

15. S l a v i n, R., X. W a n g, M. B. H o s s e i n i, J. H e s t e r, R. K r i s h n a n, J. B h a t i a,

T. B r e a u x, J. N i u. Toward a Framework for Detecting Privacy Policy. – In: Proc. of 38th

International Conference on Software Engineering, 2016, pp. 25-36.

16. W a n g, X., X. Q i n, M. H o s s e i n i, R. S l a v i n, T. B r e a u x, J. N i u. GUILeak: Tracing

Privacy Policy Claims on User Input Data for Android Applications. – In: Proc. of 40th

International Conference on Software Engineering, 2018, pp. 37-47.

http://www.techtarget.com/whatis/definition/APK-file-Android-Package-

 125

17. T a n, Z., W. S o n g. PTPDroid: Detecting Violated User Privacy. – In: Proc. of 45th International

Conference on Software Engeneering (ICSE), IEEE, 2023, pp. 473-485.

DOI: 10.1109/ICSE48619.2023.00050.

18. F e n g, Y., L. C h e n, A. Z h e n g, C. G a o, Z. Z h e n g. AC-Net: Assessing the Consistency of

Description and Permission in Android Apps. – IEEE Access, Vol. 7, 2019, pp. 57829-57842.

19. F e i c h t n e r, J., S. G r u b e r. Understanding Privacy Awareness in Android App Descriptions

Using Deep Learning. – In: Proc. of 10th ACM Conf. Data Appl. Secur. Priv. (CODASPY’20),

2020, pp. 203-214. DOI: 10.1145/3374664.3375730.

20. W u, Z., X. C h e n, S. U. J. L e e. FCDP: Fidelity Calculation for Description-to-Permissions

in Android Apps. – IEEE Access, Vol. 9, 2021, pp. 1062-1075.

DOI: 10.1109/ACCESS.2020.3047019.

21. K h a n d e l w a l, R., A. N a y a k, P. C h u n g, K. F a w a z. Unpacking Privacy Labels:

A Measurement and Developer Perspective on Google’s Data Safety Section. – arXiv Preprint

arXiv:2306.08111, 2023, p. 25.

22. K h a n d e l w a l, R., A. N a y a k, P. C h u n g, K. U. F a w a z. The Overview of Privacy Labels and

Their Compatibility with Privacy Policies. – ArXiv.Org, 2023.

https://arxiv.org/abs/2303.08213.

23. O l a n o, F. F a c u n d o o l a n o. – GitHub, 4.2.2019.

https://github.com/facundoolano/google-play-scraper.

24. APKPure.com. About Us. Online. Accessed 19 May 2023.

https://m.apkpure.com/ar/about.html.

25. Apktool. Apktool – A Tool for Reverse Engineering 3rd Party, Closed, Binary Android Apps.

https://ibotpeaches.github.io/Apktool/.
26. Google Play Help. Understand App Privacy Security Practices with Google Play’s Data Safety

Section. Online. Accessed 5 Juny 2023.

https://support.google.com/googleplay/answer/11416267?sjid=2407870662 863064307-

EU#data-collection&zippy=%2Cdata-collection.
27. Appdome. Structure of an Android App Binary (.apk). 9 Aug 2022. Online. Accessed 4 Juny 2023.

https://www.appdome.com/how-to/appsec-release-orchestration/appdome-

basics/structure-of-an-android-app-binary-apk/.
28. Android Developers. Introduction to Activities. Online. Accessed 4 Juny 2023.

https://developer.android.com/guide/components/activities/intro- activities

29. B i r d, S., E. L o p e r, E. K l e i n. Natural Language Processing with Python. O’Reilly Media Inc.,

2009.

30. TensorFlow. Word2Vec. TensorFlow Text Tutorials. Online. Accessed 13 November 2023.

https://www.tensorflow.org/text/tutorials/word2vec

31. Play Console Help. Use of SMS or Call Log Permission Groups.

https://support.google.com/googleplay/androiddeveloper/answer/10208820?sjid8311827

649165247607-EU

Received: 06.12.2025, Revised Version: 10.02.2025, Accepted: 18.02.2025

http://www.tensorflow.org/text/tutorials/word2vec

