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Abstract: Privacy is one of the major security concerns. The zero-knowledge proof 

enables the transmission of data from the sender to the receiver without disclosing 

the actual content of the data. The proposed work uses the ZK-STARK (Zero-

Knowledge Scalable Transparent ARgument of Knowledge) Algorithm for 

transaction privacy in the organic jaggery supply chain. The paper emphasizes a 

detailed mathematical model, involving two key participants: the prover (food 

processor) and the verifier (distributor). The prover calculates the polynomial for the 

problem, its composition polynomial, and provides its Merkle proof to the verifier. 

The verifier conducts queries to confirm and validate the accuracy of the information. 

Using the fast reed-solomon interactive oracle proofs protocol, the proof is validated. 

It measures performance as proof generation and verification time, proof size, and 

throughput. Plans involve increasing the domain size of this algorithm, varying the 

polynomial interpolation, and evaluating its performance measures by integrating it 

into Blockchain. 
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1. Introduction 

Privacy preservation plays a vital role in security, especially during data transactions 

between a sender and receiver, when multiple parties are often involved. For 

example, in blockchain applications, data exchanges involve several entities, raising 

concerns about maintaining privacy between the sender (prover) and receiver 

(verifier). To safeguard privacy, various cryptographic algorithms are used, with one 

of the popular protocols being zero-knowledge proof. This protocol allows data to be 

transmitted from the sender to the receiver without revealing the content of the data 

itself. 

This paper focuses on Zero Knowledge Proof (ZKP) based ZK-STARK((Zero-

Knowledge Scalable Transparent ARgument of Knowledge) protocol (B e r e n t s e n, 

J e r e m i a s  and R e m o  [1], B e n-S a s s o n  et al. [2], B e n-S a s s o n  et al. [3]) with 
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all its detail mathematical expressions, evaluation, proving and verification steps. 

ZK-STARK is popular for its scalability and transparency, which enable efficient 

handling of large transactions, such as in blockchain applications. Its scalability 

supports high transaction volumes, while its transparency requires no trusted setup, 

which enhances reliability. Since ZK-STARKs do not need a trusted setup, they do 

not depend on any pre-existing information to generate keys or data for the algorithm, 

which increases their resistance to quantum attacks. Additionally, using the SHA-256 

hash function to generate Merkle proofs, ZK-STARKs provide further protection 

against quantum threats. These features make ZK-STARK more effective than other 

zero-knowledge-proof techniques. 

This paper is structured as follows: Section 2 discusses related work, while 

Section 3 details the proposed work. Section 4 covers the experiments and results, 

Section 5 presents the conclusion and Section 6 outlines the future work. 

2. Literature survey 

L i u, B., et al. [4] have constructed a system that integrates a Trusted Execution 

Environment (TEE) and a blockchain to execute the auction and protect sensitive 

inputs privately. The auction mechanism allows buyers and sellers to dynamically 

submit their bids/prices to exchange resources until convergence. This system 

addresses the privacy issue for the double auction by utilizing the TEE to protect 

and verify sensitive inputs. 

Y a n, D e n g  and S u n  [5] have proposed a protocol aimed at providing strong 

security guarantees in scenarios where concurrent and non-malleable zero-

knowledge proofs are required. The concept of non-malleability ensures that the 

information revealed in one instance does not compromise the security of other cases. 

J a y a b a l a n,  J e y a n t h i  [6] discuss various aspects of blockchain-based 

healthcare systems, focusing on data security, access control, and scalability. 

Asymmetric encryption and digital signatures provide data security for shared EHR 

data. Attribute-based encryption and signatures provide fine-grained access control, 

and coarse-grained access control mechanisms ensure data security and privacy. 

S u m a t h i  et al. [7] propose a blockchain-based system allowing patients to 

securely control their Personal Medical Records (PMR) and share them with doctors. 

Huffman code data compression resolves the scalability issue, and the Advanced 

Encryption Standard (AES) achieves security. 

As the name suggests, the ZKP protocol allows for the verification of data 

without possessing any knowledge of the secret data. The transaction involves two 

main entities: the prover and the verifier. The prover demonstrates to the verifier that 

the data being sent is correct without disclosing any additional information about the 

data. 

There are three criteria that a ZKP [8] must satisfy. 

1. Completeness. If the statement is true, an honest verifier will be convinced 

of its truth by the prover. 

2. Soundness. If the statement is false, the prover cannot prove or convince the 

verifier of its truth. 
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3. Zero Knowledge. If the statement is true, the verifier will not gain any 

information other than the fact itself. 

Y i n j i e  G. et al. [8] present a paper on comparative analysis of zero-

knowledge proof algorithms such as ZK-SNARK, ZK-STARK, MPC-based 

Algorithm, and BulletProof in different aspects such as trusted setup, proof length 

and complexity, application, and quantum threat. ZK-STARK doesn’t require a 

trusted setup and provides security against post-quantum attacks. 

F r i m p o n g  et al. [9] proposed a blockchain-based system that ensures user 

privacy through decentralized storage and control of user data. The system 

incorporates a Graph Convolutional Network (GCN) for detecting malicious nodes, 

ensuring the integrity of the network. 

C h i, L u  and G u a n  [10] present a novel approach to enhancing privacy in 

blockchain applications through a new scheme called Blockchain Designated Verifier 

Proof (BDVP). This scheme builds upon the existing concepts of Zero-Knowledge 

Proof (ZKP) and Designated Verifier Proof (DVP) to address privacy concerns that 

arise when verifiers can inadvertently disclose information about provers. 

Z h o u, L u, et al. [11] provide a critical evaluation of how ZKP technology can 

be leveraged within blockchain frameworks to create more secure and privacy-

focused identity-sharing systems, addressing the limitations of traditional identity 

management approaches. 

F e n g  et al. [12] proposed a blockchain-based data privacy protection and 

sharing scheme that addresses several issues in data sharing processes, especially 

within the context of the Industrial Internet of Things (IIoT) using zero-knowledge 

proof and proxy re-encryption algorithms. 

R a d e v a  a n d  P o p c h e v  [13] aim to design a blockchain-enabled supply 

chain model specifically for smart crop production. It focuses on tasks such as 

analyzing the blockchain ecosystem, defining a supply chain model, designing a 

blockchain infrastructure, and detailing blockchain information channels with smart 

contracts. 

Research gap. Current literature addresses privacy-preserving mechanisms 

using various cryptographic techniques and zero-knowledge proofs like ZK-SNARK. 

However, these techniques require trusted setups and are ineffective against quantum 

attacks. The proposed methodology addresses this gap by using the ZK-STARK 

Algorithm. 

3. Proposed work  

The primary emphasis of this research revolves around the mathematical 

implementation of the ZK-STARK algorithm (B e r e n t s e n, J e r e m i a s  and 

R e m o  [1], B a r b a r a  [14]) within a blockchain-oriented supply chain framework. 

It thoroughly outlines the step-by-step mathematical modeling process specific to the 

case study: the production of jaggery and its verification as an organic product. The 

approach ensures the validation of ingredients and methodologies to the verifier 

without disclosing the actual contents. 
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This research proposes to use the ZK-STARK zero-knowledge proof algorithm 

to uphold transaction privacy between the prover and verifier. In this specific 

scenario, the prover represents the food processor, while the verifier embodies the 

distributor.  

Here’s how it works. 

Organic jaggery production. The food processor starts by making organic 

jaggery from sugarcane, by using only organic components such as lime powder and 

lady’s finger and with an organic process. 

Secure transaction. Then enclose the transaction details (like product 

information and organic certification) within the ZK-STARK protocol. This protects 

the actual details while still allowing verification. 

Verification. The distributor receives the transaction and uses ZK-STARK to 

verify its validity without needing to see the specific contents. This ensures the 

jaggery is indeed organic without disclosing sensitive information. 

Successful transaction. Once the distributor confirms the organic status 

through ZK-STARK, the transaction is completed successfully. 

This ZK-STARK zero-knowledge proof involves many steps, the major three 

steps are as follows: 

1. By converting this real-time example into a mathematical expression. 

2. Arithmetization of the problem. 

3. Low degree testing. 

The detailed flow for the ZK-STARK algorithm is explained in Fig. 1. 

ZK-STARK Algorithm   

• The first prover will define the problem and its Computational Integrity (CI) 

Statement and fix the finite field to work within it.  

• Once the problem is defined, polynomial f(x) is created using Lagrange 

polynomial interpolation with a finite field defined. 

• The constraint c(x) is calculated using CI statement and f(x).  

• The composition polynomial p(x) is formed by using the constraint and 

polynomial which will be used to create Merkle proof. 

• For sending data to the verifier, the Merkle proof calculated for polynomial 

f(x) as MT_f and composition polynomial p(x) as MT_p. 

• Low-degree testing will be performed with step number 7, 8, and 9 

sequentially in Fig. 1. 

• This proof will be sent to the verifier. 

• The verifier queries for random number z, and then the prover runs FRI (Fast 

Reed soloman Interactive) Oracle protocol for low-degree testing. 

• If the polynomial results in the low degree returning constant after N – 2 

iterations, and both prover and verifier get the same constant, then PROOF IS 

CORRECT. 
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Fig. 1. ZK-STARK detail stepwise algorithm 

3.1. Working of ZK-STARK algorithm: use case organic jaggery supply chain 

The next part of the paper will discuss the detailed mathematical modeling of  

ZK-STARK algorithm for the use case as the prover has to prove that the jaggery 

produced is organic without revealing the content of the data transaction to the 

verifier. 

3.1.1. Define the problem – CI Statement  

Initially, let’s establish a CI Statement that requires validation. CI denotes the 

accuracy of a specific computation’s result.  

The prover must demonstrate the organic nature of the produced jaggery. If the 

prover is unable to substantiate this claim, the jaggery is deemed inorganic. 

Thus, the CI Statement can be formulated as follows. 

CI Statement: The prover has a sequence J of N integers, all of which are 1 or 0 

(boolean). 

The statement is true if all elements Ji ∈ J are either 1 or 0. 

   Where:  

      J is for jaggery produced; 

        N is for ingredients used for processing in the production of jaggery.  
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The goal is to prove that this statement is true with a sufficiently high probability 

without revealing J (i.e., elements processed for jaggery production), i.e., without 

revealing which element of J is 1 or any other. So, J is called the trace. 

Assume that organic ingredients such as (lime powder, and ladyfinger) are  

set to 1. 

Ingredients chemicals such as hydro sulphite powder and phosphoric acid are 

set to 0. (That is, it is not present. If present then it should be set to other than  

0 (–1, 2)), 

𝐽𝑖(𝐽𝑖 − 1) = 0, 

𝐽𝑖
2 − 𝐽𝑖     = 0, 

N1 – Lime Powder (Organic ingradient), 

N2 – Lady Finger Powder (Organic ingradient), 

N3 – Hydro sulphite powder (Chemicals ingradient), 

N4 – Phosphoric acid (Chemicals ingradient). 
N1 represents the prover and the verifier should agree on it if the statement is 

correct. For the organic jaggery supply chain, if the jaggery produced is organic, then 

only Equation (1) bellow is true. 

The prover and verifier must agree on the conditions if the statement is true. 

(1)  𝐽𝑖(𝐽𝑖 − 1) = 0, 𝐽𝑖
2 − 𝐽𝑖 = 0,    

where  𝑖 =  0, 1, 2, … , 𝑁 − 1.    

Trace 

In this use case example, fix N = 4, such that: 

• Jtrue = [1, 1, 0, 0] satisfies the CI Statement, 

• Jfalse = [1, 1, 2, 2] does not satisfy the CI Statement; 

N1, N2 are organic ingredients, 

N3, N4 are inorganic ingredients. 

• Finite field  

Before generating the proof, both the prover and verifier need to establish their 

working field. In cases involving finite fields, modular arithmetic is commonly 

employed. Visualizing it is easiest through a clock analogy. Consider operating 

within a prime field where M equals 17 in arithmetic modulo. This field comprises 

the set {0, 1, ..., 16}. If an operation yields a value larger than 16, it progresses in a 

clockwise manner, looping back to 0 to maintain the field’s boundaries, 

F= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. 

In a finite field containing 17 elements, determining the multiplicative inverse 

of each non-zero element involves using modular arithmetic and the Extended 

Euclidean Algorithm.  

Let’s compute: 

The multiplicative inverse of 1 remains as 1 because any number multiplied by 

1 equals itself. For the other non-zero elements (from 2 to 16), their inverses can be 

found as follows: 

[1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16]. 
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These are the multiplicative inverses [16] for the non-zero elements in the field 

of 17 elements. Note that the inverse of 0 does not exist in a field since division by 

zero is undefined. 

 
The finite field then is 

F = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. 

For this set of values, multiplicative inverses are 

[1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16]. 

3.1.2. Arithmetization of the problem – by transforming into polynomial 

• Evaluating trace into polynomial 

The trace is the evaluation of some polynomial f, i.e., for some X ϵ F,  

f(Xi) = Ji , i = 0, 1, …, N – 1. 

This states that the outputs of the polynomial f relate to the trace.  To choose X, 

define a subgroup G of size N of the multiplicative group F/{0}, where F/{0}  is the 

finite field without the zero. Furthermore, define a generator g of G. 

Since N = 4, the size of the subgroup G ϵ F is 4. Find a g ϵ F/{0} for which the 

powers of g uniquely yield the elements of G.  

In this example, g = 4 and G = {1; 4; 13; 16}. 

After finding a finite set for working with polynomials, next is the 

arithmetization. This requires to transform the problem into an algebraic problem 

using Lagrange polynomial interpolation [17]. 

Given J= Jtrue = [1; 1; 0; 0], the prover needs to find a polynomial 

f: G → F, 

f(g0) =f(1) = J0 = 1, 

f(g1) =f(4) = J1 = 1, 

f(g2) =f(13) = J2 = 0, 

f(g3) =f(16) = J3 = 0. 

Applying the Lagrange interpolation for the given set of points: (1, 1), (4, 1), 

(13, 0), and (16, 0). 

The Lagrange interpolation formula for four points is given in the equation 

(2)  𝑝(𝑥) = ∑ 𝑦𝑖  .  𝑙𝑖(𝑥)3
𝑖=0 , 

where 𝑝(𝑥) is the Lagrange polynomial, yi are the y-coordinates, and li(x) are the 

Lagrange basis polynomials. 

The Lagrange basis polynomial for each point is given by the equation:  

(3)   𝑙𝑖(𝑥) = ∏  (𝑥 − 𝑥𝑖)3
𝑗=0 /(𝑥𝑖 − 𝑥𝑗), 𝑗 ≠ 𝑖.  

After solving Equation (1) by using the formula of Equation (2) and  

Equation (3), the polynomial f(x) associated with the trace [1, 1, 0, 0] is presented in 

the equation  

(4)    𝑓(𝑥) =  −3𝑥3 − 5𝑥 − 8.  
This equation represents the polynomial f(x) generated for the organic jaggery 

supply chain. Using this polynomial, the constraint polynomial is created, and a 

Merkle proof is prepared to be sent to the verifier. 

• Working with polynomials on a larger domain. 
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The next step is to extend polynomial f to a larger domain. To do that, evaluate 

polynomial f not only in G but on a larger domain L, where G ∈ L = F/{0} such that 

f: L → F.  

In this example, choose this larger domain to be equal to the multiplicative group 

of the finite field, i.e., L = F/{0}. 

The multiplicative for the Finite field of 17 elements as the next equation is 

including all elements except 0,  

(5)   𝐹 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.  
For this equation, set values, and multiplicative inverses are calculated in the 

equation 

(6)   [1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16].      
For this equation, large domains including all points the scatter plot graph in 

Fig. 2 denotes points in the space, 

x = [1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16], 

y = [–16, –2240, –686, –6664, –1072, –104, –408, –10208, –42, –5252, –8310,  

–3058, –220, –4056, –1584, –12376]. 

 

 
Fig. 2. Scatter plot for polynomial −3𝑥3 − 5𝑥 − 8 

 

• Calculate constraint for polynomial  
Use the constraint to trace the polynomial containing 1 or 0 if the CI Statement 

is true. 

𝑗𝑖  
2  – 𝑗𝑖, where  i = 0, 1, …, N – 1, 

and define this expression as the constraint polynomial c: L →F.  
The constraint polynomial makes it computationally infeasible for a malicious prover 

to cheat. If the prover submits an invalid computation, the constraint polynomial will 

fail to evaluate to zero at specific points, revealing inconsistencies. Verifiers use 

techniques like low-degree testing to ensure that the constraint polynomial follows 

the expected rules, for more detail on the role of c(x) (see papers [1, 2]),  
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(7)   𝑐(𝑥) = 𝑓(𝑥)2 − 𝑓(𝑥) = 0. 

By putting Equation (4) 𝑓(𝑥) =  −3𝑥3 − 5𝑥 − 8     in the Equation (7) 

constraint c(x), it gives, 

𝑐(𝑥) = (−3𝑥3 − 5𝑥 − 8 )2 − (−3𝑥3 − 5𝑥 − 8 ). 

In the next equation, c(x) represents the constraint polynomial, which is useful in 

verifying the accuracy of data present in the supply chain, 

(8)  c(𝑥) =  −8𝑥6 − 4𝑥4 + 8𝑥2 + 4.   
• Create the composition polynomial 

The prover transforms c(x) using the properties of roots of polynomials to get 

another composition polynomial p(x) to add an extra layer of security. By 

transforming c(x) into a composition polynomial p(x), the prover ensures that the 

verifier does not directly interact with c(x) itself. Instead, the verifier interacts with a 

higher-level abstraction that encodes multiple checks. This reduces the risk of 

revealing information about c(x). The composition polynomial’s additional layer 

ensures that any deviation by the prover (such as a fake c(x)) is caught with high 

probability, making the system both sound and secure. For more details see the paper 

(K a t e, Z a v e r u c h a  and G o l d b e r g  [18]). 

The next equation presents a formula for the composition polynomial p(x) using 

constraint polynomial c(x), 

(9)   𝑝(𝑥) =
𝑐(𝑥)

∏ (𝑥−𝑔𝑖)    ∀𝑥∈𝐹 and 𝑥∉ {𝑔0, 𝑔1, 𝑔2,…,   𝑔𝑁−1}N−1
𝑖=0

.     

Using this equation, after simplifying, get p(x) as in the equation 

(10)       𝑝(𝑥) =
𝑐(𝑥)

𝑢(𝑥)
= (𝑓(𝑥)2 − 𝑓(𝑥))/(𝑥𝑁 − 1 ),  

where ∀𝑥 ∈ 𝐹 and 𝑥 ∉ {𝑔0, 𝑔1, 𝑔2, … , 𝑔𝑁−1}. 

By using Equation (8) for c(x), the Equation (10) solved for p(x): 

𝑝(𝑥) =  
 −8𝑥6 − 4𝑥4 + 8𝑥2 + 4

𝑥4 − 1
. 

After solving, Equation (11) gives a composition polynomial, which is used to 

generate Merkle proof using the SHA-256 hash function. for more detail of role of 

p(x) (see papers [1, 2]):  

(11)    𝑝(𝑥) =  −8𝑥2 − 4.  
For this equation, the upper bound of the degree on p(x), i.e.,  

deg(p) = N – 2 = 2. 

• Commitments using Merkle proof 

After calculating p(x) and f(x), the next step is to calculate the Merkle tree 

(B e c k e r  [19], Wikipedia [20]) root proof one for p(x) and f(x) for sending to the 

verifier. 

This algorithm construct Merkle tree and create Merkle root proof MT_f for 

𝑓(𝑥) =  −3𝑥3 − 5𝑥 − 8 and construct Merkle tree and create Merkle root proof 

MT_p, 𝑝(𝑥) =  −8𝑥2 − 4. 

After creating the Merkle tree and calculating the Merkle proof, the hash 

function SHA-256, the Merkle proof calculated for each node, and then the Merkle 

root proof.  It gives Merkle root which will be used to send the verifier. 

Prover sends Merkle root of MT_f to verifier:  
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601e615a178c275f7df2be8bdb2b4d84deafb2dc45956b2e12217a550ad15a7b. 

The leaves of MT_f are: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

Prover sends Merkle root of MT_p to verifier:  

c14764c1e39b84fc72f9a00cadbd71a8c601cf3b8942afead0fda678fe831e6c. 

The leaves of MT_p are: [5, 15, 9, 4, 0, 14, 12, 11, 11, 12, 14, 0, 4, 9, 15, 5]. 

After calculating the Merkle trees, the prover sends the Merkle roots of the two 

trees to the verifier. For the organic jaggery supply chain, the food processor 

calculates the Merkle proof using a polynomial and sends this proof to the distributor. 

This eliminates the problem that the prover might respond with random values 

because the verifier can check whether these values are the commitment (i.e., the 

Merkle roots). 

3.1.3. Low-degree testing 

• Querying 

After receiving Merkle root values of p(x) from the prover(food processor), the 

next task is to verify these values of p(x) by the verifier(distributor), by verifying it 

is of low degree. For this need to ensure that the low-degree polynomial p(x) relates 

to polynomial constraint c(x). 

The equation of c(x) can be written as given in the next equation 

𝑝(𝑥)𝑢(𝑥) = 𝑐(𝑥), 

(12)    𝑝(𝑥)(𝑥𝑁 − 1) = 𝑓(𝑥)2 − 𝑓(𝑥). 

The verifier sends a random x-value and checks for the p(x) and f(x). If the 

prover is honest then the Equation (12) holds for all possible values of x. 

Query 1:  

Verifier queries: z = 3. 

Prover sends: f(3) = 15 and p(3) = 9, the corresponding Merkle Paths for f(z): 

(i) Verifier now checks using equation (12),  

𝑝(𝑧)(𝑧𝑁 − 1) = 𝑓(𝑧)2 − 𝑓(𝑧), 

LHS yields: 6; RHS yields: 6. Equation correct, proof continues. 

(ii) Verifier now checks whether received p(z) and f(z) correspond to Merkle 

root received. 

PROOF FAILS: f(z) DOES NOT correspond to commitment.  

The proposed work checked whether the polynomial is correct or not, 

additionally, the ZK-STARK algorithm needs to check whether the polynomial is of 

a low degree. If it is of low degree then the data received is correct. 

As the malicious prover can not cheat, what if the p(x) and f(x) are of a high 

degree and satisfy the next equation? B e r e n t s e n, J e r e m i a s  and R e m o  [1] 

have given proof that if both p(x) and f(x) are high degrees, then they can satisfy next 

equation, and malicious data sent by the prover will be treated as correct. So, it is 

important to check the low-degree testing. 

 

(13)   𝑝(𝑥)(𝑥𝑁 − 1)  =      𝑓(𝑥)2 − 𝑓(𝑥).      
                                     

 

𝑐1(𝑥)                          𝑐2(𝑥) 
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Low-degree testing ensures security by verifying the degree of the polynomial. 

The formula used to determine the degree is d=N−2, where N represents the number 

of elements (or “ingredients”) in the given context. If the value of N is incorrect, the 

resulting degree will also be incorrect. This calculated degree, d=N−2, is then used 

to validate consistency over N−2 iterations. During the verification process, the 

verifier provides a random value to check the claim. This random value is substituted 

into the polynomial, and the function is evaluated across N−2 iterations to determine 

whether it consistently produces a constant result. If a constant value is returned, the 

proof is valid; otherwise, it indicates an error or fraud. For instance, if the N value is 

incorrect or the polynomial generated is fake, the low-degree test will fail to produce 

a constant output, thus exposing the inconsistency. This process ensures the accuracy 

and originality of the information, playing a critical role in maintaining the security 

of the ZK-STARK algorithm. Low-degree testing is therefore a fundamental step in 

verifying the correctness of the proof and preserving the integrity of the protocol. 

For this research, a degree can be at most as per the next equation. The degree 

of polynomial is less than equal to N – 2.  N value is 4, 

(14)  deg(𝑝) ≤ 𝑁 − 2 = 𝑑. 

The verifier’s ability to confirm, after querying certain steps, ultimately arriving 

at a constant involves proving that the polynomial possesses a low degree d through 

the application of the FRI protocol (Fast Reed-Solomon Interactive Oracle Proof of 

Proximity) [21, 22]. FRI utilizes specific mathematical calculations and iterations to 

validate that the polynomial confirms the desired low-degree criteria, leading to 

identifiable constants. 

The correlation between the number of iterations and the polynomial’s degree 

is important. If the count of iterations doesn’t surpass the degree d of the 

mathematical steps and consistently leads to the same constant for both the prover 

and verifier, it strongly suggests that the polynomial possesses a low degree, resulting 

in a SUCCESSFUL PROOF. 

Here, as from the Equation (14), as N=4 (N → Number of ingredients),   

Degree d = N – 2 = 4 – 2 = 2. 

So there will be two iterations, after the second iteration constant value will be 

gained. Let’s first calculate p1(x) and p2(x) and the constant value for prover, 

𝑝(𝑥) = −8𝑥2 − 4, 

p(x) only includes an even part, no odd part in the Equation (11) so, 

𝑔0(𝑥) = −8𝑥 − 4,  

ℎ0(𝑥) = 0. 

Assume,  𝛼0 = 10, 

𝑝1(𝑥) = 𝑔0(𝑥) +  𝛼0ℎ0(𝑥)  =  −8𝑥 − 4 + 10 × 0 = −8𝑥 − 4. 

For the second iteration,  

    𝑝1(𝑥) = −8𝑥 − 4, 

    𝑝1(𝑥) = −4 − 𝑥 × 8. 

Here, 𝑔1(𝑥) = −4 and ℎ1(𝑥) = −8.  
Assume the verifier sends  𝛼1 = 15 the prover will calculate, 

𝑝2(𝑥)  = 𝑔1(𝑥) +  𝛼1ℎ1(𝑥) = −4 + 15 × (−8)  = −124 = −124 mod 17 =  
= −5 = −5 equals  to 12 = 12.    
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Prover sends 12 and it’s Merkle proof to the verifier. 

Merkle root is  

['c7fddb6397f7a194b8d6c0ae8f47a1fc666e27a5cfec1fdb6779850899543bf7'] 

The verifier now calculates for some queries and results into constant.  

Assume that the verifier queries for z = 12.  

The prover then sends       𝑝(12) = −8𝑥2 − 4, 

𝑝(12) = −8(12)2 − 4 = −1156 mod 17 =  0, 

(As (–1156 mod 17), the division result is 68, the remainder is 0). 

Now calculate for 𝑧 = −12,   

𝑝(−12) → 𝑝(5), 

𝑝(5) = −8(5)2 − 4 = −204 mod 17 = 0, 

(–204 mod 17, as the division result is 12, the remainder is 0). 

The prover then sends p(12) = 0  & p(–12)= p(5) = 0  and the verifier solves 

0 = 𝑔0(𝑧2) + 12ℎ0(𝑧2), 

0 = 𝑔0(𝑧2) −  12ℎ0(𝑧2), 

which gives  𝑔0(𝑧2) = 0  & ℎ0(𝑧2) = 0. 

Now calculates, 

𝑝1(𝑧2) = 𝑔0(𝑧2) +   𝛼0ℎ0(𝑧2) = 0 + 10 × 0 = 0. 

The verifier checks whether calculated p_1=0 corresponds to commitment in 

the Merkle tree. Prover sends authentification path for leaf number 3, where z = 8 and 

p_1(8)=0 this is 

['c47401d026e2cde77e3a3621fcefd9efa516c6d6518761a030fff79d58132f19', 

'7247174a760a3a6b31b66052cceaa81a35220be4fadbd847028e1764ad30c100', 

'e629fa6598d732768f7c726b4b621285f9c3b85303900aa912017db7617d8bdb'], 

and uses this to calculate the Merkle Root p_1=0 corresponds to commitment, proof 

can continue. 

Round  2  of  2 

---------------- 

The prover returns  

𝑝(122) = 0 and 𝑝(−122) = 9, 0 = 𝑔1(𝑧4) +  8ℎ1(𝑧4), 9 = 𝑔1(𝑧4) −  8ℎ1(𝑧4), 

which gives  

𝑔(𝑧4) =
9

2
= 4 mod 17 = 13, 

ℎ(𝑧4) =
9

16
mod 17 = 9. 

The verifier finds 𝑔(𝑧4) = 13 and  ℎ(𝑧4) = 9, which yields 𝑔1(𝑧4) = 9  and  

ℎ1(𝑧4) = 1. Again the verifier then calculates 

𝑝2(𝑧4)  = 𝑔1(𝑧4) +   𝛼1ℎ1(𝑧4)= 13 + 15 × 9=148 mod 17=12, 

and then calculates p_2 = 𝑔(𝑧4) + alpha_2 h(𝑧4) = 13 + 15 × 9=12. 

Verifier finds constant 12 which equals 12 received from prover PROOF 

SUCCESSFUL! 

This proves that food processor data is organic jaggery only and verified by the 

distributor without revealing the enclosed content. 
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4. Experiments and result discussion 

For the experiment, this research used Python language to implement mathematical 

modeling of the ZK-STARK algorithm on the Google Colab platform with a laptop 

configuration of 8 GB RAM, and a core i5 processor. The depth of mathematical 

processing starts from converting the real-time problem into Lagrange interpolation, 

calculating constraint and compositional polynomial with Merkle SHA 256 proof that 

will be sent to the verifier and verification by the verifier to the proof is implemented 

[23, 24]. Benefits of ZK-STARK over ZK-SNARK is that it doesn’t require the 

trusted setup and defending against quantum attack (F e r n á n d e z-C a r a m è s  and 

F r a g a-L a m a s  [25]). 

Different parameters are considered for assessing the performance of the 

algorithm.  

Proof generation time. The time it takes to create a ZK-STARK proof, 

measured in seconds or milliseconds. 

Proof verification time. The time it takes to verify a ZK-STARK proof, is 

typically much faster than generation. 

Proof size. The size of the generated proof in bytes, affects storage and 

transmission overhead. 

Throughput. It can refer to the number of operations completed in a specific 

period. 

The performance of the ZK-STARK algorithm experiment with the given 

parameters is detailed in Table 1. Fig. 3 graph illustrates the ZK-STARK performance 

as presented in Table 1. Fig. 4 is a graph depicting the throughput data from Table 1. 

Table 1 provides data on various parameters, including proof generation time, proof 

verification time, proof size, and throughput, tested for domain sizes of 16 and 256.  

Upon analyzing the parameters of Table 1, it’s observed that the proof 

generation time and proof verification time are almost identical, showing little 

variation. The throughput also remains consistent across both domain sizes. This 

proves that the ZK-STARK algorithm operates efficiently even when the domain size 

is increased from 16 to 256. 

Proof Size is fixed, making ZK-STARKs scalable regardless of the 

computational size. Constant proof size and slight throughput improvements with 

increasing domain size demonstrate ZK-STARK’s scalability for larger 

computations.  

The ZK-STARK algorithm is scalable, but in the real-world scenario for 

example in the case of blockchain supply, as data size increases, the Merkle hash 

proof size increases and that may create overhead on the system. The solution is to 

compress proof size or keep the computation of ZK-STARK off-chain and the 

verification part can be on on-chain.  
 

Table 1. ZK-STARK algorithm performance parameters measures 
Parameters for performance Value (Domain size 16) Domain size 256 

Proof generation time 0.0477 0.0244 

Proof verification time 0.0277 0.0535 

Proof size 0.512 0.512 

Throughput(Op/Second) 12.41 12.85 
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Fig. 3. ZK-STARK Algorithm performance parameter measures  

 
Fig. 4. ZK-STARK Algorithm – Throughput (op/second)  

5. Conclusion 

This paper concentrated on employing the ZK-STARK zero-knowledge proof 

algorithm for in-depth mathematical problem-solving within the context of the 

organic jaggery production supply chain. The system operates with two key roles: the 

prover and verifier. The prover's task involves concealing real-time information 

regarding the technique used in organic jaggery production and presenting proofs to 

the verifier without disclosing the content. This research paper outlines the 

mathematical procedures involved in transmitting data from the prover using Merkle 

proofs, which the verifier subsequently authenticated through specific queries. This 

research thoroughly illustrates these mathematical procedural steps. Additionally, it 

evaluated the performance metrics of the ZK-STARK algorithm, including proof 
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generation time, verification time, proof size, and throughput. Notably, a major 

advantage of this algorithm is its elimination of the need for a trusted setup, unlike 

ZK-SNARK. Leveraging ZK-STARK ensures privacy in applications like 

blockchain-based supply chains and holds potential for various applications within 

blockchain networks.   

6. Future work 

This paper implemented the ZK-STARK algorithm with all its mathematical proofs 

as an independent entity, the next objective involves integrating this algorithm into 

the blockchain food supply chain. This integration will facilitate a comparative 

analysis of security performance between the enhanced blockchain supply chain with 

ZK-STARK and the standard blockchain model. In the future, the current finite 

domain used in the first step of the ZK-STARK algorithm can be expanded to more 

than a size of 256. This expansion involves working with larger datasets to evaluate 

the performance. There is scope to explore alterations in certain mathematical 

procedures, such as experimenting with different polynomial interpolation methods 

other than Lagrange Interpolation. Furthermore, variations in the employment of 

Merkle proofs using diverse SHA types are under consideration. The future research 

goal here is to use the ZK-STARK algorithm, aiming for a lighter version making it 

more suitable for different types of blockchain supply chains beyond food such as in 

pharmaceutical or electronics, and testing its performance. 
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