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Abstract: Computer vision requires high-quality input images to facilitate image 

interpretation and analysis tasks. However, the image acquisition process does not 

always produce good-quality images. In outdoor environments, image quality is 

determined by weather or environmental conditions. Bad weather conditions due to 

pollution particles in the atmosphere such as smoke, fog, and haze can degrade image 

quality, such as contrast, brightness, and sharpness. This research proposes to obtain 

a better haze-free image from a hazy image by utilizing the Laplacian filtering and 

image enhancement techniques in the transmission map reconstruction based on 

the dark channel prior approach. Experimental results show that the proposed 

method could improve the visual quality of the dehazed images from 45% to 56% 

compared to the ground-truth images. The proposed method is also fairly competitive 

compared to similar methods in the same domain.  

Keywords: Dehazed image, Single image dehazing, Dark channel prior, 

Transmission map, Laplacian transform. 

1. Introduction 

A high-quality image is one of the important components in computer vision that 

support the interpretation and understanding of visual information. Some applications 

such as safety monitoring, remote sensing, automated driving assistance, 

surveillance, video analysis, image classification, image segmentation, object 

detection, radar monitoring, and behavior analysis require quality input images  

[1, 3]. High-quality images can be acquired through control over some components, 

such as cameras, lenses, sensors, lighting, and the photographer’s expertise. In the 

case of outdoor image acquisition, natural environmental factors such as weather and 

occlusion that obstruct objects also affect the quality of the acquired image [4-7]. 

Various adverse weather conditions caused by haze [8], fog or smoke [9, 10], rain 

[11], or snow [12] can obstruct visibility and blurry [13]. Particles in haze can 

decrease contrast and color quality caused by excessive light absorption [14]. 
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Many researchers in computer vision have proposed many image dehazing 

techniques to restore a hazy image into a haze-free image so that more useful in 

supporting computer vision tasks such as object detection [15]. Image dehazing has 

become an important technique in computer vision as a pre-processing stage to 

improve the visual quality of hazy images [1, 2]. Image dehazing will allow computer 

vision analysis to progress beyond simple interpretation into more complex 

comprehension. Many different approaches to reducing or eliminating the haze effect 

in images have been suggested with different assumptions, limitations, or feature 

definitions. Almost all image dehazing techniques often use an atmospheric 

scattering model for estimating dehazed images [16]. 

Based on the number of reference hazy images used for the dehazing process, 

there are single-image dehazing and multiple-image dehazing techniques [1, 17]. 

Single-image dehazing uses a single hazy image to reconstruct a dehazed version, 

while multiple-image dehazing uses many hazy images of the same scene to 

reconstruct a dehazed image. Multiple image dehazing uses various polarization 

filters with different levels and weather conditions to restore a haze-free image from 

a series of hazy images. Instead of polarization filters, the other multiple image 

dehazing methods are suggested to use an extra segmentation [18]. Using several 

hazy images, several data can complement each other even though the dehazing 

procedure becomes more complicated, such as transmission maps and atmospheric 

light estimations. Some practical challenges in multiple-image dehazing [18-21] 

include computational complexity, input image dependency, device specification 

requirements, and the availability of multiple photos in the same scene in a short time 

[1, 19]. Because of these limitations, many researchers focus on improving single-

image dehazing techniques as this technique is more realistic and efficient [22, 23]. 

Single-image dehazing has received much attention for recovering a hazy 

image. This technique requires only one hazy image and a part of additional 

information from a hazy image as a priori assumptions for the dehazing process [19], 

[23]. In recent years, some prior knowledge-based single-image dehazing methods 

have been suggested. T a n  [26] had previously proposed a method with two 

presumptions that are attenuation and contrast. The hazy image has a lower contrast 

than the clear one. In addition, the spot attenuation is supposed to be continuous 

concerning distance. Although it produces a halo effect, this approach can maximize 

local contrast by utilizing a single hazy image [19].  

Fattal proposed a single-image dehazing by considering a surface albedo and 

transmission map [24]. He employed independent component analysis and a Markov 

random field model for surface estimation. Although this approach has the potential 

to yield remarkable results, it is not recommended for photos with high haze density 

as it could render the assumption invalid [19]. K r a t z  and N i s h i n o  [25] suggested 

a factorial Markov random field, related to the Tan method [26], to estimate the 

scene’s depth and albedo from a single hazy image. Image dehazing based on 

Bayesian was proposed by N i s h i n o, K r a t z  and L o m b a r d i  [27] for a similar 

purpose. Even though their approach could successfully recover dehazed images, an 

artifact appears in a location with a certain depth [19]. P a n d e y, G u p t a  and G o e l  

[28] performed a histogram analysis on a foggy image that produced high and low 
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pixel variance. A principal component analysis is performed on three color channels 

in the areas with low pixel variance. Then the atmospheric light is calculated on the 

area with good contrast and sharpness. 

Haze consists of small particles that can absorb sunlight [30]. The reflection of 

these particles causes a light bath or sediment. As a result, the camera when taking 

an image of the target object cannot produce a clear image. The distance between the 

camera and the target object that is obstructed by haze has a depth of distance that 

will affect the quality of results and image distortion [14]. Many classic approaches 

have been carried out by other researchers, one of which is the dual transmission 

method [14]. This method uses two stages in transmission map estimation. First, it 

takes a hazy image and its dark channels as input [31]. Then find the number of light 

pixels and their location from the dark channel to obtain the estimated atmosphere 

light in each channel. The second stage is estimating transmission using the estimated 

atmosphere light and reconstructing the dehazed image [32].  

Many dehazing methods have been proposed to reduce or remove haze. One of 

the popular dehazing method approaches is the restoration method which considers 

the characteristics of the environment such as atmosphere light, transmission map, 

and also the visual quality properties such as contrast, edges, and sharpness. 

However, the restoration-based methods still have some issues such as color 

distortion, transmission map estimation errors, and edge degradation [29]. A single-

image dehazing method was also proposed by H e, S u n  and T a n g  [33], namely the 

Dark Channel Prior (DCP), which is intended to overcome the shortcomings of the 

Tan and Fattal method [15, 22, 23]. The DCP method utilizes the principle of dark 

pixels in the image to estimate an atmospheric model and transmission map [1, 15, 

19]. A haze-free image has at least one channel with very low intensity closest to 

zero. This channel is then used to estimate both atmospheric light and transmission 

maps [1], [15, 26-28]. The DCP method has many improvements by utilizing other 

filters, such as edge preservation, smoothing, bilateral, guided image, anisotropic 

diffusion, window adaptive, associative filters, adaptively subdivided quadtree, 

interpolated filters, Wiener filters, gamma correction, fuzzy theory, and fusion 

strategies that widely optimize transmission maps. There are also improvements to 

the DCP method through the use of dual transform maps [29], color attenuation prior 

[30], morphological reconstruction [31], and adaptive air light refinement [32]. 

The DCP method has advantages in terms of computational simplicity and 

efficiency of dehazed image reconstruction. However, this method also has 

disadvantages related to the loss of image sharpness due to the decrease in the main 

edge of the image, the presence of color shifts, or the emergence of new artifacts due 

to the transmission map reconstruction process due to inhomogeneous color areas 

[33]. Based on this background, this study is proposed to improve the DCP 

performance by applying the Laplacian filtering in the transmission map estimation. 

Laplacian filtering is proposed to deal with the edge preservation problem equipped 

with sharpness and brightness in the post-processing to improve the visual quality of 

the dehazed image. Besides, Gaussian filtering is also proposed in the pre-processing 

to reduce the noise of hazy input. 
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This paper is organized into some sections. Section 2 presents a brief theory 

about the DCP in image dehazing. Section 3 presents the proposed method, including 

the experimental design related to the proposed method. Section 4 presents the hazy 

image dataset that is used in this study. All image datasets in this study use outdoor 

images containing haze. Section 5 presents the performance measurements to 

evaluate the performance of the proposed method, which are peak-signal-to-noise 

ratio and structural similarity index measure. Section 6 presents the experimental 

results and discussion. Finally, Section 6 presents a conclusion of the study and 

findings. 

2. Theoretical review 

Hazy images are generally related to outdoor scenes where atmospheric conditions 

impact image quality. The phenomenon of haze arises due to particles such as dust, 

smoke, or moisture in the air, which scatter and absorb light, leading to a reduction 

in visibility and image clarity. The formulation of a hazy image is commonly 

described using the atmospheric scattering model, which provides a mathematical 

framework for understanding the effects of haze on images. The basic model of a 

hazy image is expressed as [18, 22, 25, 29]:  

(1)  ( ) ( ) ( ) (1 ( ))I x J x t x A t x= + − ,  

with 𝐼(𝑥) as an observed hazy image at pixel location (x), J(x) being a true scene 

radiance, 𝐴 being a global atmospheric light that usually tends to be bright or 

achromatic, and 𝑡(𝑥) is a transmission map that represents the fraction of light 

transmission [18]. The term of J(x)t(x) in (1) represents a direct attenuation, where its 

value will decrease when the depth of the scene increases. Meanwhile, the term of 

𝐴(1 − 𝑡(𝑥)) will increase when the depth of the scene increases. 

The main task of image dehazing is to restore the image J(x) from the hazy 

image 𝐼(𝑥) based on the estimated atmospheric light value 𝐴 and the transmission 

map 𝑡(𝑥) [18] in (1), which is formulated as 

(2)   
( )

( )
( )

I x A
J x A

t x

−
= + .  

In the DCP approach, the reconstruction of the haze-free image can be done through 

the dark channel image which is characterized by at least one color channel that has 

low intensity close to zero [18, 22, 25, 29]. This characteristic can be utilized to 

estimate the haze thickness and recover the scene radiance [33-35]. The dark channel 

image can be computed as: 

(3)   
dark c

( , , )
( ) min( min ( )),

y c r g b
J x J y

 
=   

where, Jc is the intensity for the color channel at the pixel location 𝑦 with 𝑐 ∈ {𝑟, 𝑔, 𝑏} 

of the color image channel and Ω(𝑥) is the local patch around a pixel 𝑥. The dark 

channel image Jdark(x) is selected from the minimum of the three-color channels in 

the Ω(𝑥). The dark channel has three features, which are: (i) shadows, (ii) surfaces, 

and (iii) dark objects. The minimum value of the three-color channels can be 

improved by combining the atmospheric light value or adjusting the direct attenuation 
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value. Hence, the pixel value of the dark channel can be considered to estimate the 

haze density of the hazy image. The minimum intensity for the color channel [18], 

[29] can be determined as 

(4)  

c c

c c( )

( ) )
min ( ) (1 ( ))
y x

t y t x
t x t x

A A
= + − .  

The local path Ω(x) is generally constant and is estimated as a value as t(x), 

hence the minimum value of the three-color channels [22, 25] can be written as 

(5)  

c

c c( ) ( ) ( )

( ) ( )
min ( ) min min (1 ( ))

x

y x y x y x

I y J x
t x t x

A A  

 
= + − 

 
.  

Furthermore, as the Jdark(x)  0, t=hen the 𝑡̃(𝑥) is written as: 

(6)  

c

c( ) c

( )
( ) 1 min min

y x

J y
t x

A




 
= −  

 
,  

with 𝜔 ∈ [0, 1] is a parameter that can be utilized to maintain the depth of the image 

scene such that the dehazed image is close to the original haze-free image. In the case 

of bright images, the dark channel value becomes high and far away from zero. This 

will make it difficult to distinguish between hazy and haze-free areas. The DCP 

algorithm works on the assumption that in hazy images there will be at least some 

pixels in the color channel that have low intensity (dark channel). This inability 

makes it difficult to estimate the transmission map needed to reconstruct haze-free 

images. Alternative methods are needed to overcome this case, such as contrast 

enhancement or transmission map estimation without low intensity prior. 

3. Proposed method 

Based on the introduction and problem statement in Section 1, the DCP approach in 

image dehazing has an advantage in the simplicity and ability to produce high-quality 

results. However, this approach also has limitations, among them are the problems in 

edge preservation, color shifts, and the presence of artifacts. This paper tries to 

propose a DCP-based approach method, especially to overcome the three problems 

through the application of Laplacian filtering and image enhancement during the 

reconstruction process of haze-free images.  In more detail, Laplacian filtering is used 

during transmission map reconstruction, while image enhancement is used in post-

processing to improve the sharpness and brightness of the reconstructed image.  

In image processing, Laplacian filtering has the advantage of enhancing image 

features, particularly on edges and textures. The Laplacian transform works based on 

the Laplacian operator, which is a second-order derivative operator that measures the 

rate of change of intensity values of the image. Laplacian filtering can effectively 

identify edges and transitions in an image. The Laplacian 𝐿(𝑥, 𝑦) of an image with 

pixel intensity values 𝐼(𝑥, 𝑦) is formulated as 

(7)  

2 2

2 2
 ( ) .     

I I
L x

x y

 

 
− +   
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In a two-dimensional image, the discrete Laplacian can be computed 

using the convolution kernel of [0 1 0; 1 –4 1; 0 1 0]. These kernels are designed 

to highlight areas where there is a significant change in pixel intensity. This process 

involves sliding the kernel over the image and computing the weighted sum of the 

pixel values covered by the kernel at each position. The result of applying the 

Laplacian filter produces an output image that emphasizes edges. Regions where 

pixel intensity changes sharply will have high values, while flat regions will yield 

low values. This characteristic makes Laplacian filtering particularly useful for edge 

detection.  

In this proposed method, the Laplacian filtering is intended to strengthen the 

transmission map estimation process that preserves the edges of the dark channel 

image combined with the atmospheric light estimation. Technically, the proposed 

method introduces the modifying of the direct attenuation term. Suppose L is a 

Laplacian coefficient of the hazy image of size n, N is a sparse identity matrix of size 

n, and 𝑡̃(𝑥) is an old transmission map estimation obtained in (6).  The new radiance 

of the dark channel is proposed by 𝐿 + 𝑁 where is a small positive weighted 

parameter to strengthen the hazy image edges. The new transmission map after being 

filtered by Laplacian L, namely 𝑡̃𝐿(x), is formulated as 

(8)  ( ) ( ) ( )Lt x L N t x = + . 

The new transmission map  𝑡̃𝐿(x) can be obtained by solving the linear equation 

of (8), that is 𝑡̃𝐿(𝑥) = (𝐿 + 𝜆𝑁)\𝜆𝑡̃(𝑥). Furthermore, the edge sharpness and color 

brightness are further enhanced through image enhancement techniques, which are 

image sharpening and image brightness as post-processing steps.  

The hazy input image is pre-processed by the Gaussian filter to reduce noise 

with the consideration that haze artifacts can be assumed as noise. In the 2𝐷 image 

processing, the Gaussian function [32] is written as 

(9)  

2 2

22
2

1
( , ; )

2

x y

G x y e 


+
−

= . 

The Gaussian filtering is quite sensitive to noise, so it can have a significant 

impact on reducing haze caused by low illumination or transmission [30]. It will 

produce image smoothing by averaging the pixels around the area weighted by the 

Gaussian function. Smoothing images can reduce noise density but will also reduce 

the sharpness of the image edges. To address this issue, a small-sized kernel or 

smaller can be selected to smooth the hazy image on the low gradient without 

smoothing the edges. It is like a Gaussian filtering trade-off, where utilizing the value 

of  is required to preserve the edges at a certain level. 

 

 
Fig. 1. Brief of the proposed method diagram 



 132 

Briefly, the proposed image dehazing method based on the DCP approach has 

several steps comprising image preprocessing, obtaining dark channel image, 

atmosphere light estimation, transmission map estimation, and dehazed image 

reconstruction as illustrated in Fig. 1. The input of this experiment is a hazy image, 

while the output is dehazed image. Before the DCP approach is applied, the input 

hazy image is first corrected using Gaussian filtering to reduce noise in the hazy 

image. Next step, the dark channel image is taken from the pre-processed image to 

estimate an atmosphere light channel value. Furthermore, the estimated atmosphere 

light values are used to determine the initial transmission map. The next process 

improving the transmission map using the Laplace transform to obtain a new 

transmission map. The final step is to reconstruct the hazy-free image using the 

atmosphere light values and the improved transmission map. To enhance the visual 

quality of the dehazed image, the dehazed image reconstruction also applies image 

enhancement techniques, such as image sharpening and brightness.    

4. Hazy image dataset 

The objective of this experiment is to evaluate the performance of the DCP-based 

image dehazing method with a focus on the use of the Laplacian transform in the 

dehazed image reconstruction process.  
 

    
(a)                                            (b) 

    
(c)                                          (d) 

    
(e)                                        (f) 

    
(g)                                       (h) 

Fig. 2. Haze-free (left) and hazy images (right) of: oh1.png (a); oh2.png (b); 

oh3.png (c); oh4.png (d); oh5.png (e); oh6.png (f); oh7.png (g); oh8.png (h) 
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The experiment was conducted using the public O-HAZE dataset, which is an 

outdoor haze image published by A n c u t i  et al. [36]. The dataset also consists of 

haze-free images that will be used for comparison performance analysis. 

The dataset originally consisted of 45 pairs of clean and hazy images and can 

be downloaded at the URL: https://data.vision.ee.ethz.ch/cvl/ntire18/o-haze/. For 

analysis purposes, this experiment only uses 8 sample images of clean and hazy 

image pairs, namely oh1.png, oh2.png, oh3.png, oh4.png, oh5.png, oh6_hazy.png, 

oh7.png, and oh8.png and its hazy images as shown in Fig. 2. This dataset is color 

hazy images with varying levels of hazy density. 

5. Performance evaluation 

To evaluate the performance of the proposed method, this experiment uses two 

metrics, which are the Peak-Signal-to-Noise-Ratio (PSNR) and Structural Similarity 

Index Measure (SSIM). The PSNR is a metric used to measure the quality of a 

reconstructed image relative to the original image. PSNR is expressed in decibels 

(dB) by comparing the strength of the signal of the original image to the level of noise 

or errors during processing, which is computed below (see (10)). A reconstructed 

image with a higher PSNR value represents a low noise level of the reconstructed 

image and it has a better visual image quality compared to the image with lower 

PSNR value. 

Suppose x is an original image with M×N of size and y is a reconstructed image 

with M×N of size, 𝑚 is the maximum of the pixel value, 𝑀 is the size of a row, and 

𝑁 is the size of a column. The PSNR [37-39, 44] between x and y is formulated by: 

(10)    
( )

2

10

2

( , ) ( , )

1 1

PSNR( , ) 10log (m ) / MSE,

1
MSE .

M N

i j i j

i j

x y

x y
MN = =

=

= −
  

SSIM is a metric for assessing the similarity between a reconstructed image and 

the original image through differences in pixel structure and visual perception aspects 

(luminance and contrast). Suppose x is an original image with M×N of size and y is a 

reconstructed image with M×N of size, the SSIM [37, 38, 40, 41, 44] between x and 

y is computed by: 

(11)   

1

2 2

1

2

2 2

2

3

3

SSIM( , ) [ ( , )] [ ( , )] [ ( , )] ,

2
( , ) ,

2
( , ) ,

2
( , ) ,

x y

x y

x y

x y

xy

x y

x y l x y c x y s x y

C
l x y

C

C
c x y

C

C
s x y

C

  

 

 

 

 



 

=

+
=

+ +

+
=

+ +

+
=

+

  

where x and y are the local means of image x and y, x and y  are the deviation 

standards of images x and y, xy is a cross-covariance between x and y, and 𝐶1, 𝐶2, 𝐶3 

are the regularization constants for the luminance l(x, y), contrast c(x, y), and 
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structural s(x, y) terms, which are formulated in (11). Similar to the PSNR value, a 

higher SSIM value represents a better visual quality of the reconstructed image rather 

than a lower SSIM. The difference between PSNR and SSIM lies in the measurement 

object. SSIM measures the difference between image pixel properties, namely 

luminance, contrast, and pixel structure, while PSNR only measures the absolute 

error rate or difference between pixels. 

6. Results and analysis 

6.1. Preprocessing 

The pre-processing stage aims to improve image quality, especially for noise 

reduction and image smoothing using Gaussian filters. The selection of this filter 

considers that the Gaussian filter cannot only reduce noise and smooth an image but 

can also maintain image edge information to avoid losing information from the 

image. The PSNR values of the hazy images of oh1_hazy.png, oh2_hazy.png, 

oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, oh6_hazy.png, oh7_hazy.png, and 

oh8_hazy.png are 14.68 dB, 15.61 dB, 14.99 dB, 21.76 dB, 10.95 dB, 11.62 dB,  

17.35 dB, and 11.29 dB, respectively. Whereas, the PSNR values of the filtered hazy 

images by Gaussian filter using =0.5 are 14.84 dB, 15.61 dB, 15.17 dB, 22.08 dB, 

11.02 dB, 11.68 dB, 17.47 dB, and 11.33 dB, respectively. All of the filtered images 

are presented in Fig. 5. Based on these PSNR values, the Gaussian filter provides a 

slight improvement in the visual quality of the images. The filtered images are 

presented in Fig. 3 with a standard deviation of =0.1. 

 

    
 (a)  (b) (c) (d) 

    
 (d)  (e) (f) (g) 

Fig. 3. Filtered images by Gaussian filter with  =0.1 of: oh1_hazy.png (a); oh2_hazy.png (b);  

 oh3_hazy.png (c); oh4_hazy.png (d); oh5_hazy.png (e); oh6_hazy.png (f);  

oh7_hazy.png (g); oh8_hazy.png (h) 
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6.2. Obtaining dark channel images 

The dark channel is the minimum value of the image of each RGB channel obtained 

by dividing the RGB image into local windows. The pixel value in each window is 

then replaced with the minimum pixel value of each channel. The dark channel 

transforms the hazy input image into a dark channel image of the same size as the 

input image with the intensity level range of [0; 1]. The dark channel images using 

a window size of 9×9 of oh1_hazy.png, oh2_hazy.png, oh3_hazy.png, 

oh4_hazy.png; oh5_hazy.png, oh6_hazy.png, oh7_hazy.png, and oh8_hazy.png are 

shown in Fig. 4. These dark channel images indicate that the intensity level of at least 

one-color channel within local windows is close to zero which represents the 

characteristics of an outdoor image.  

The minimum intensity of the dark images of oh1_hazy.png, oh2_hazy.png, 

oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, oh6_hazy.png, oh7_hazy.png, and 

oh8_hazy.png are 0.12, 0.04, 0.17, 0.09, 0.31, 0.09, 0.07, and 0.09, respectively. 

While the maximum intensity of the dark images of oh1_hazy.png, oh2_hazy.png, 

oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, oh6_hazy.png, oh7_hazy.png, and 

oh8_hazy.png are 0.63, 0.85, 0.78, 0.53, 0.60, 0.62, 0.44 and 0.76, respectively. 

 

    
 (a)  (b) (c) (d) 

    
 (d)  (e) (f) (g) 

Fig. 4. Dark channel image of: oh1_hazy.png (a); oh2_hazy.png (b); oh3_hazy.png (c); 

oh4_hazy.png (d); oh5.png (e); oh6.png (f); oh7.png (g); oh8.png (h) 

6.3. Obtaining atmosphere light channel estimation 

Atmospheric light estimation is performed to estimate the light spectrum by the 

atmosphere that affects the image purity. The atmospheric light estimation is obtained 

by the dark channel by calculating the average of the percentage of the lowest pixels 

for each color channel. The output of this step is the estimated atmosphere light 

vectors containing an average of the lowest pixel values of the selected dark channel 
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image. Using the darkest pixels is very useful to minimize the influence of haze 

caused by atmospheric scattering.  

The atmospheric light estimation will be used to recover the original colors of 

the image. The atmosphere light channel estimations of 1% of the lowest pixels of 

oh1_hazy.png, oh2_hazy.png, oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, 

oh6_hazy.png, oh7_hazy.png, and oh8_hazy.png are presented in Fig. 6 on the right 

side, with the vector values [0.61 0.67 0.75], [0.84 0.84 0.87], [0.65 0.68 0.77], [0.53 

0.56 0.62], [0.60 0.63 0.68], [0.62 0.66 0.72], [0.45 0.44 0.46], and [0.75 0.79 0.83], 

respectively. 

6.4. Obtaining transmission map estimation 

The atmosphere light values are then used to estimate the transmission map, which is 

computed through the dark channel and atmosphere light across the window size. The 

transmission map is estimated by finding the difference in color between the highest 

color to the weighted ratio of the dark channel and the atmosphere light values. The 

weight parameter value () of this estimation can be set in the range of 0 ≤  ≤ 1. 

The transmission map estimation represents the estimation of the quantity of light 

captured by the camera after being emitted by the atmosphere. Low transmission 

values indicate more haze, while high transmission values indicate less haze in the 

hazy image. Using the weight parameter  of 0.95 or 95%, the transmission map of 

oh1_hazy.png, oh2_hazy.png, oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, 

oh6_hazy.png, oh7_hazy.png, and oh8_hazy.png are presented in Fig. 5.  

 

    
 (a)  (b) (c) (d) 

    
 (d)  (e) (f) (g) 

Fig. 5. Transmission map estimation of: oh1_hazy.png (a); oh2_hazy.png (b); oh3_hazy.png (c); 

oh4_hazy.png (d); oh5.png (e); oh6.png (f); oh7.png (g); oh8.png (h) 

 



 137 

6.5. Dehazing using the Laplacian filter 

In this experiment, the dehazed image is reconstructed by the Laplacian transform of 

the hazy image. The Laplacian coefficients are then used to rearrange the new 

transmission map with the direct attenuation weight close to zero. The use of the 

Laplacian coefficient is also to preserve the edge of the image, compared to the 

previous transmission map estimation in Fig. 5. The transmission map estimation 

after Laplacian filtering using =0.0001 is illustrated in Fig. 6.  
 

    
 (a)  (b) (c) (d) 

    
 (d)  (e) (f) (g) 

Fig. 6. Transmission map estimation after Laplacian filtering of: oh1_hazy.png (a);  

 oh2_hazy.png (b); oh3_hazy.png (c); oh4_hazy.png (d); oh5.png (e); oh6.png (f); oh7.png (g);  

 oh8.png (h) 

 

The reconstruction process involves the transmission, atmosphere light, and 

hazy image. The reconstructed dehazed images of oh1_hazy.png, oh2_hazy.png, 

oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, oh6_hazy.png, oh7_hazy.png, and 

oh8_hazy.png using an attenuation level of 0.001 are presented in Fig. 7. After 

reconstruction, image sharpening and brightness filtering are performed to enhance 

the visual quality of the dehazed image.  

The PSNR and SSIM values of dehazed images of oh1_hazy.png, 

oh2_hazy.png, oh3_hazy.png, oh4_hazy.png; oh5_hazy.png, oh6_hazy.png, 

oh7_hazy.png, and oh8_hazy.png are presented in Table 1. Based on the PSNR and 

SSIM values, it shows that dehazed image reconstruction using Laplacian transform 

can increase the dehazed images for almost hazy images instead of reconstruction 

without Laplacian transform. It can be concluded that the use of Laplacian can 

contribute to the dehazed image quality through the Laplacian coefficient during 

reconstruction. 
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 (a)  (b) (c) (d) 

    
 (d)  (e) (f) (g) 

Fig. 7. Reconstructed dehazed images of: oh1_hazy.png (a); oh2_hazy.png (b); oh3_hazy.png (c); 

oh4_hazy.png (d); oh5_hazy.png (e); oh6_hazy.png (f); oh7_hazy.png (g); oh8_hazy.png (h) 

 

Table 1. Performance evaluation of the proposed method 

Hazy 

image 
name 

PSNR (dB) SSIM 

Hazy 
image 

Dehazed 

image 
without 

Laplacian 

Dehazed 

image 
with 

Laplacian 

Hazy 
image 

Dehazed 

image 
without 

Laplacian 

Dehazed 

image 
with 

Laplacian 

oh1_hazy 14.68 13.19 13.13 0.48 0.49 0.49 

oh2_hazy 15.61 15.72 16.74 0.68 0.59 0.64 

oh3_hazy 14.99 16.18 16.84 0.65 0.58 0.64 

oh4_hazy 21.76 15.66 16.70 0.65 0.43 0.55 

oh5_hazy 10.95 12.78 12.60 0.09 0.56 0.53 

oh6_hazy 11.62 15.44 15.69 0.35 0.54 0.57 

oh7_hazy 17.35 13.28 13.42 0.61 0.44 0.48 

oh8_hazy 11.29 12.29 13.35 0.37 0.49 0.55 

6.6. Performance comparison 

For evaluation of the proposed method, some DCP-based dehazing methods are used 

as performance comparison, such as the DCP-based dehazing proposed by 

N u r h a y a t i  et al. [43], E h s a n  et al. [39], Z h u, M a i  and S h a o  [40], H e, S u n  

and T a n g  [33], C o l o r e s  et al. [41], and D h a r a  et al. [42]. This comparison uses 

the house.png image as shown in Fig. 8, which is the ground-truth image in Fig. 8(a) 

and its hazy image in Fig. 8(b). The PSNR and SSIM values of the original hazy 

image are about 15.40 dB and 0.75, respectively. 

After pre-processing using the Gaussian filter, the filtered of the house.png 

image is shown in Fig. 9(a), while the dark channel of the hazy image is shown  

in Fig. 9(b). The atmosphere light estimation value vector of the dark channel is  

[0.88, 0.85, 0.79]. Applying the Laplacian transform in the previous transmission 

map estimation produces the new transmission map image as shown in Fig. 9(c). The 
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reconstruction dehazed image is shown in Fig. 9(d) with the PSNR and SSIM values 

are 20.67 dB and 0.86, respectively. This performance achievement outperforms the 

performance of DCP-based image dehazing methods proposed by N u r h a y a t i  et 

al. [43], E h s a n  et al. [39], Z h u, M a i  and S h a o  [40], H e, S u n  and T a n g  [33], 

C o l o r e s  et al. [41], and D h a r a  et al. [42], which each provide PSNR values of 

16.47 dB, 14.96 dB, 11.97 dB, 14.19 dB, 9.49 dB, and 13.38 dB, respectively [42]. 

 

   
 (a) (b) 

Fig. 8. Ground-truth image (a), hazy image of the house.png image (b) 
 

    
 (a)  (b) (c) (d) 

Fig. 9. The house.png image of: Gaussian filtered (a); dark channel image (b);  

 transmission map image (c); reconstructed dehazed image (d) 

7. Conclusion 

Transmission map reconstruction is one of the important processes in image haze 

removal based on the DCP approach. Normal transmission maps generally leave 

some issues, such as edge preservation, color shift, and artifacts. To overcome these 

problems, this study introduces the use of Laplacian filtering in the DCP method to 

reduce the haze in the image. This Laplacian filtering is intended to utilize edge 

preservation in the transmission map reconstruction. Mainly, the initial transmission 

in the DCP is enhanced by Laplacian filtering to obtain a better transmission map. 

That not only strengthens the transmission map but also deducts the presence of 

artifacts within the dehazed image. To improve the performance of the proposed 

method, this study uses Gaussian filtering in the pre-processing step to reduce any 

noise before applying the DCP. While image sharpening and brightness filtering are 
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used as post-processing to enhance the visual quality of the dehazed image. Although 

not able to remove the hazy perfectly, at least the experimental research shows that 

the proposed method could improve the basic image dehazing based on the DCP 

approach and be able to compete fairly with other similar methods.  

For further work, the performance of this proposed method still needs to be 

improved, including finding the optimal parameter values for transmission map 

reconstruction, utilizing the dark channel images, and finding a better atmospheric 

light estimation to strengthen the transmission map reconstruction. 
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