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Abstract: One of the major reasons for software project failure is poor requirements, 

so numerous requirement smells detection solutions are proposed. Critical appraisal 

of the proposed requirement fault detection methods is crucial for refining knowledge 

of requirement smells and developing new research ideas. The objective of this paper 

was to systematically review studies that focused on detecting requirement 

discrepancies in textual requirements. After applying inclusion and exclusion criteria 

and forward and backward snowball sampling techniques using database-specific 

search queries, 19 primary studies were selected. A deep analysis of the studies shows 

that classical NLP-based requirement smells detection techniques are the most 

commonly used ones and ambiguity is the requirement smell that has the utmost 

attention. Further investigation depicts the scarcity of open-access datasets, and 

tools employed to detect requirement faults. The review has also revealed there is no 

comprehensive definition and classification of requirement smells.  

Keywords: Requirements, Software requirement specification, Requirement smells, 

Ambiguity, Requirement smell detection, Natural language processing. 

1. Introduction  

Requirement engineering is the process of eliciting, analyzing, specifying, validating, 

and managing requirements of large and complex software systems, and as such it 

comprises critical activities in software engineering [1, 2]. It is an initial stage of the 

Software Development Life Cycle (SDLC) to create high-quality software 

requirements, which eventually should result in high-quality and cost-effective 

software delivered in time. It provides an appropriate mechanism to understand and 

analyze customer needs, specify and validate the specifications, and manage the 

requirements. Software requirements are a description of what the system should do 

(functional requirements) and the qualities the system should possess while offering 

the functions (non-functional requirements) [2-5] The description of the intended 
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purpose and environment of software under development is presented in one of the 

significant outputs of the software development process which is Software 

Requirements Specification (SRS) document. SRS is a specification and elucidation 

of software requirements that are supposed to satisfy customer needs and increase 

product quality.  

During software development, the quality of specified requirements has a direct 

impact on the success and failure of the software development project [6-8]. 

Therefore, software requirements should assuage the characteristics of individual 

requirements as well as requirements together in an SRS document [9, 10]. 

Developing qualified software requires well-written software requirements with no 

indicator of defects as the quality of requirements has a great impact on the success 

of the software project [2, 4, 10]. Hence, to produce quality software, problems with 

requirements must be detected at the earliest stage of SDLC and removed without 

further ado.  The later the requirement errors are identified, the more difficult and 

expensive it becomes to correct them [10].   For instance, 11] found that requirement 

defects are 10 to 200 times more expensive to fix once they have infiltrated the system 

compared to being detected at the initial stage of development. In large-scale software 

development projects, requirement problems gradually evolve to design, code and 

test case smells, causing unprecedented risk in software development projects. 

Indicators of software requirement defects or quality problems in software 

requirements are known as requirement bad smells or just requirement smells [10]. 

Since, poor quality requirements are reasons for software project failure, ensuring 

requirement quality is an important activity in the software development process [11]. 

Despite initiatives and efforts to write quality requirements and SRS documents, the 

software industry is dodged with poor requirements. Literature has shown that 40% 

to 60% of smells in software development phases are because of poor quality 

requirements [3, 12]. 

Several studies have been conducted on identifying requirement smells in both 

textual requirements and requirements written in other forms. To detect bad smells 

from the use case description S e k i, H a y a s h i  and S a e k i  [13], proposed an 

automated bad smell detection approach. A way to detect requirement smells from 

linguistic goal models is proposed in [14] and the impact of requirement smells on 

test case design is studied in [15]. Various techniques ranging from traditional 

dictionary-based detection to advanced machine learning techniques [16] have been 

applied for smell detection. For instance, a multi-class multi-label requirements smell 

classification is proposed using deep learning [17]. Besides studies that aim at the 

analysis and improvement of requirement quality, numerous studies from academia 

and industry are devoted to detecting and classifying requirement smells and 

assessing their impact.  

In this study, we appraise the outputs of the research on requirement smells and 

detection approaches via Systematic Literature Review (SLR).  The SLR is vital to 

refine the knowledge on requirement smell, to develop new research ideas, to gain 

critical skills in synthesizing existing literature, and to combine findings from 

different studies and discover new findings. Even though plenty of SLRs are available 

on code smells [18, 19], and test smells [20], as far as our knowledge there is no SLR 
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on requirement smells. However, a systematic mapping study was conducted in [21] 

to create and structure research areas in relation to requirement smells. The study 

provided an overview of requirement smells in general terms. Moreover, in [7] a 

classical literature review on analyzing the quality of textual requirements using 

Natural Language Processing (NLP) was conducted. However, the focus of the 

review was on tools to analyze requirements using quality models.   

This systematic literature review aimed to identify different kinds of 

requirement smells and to assess the existing smell detection techniques and tools  

on textual requirements using guidelines formulated by K i t c h e n h a m   

and C h a r t e r s  [22] and PRISMA reporting guidelines for software  

engineering [23]. The SLR is registered at OSF REGISTRIES and its Peer  

Review of Electronic Search Strategies (PRESS) with registration  

(DOI: 10.17605/OSF.IO/VZ83P). 

The rest of the paper is organized as follows. Section two explains the 

background on requirement smells and techniques to detect the bad smells. Next, the 

research methodology is presented in detail. Results and discussions are elucidated 

in section four. Threats in the validity and future research direction are discussed in 

section five and six, respectively. Finally, conclusions are drawn in section seven.  

2. Background  

2.1. Requirement smells 

In software engineering, “bad smell” refers to symptoms that show something is 

wrong with an artifact produced during the software development process or bad 

practices in developing software [24]. Most literature attributes bad smell in software 

engineering to computer programs [18, 25-27]. However, there are bad smells on 

requirements [4], on architecture [28], on design [29], and on testing [20, 30]. In some 

literature, bad smells together are termed software smells [31, 32]. Bad smells are 

also viewed from another dimension as usability smells [33], services 

antipatterns/smells [34], aspect-oriented system smells [35], object-oriented system 

smells [25], software product line smells [36], configuration smells [26], etc. 

However, even though bad smells can be classified based on different angles, the 

smells can be traced back to problems in requirements, architecture, design, code, or 

tests. All types of bad smells must be detected and removed with no exception.  

Definitions of a software “smell” provided at [24] don’t address the requirement 

small. The phrase “Requirement smell” was originally coined by [10] in 2013 and it 

originates from code smell which was introduced by Fowler and Beck [27]. Since the 

introduction of requirement smells, various definitions have been provided for 

requirement smells by different authors from their perspectives. Table 1 provides a 

consolidated list of definitions for requirement smells. A comprehensive and 

agreeable definition for requirement smells is yet to come from scholars as the 

existing definitions exclude some aspects related to ill-defined requirements. For 

instance, [8] associates requirement smell to functional requirements only whereas 

[37] states that only quality indicators that are evolved to defects are termed 

requirement smells.  

https://doi.org/10.17605/OSF.IO/VZ83P
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Table 1. Definitions of requirement smells 

Definition of requirement smell Reference 

Requirement smell is a concrete symptom of a requirement artifact’s quality defect in the 

usage context of a certain activity 
[10] 

Requirement smells are indicators of a quality violation, which may lead to a defect, with a 

concrete location and a detection mechanism 
[37] 

Requirement smells are quality problems in functional requirements that can lead to 

defects at different levels of severity 
[8] 

Requirement smells or feature request smells are quality defects on requests/ requirements [38] 

Requirement smells are concrete symptoms of a requirement artifact’s quality defect [4] 

Requirement smells are quality violations in requirements or are defects in requirements [39] 

Requirement smells as a specific symptom that can generate defects in a requirement [21] 

Requirement smells are software requirements that suffer from imprecision, ambiguity, 

and other quality issues 
[40] 

 

Generally, requirement smells are indicators of poor quality of software 

requirements. We can say that a requirement has poor quality if the requirement does 

not satisfy quality standards set at [3] and [9] or if the requirement doesn’t meet user 

needs. Quality of requirements may be attributed to individual requirements or a 

group of requirements altogether as presented in the SRS document (Table 2).  

Table 2. Characteristics of individual requirements and set of requirements 

Classification by  Individual requirements   Group of requirements in SRS 

K a t a s o n o v 

and S a k k i n e n  

[41] 

Complete, correct, unambiguous, 

feasible, necessary, prioritized, verifiable, 

concise 

Complete, consistent, non-

redundant, traceable, organized, 

conformant to standards 

F e m m e r  [10] 

Necessity, implementation freeness, non-

ambiguity, completeness, singularity, 

feasibility, traceability, verifiability  

Completeness, consistency, 

affordability, and boundedness 

ISO/IEC/IEEE 

29148 [9]  

Necessary, appropriate, correct, 

confirming, unambiguous, complete 

(requirement level completeness), 

singular, feasible, verifiable 

Complete, consistent, feasible, 

comprehensible, able to be 

validated 

Requirements may be written using natural language, structured natural 

language (tables and diagrams), or using formal methods. Despite writing 

requirements using natural language has proven advantages, natural languages are 

inherently ambiguous, imprecise, and subject to misinterpretation.  Formal language 

effectively addresses ambiguity, but it is costly and it is not understood by most 

stakeholders. Hence, most requirements (about 79%) are written in natural languages 

[42].   

Requirement smells can be categorized in a different way. A catalog of bad 

smells in use case descriptions developed at [43]. Walia and Carver developed a 

taxonomy of errors that may occur during the requirements phase by referring to 149 

papers [44]. The errors are broadly categorized as people errors, process errors, and 

documentation errors.  Requirement quality can also be classified based on the 

characteristics that interest developers/engineers or clients [45]. Validability, 

completeness, consistency, and precision are concerns of clients while verifiability, 
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modifiability, understandability, unambiguity, traceability, abstraction, and atomicity 

are desirable properties of requirements as seen by engineers.  

Table 3. Taxonomies of requirement smells 

Smell category Smells 

Morphological 

requirement smells  

Very long/short sentences, very long/short paragraphs, unreadability (long 

words, long and complex sentences), excessive punction, lack of 

punctuation, excessive use of acronyms, use of abbreviations 

Lexical requirement 

smells 

use of copulative-disjunctive terms (alternative terms/phrases = non-atomic 

requirement, optional, more than one verb, coordinating conjunction, use 

of coordinator), excessive use of negative terms, too many control flow 

terms, use of anaphorical terms (alternative terms/phrases = vague 

pronouns, demonstrative adjective), use of imprecise or subjective terms 

(alternative terms/phrases = subjective language, ambiguous adverbs and 

adjectives, loopholes, open-ended, non-verifiable terms, superlatives, 

comparatives, not precise verb, ambiguity (coordination, referential, 

lexical, syntactic, semantic, pragmatic, attachment, analytical), 

vagueness/vague terms and symbols, weakness, generality (not specific), 

speculative expression, non-explicit requirements (implicit), use of modal 

adverbs, use of quantifiers ), use of design or technology related terms 

(alternative terms/phrases = not requirement, use of pseudocode and 

control-flow expression, requirement expressing a solution (design)) 

Analytical requirement 

smells 

Excessive use of imperative forms, not having at least one imperative verb 

(imperative), usage of conditional mood or non-assertive requirement 

(conditional), passive voice, excessive domain terms, alternative 

terms/phrases (use of a large number of domain concepts too many, domain 

verbs), rare use of domain terms 

Relational requirement 

smells 

Excessive number of versions, too low or too high nesting, excessive  

number of dependencies, too low or too high coupling of requirements 

Incompleteness and 

Language related 

requirement smells 

Incomplete requirement (alternative terms/phrases = incomplete references, 

incomplete condition / missing condition, incomplete system response, 

incorrect order requirement, missing description, partial content, incomplete 

enumerations, justifications in the requirement (rationale), missing unit of 

measurement, use of continuance, use of directives), undefined terms, 

language error, use of plural nouns 

K r o g s t i e  and L i n d l a n d  [46] proposed a requirement quality framework 

that has four parts: syntactic quality (correctness of the language used to express the 

requirement), semantic quality (validity and completeness of the requirements), 

pragmatic quality (comprehensibility of the requirements by audience), and social 

quality (level of agreement between stakeholders). However, the latter three groups 

of quality are immeasurable in practice and evaluation can be made only heuristically. 

Authors of [44] adapted the classification from [45] and organized textual 

requirements into four groups based on requirement quality indicators. Requirement 

smells can be classified into four categories which correspond to the four requirement 

quality indicators as requirement smells are indicators of quality violation of 

requirements [37]. Any requirement smell that doesn’t fit into the four categories 

could be included in the fifth category which we named incompleteness and 

language-related requirement smells (Table 3). We used the definitions and/or 

descriptions provided at selected papers, to allocate the individual smells to the smell 

categories. The classification is open to debate as few smells have overlapping 

definitions, and some others conflict with each other.  
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2.2. Smell detection methods 

The primary issue with requirements quality is that they are written in natural 

language, which lacks formal semantics. This makes them difficult to understand and 

prone to ambiguity and vagueness [4, 25]. Moreover, the processes and tools used in 

the requirement engineering process can affect the quality of requirements [47, 48]. 

Additionally, the majority of requirements originate from stakeholders who have 

limited domain knowledge and have often conflicting needs [14, 18]. Customers 

don’t tell all the requirements at the outset, rather they come with new requirements 

after implementation. The problem may also come from the requirement engineer 

due to a lack of experience in writing requirements or understanding customers’ 

needs. Requirement smells need to be detected as early as possible to minimize their 

impact in subsequent phases of SDLC [21, 49] especially when the iteration is long 

and feedback comes late [4]. This is because flaws in requirements cause software 

project delays, reworks, and low customer satisfaction [40, 50]. Therefore, early 

detection and removal of smells from requirement statements play its parts to produce 

quality design, code, and test cases. Literature has shown that more than half of the 

errors detected during software development happen in the requirement specification 

stage [25, 36]. That is why the identification of requirement smells has a vital role  

in the success of software projects by ensuring the quality of requirements [8, 27,  

40, 51]. 

However, automatic requirement smell detection is very challenging in 

comparison with smell detection at the coding and design phases as the latter involves 

formal representations [35].  Hence, many requirements for smell detection 

approaches depend on manual reviews at various levels of formality (informal, 

formal, walkthrough, inspection, audit) [52]. However, it is not feasible to manually 

review SRS documents of large and complex systems [4, 53].  Therefore, manual 

review of SRS needs to be supported by automatic smell detection CASE (Computer 

Assisted Software Engineering) tools. Various tools that employ different smell 

detection techniques have been already proposed. Some requirement smell detections 

rely on Natural Language Processing (NLP) [8, 37, 38, 54, 55] NLP-based techniques 

involve analysis of the syntactic (arrangement of words) and the semantic (meaning) 

characteristics of requirements written in natural languages. NLP techniques such as 

the use of language models, Part-Of-Speech (POS) tagging, tokenization, 

lemmatization, etc. have been reported in the literature.   

Rule-based requirement smell detection technique is the other approach reported 

in some papers [56-59]. In this method, rules are defined, usually manually, by 

experts to detect one or more required bad smells. Then, the requirements or SRS 

documents are evaluated against the rules. The other method is the knowledge 

dictionary-based requirement smell identification technique [60]. In this method, a 

dictionary is constructed manually from some language elements (e.g., from 

transitive verbs and their associated object words [60]) and used for smell detection. 

A huge effort due to extensive human involvement in the rule and knowledge-based 

methods has forced scholars to look for other smell detection mechanisms.  

Recent requirement smell detection techniques depend on Machine Learning 

(ML) or Deep Learning (DL) techniques [16, 39, 61]. To boost the performance of 
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such solutions classical NLP or text mining techniques are used in conjugation with 

the solutions. Machine learning algorithms can classify/detect requirement smells 

based on the rules and thresholds provided by the experts. There is literature that 

reports the application of machine learning techniques for the assessment and 

improvement of requirement quality [61] and for identifying requirement smells  

[15, 62]. Decision Tree (DT), Feed-Forward Neural Network (FNN), K-Nearest 

Neighbor (KNN), Logistic Regression (LR), Naïve Bayes (NB), Random Forest 

(RF), and Support Vector Machine (SVM) are among machine learning algorithms 

used for requirement smell detection [17, 63-65] Combining DL with conventional 

NLP provides more robust, generalized and more precise prediction for requirement 

smell detection [39]. However, utilizing ML/DL techniques for requirement bad 

smell detection is hampered by insufficient requirement datasets.  

3. Research method 

The systematic literature review methodology proposed by K i t c h e n h a m  and 

C h a r t e r s  [22] was strictly followed to conduct this SLR. The guideline is fine-

tuned specifically for performing SLR in software engineering.  As per the guidelines, 

planning, execution, and reporting are the main tasks in the review. This section 

provides a complete overview of how the planning and execution steps are applied in 

the research.  

3.1. Planning review 

In the planning stage, the objectives of the review are reiterated, research questions 

are defined together with their respective motivations and review protocols are 

developed and evaluated.  

3.1.1. Review objectives and research questions  

The main objectives of the study are to identify different kinds of requirement smells 

and smell detection techniques. Moreover, the study aims to assess the performance 

of the smell detection tools and the size of the dataset used in selected literature.  

Table 4. Research Questions (RQ) 

RQ Research question Motivation  

RQ1  

What type of requirement smells are 

Most commonly detected by the selected 

studies?  

This question aims to know different kinds of 

requirement smells that are detected by the 

studies 

RQ2 
What are the existing requirements for smell 

identification techniques?  

With this question, we aim to assess and 

understand the techniques for the identification 

of requirement quality and smell 

RQ3 

How many requirements are used to assess 

and evaluate the proposed approaches in the 

selected studies? 

To know whether the researchers have used a 

small or large number of requirements to 

evaluate their approach  

RQ4 
What is the overall performance of 

requirement smell detection mechanisms? 

This question intends to find out the best-

performing requirement smell detection 

techniques 

RQ5 

What are the tools/libraries/APIs used or 

produced in the selected study for requirement 

smell detection? 

This question intends to find out the tools, 

libraries, or Application Programming Interfaces 

(APIs) used for smell detection 
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No SLR has been conducted so far on textual requirement smells and their 

detection methods. To guide the overall direction of the systematic review process 

Research Questions (RQ) presented in Table 4 are defined. Motivation for each 

question is also provided.   

3.1.2. Develop review protocol 

Pre-defining review protocol is essential in a systematic review to reduce the risk and 

possibility of research biases.  The review protocol defines the procedures and 

rudimentary research processes that are followed during the systematic review. 

Development of a search strategy (digital libraries and search terms), establishment 

of inclusion and exclusion criteria, formation of a quality assessment checklist, 

development of data extraction tools, and identification of study synthesis techniques 

are part of the definition of review protocol. 

Digital libraries. The main databases selected to execute the search string are 

shown in Table 5. We selected those sources because the databases are prominent 

academic databases and the quality of software engineering and computer science-

related papers published in the databases are proven to have good quality [66].   

Table 5. Digital libraries used in search process 

Source  Link  

ACM Digital Library  https:/dl.acm.org/ 

Springer Link https:/link.springer.com/ 

ScienceDirect  https:// ScienceDirect.google.com/  

Google Scholar https:/scholar.google.com/ 

IEEE Xplore https:/ieeexplore.ieee.org/ 

Search query. We have used a search string that includes a set of keywords 

related to software requirements smell and quality. It helps in the completeness of the 

search studies. After selecting different string options, “AND” and “OR” operators 

are applied to interconnect those keywords or strings. Then the following string is 

selected as a general search string:  

(“Software requirement” OR “requirement”) AND (“smell” OR “bad smell” OR 

“quality” OR “ambiguity”) AND (“detection” OR “identification” OR “analysis”) 

The search string is customized for databases that suggest different query 

formats as depicted in Table 6.  

Table 6. Search string for the databases 

Database Search string 

IEEE 
((software requirement smell) OR requirement smell) OR requirement quality) OR 

(requirement bad smell) AND (detection OR identification OR analysis)) 

Springer  

“requirement” AND “smell” OR “software” AND “requirement” AND “smell” OR 

“requirement” AND “bad” AND “smell” OR “requirement” AND “quality” AND 

“detection” OR “identification” OR “analysis” 

ACM 
(+requirement + smell+ detection) OR (requirement + bad + smell + detection) OR 

(requirement + bad + smell+ dentification) OR (software + requirement + quality + analysis) 

Study selection. The inclusion criteria and exclusion criteria listed below are 

defined and applied for the selection of the primary studies. The criteria are vital to 

reduce bias, to reduce search space, and to select only relevant scientific literature.  
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Inclusion Criteria (IC):  

• The studies were published from 2010 to 2023.  

• The study was written in English and is open access. 

• The studies which are journals and conference papers. 

• The studies focused on software requirement smell and requirement quality. 

Exclusion Criteria (EC): 

• The study is a secondary and tertiary study. 

• The study before 2010 was not included in this review. 

• The study is an opinion article, workshop, or magazine. 

The study selection has been made in four phases. In each phase, inclusion and 

exclusion criteria were used to minimize the number of studies to select relevant 

studies (Table 7).   

Table 7. Phases for study selection 

Phase Inclusion Exclusion  

1 IC1: The studies were published from 2010 to 2023 
EC1: The study was published before 

2010 

2 
IC2: The studies were published in English and are 

open-access 
EC2 

3 IC3: The study is a journal or conference paper EC3: The study is secondary or tertiary  

4 
IC4: The focused-on-study software requirement 

smells and requirement quality 

EC4: The study is an opinion article, 

workshop, or magazine 
 

Study Quality Assessment (QA). The quality assessment of the papers was 

made using a checklist to rate and evaluate the quality of each study identified in the 

previous step. 

• QA1: Were the objectives of the study clearly stated? 

• QA2: Did the study describe the main research problem? 

• QA3: Were the methodologies of the study clearly stated? 

• QA4: Were the study findings evaluated and results discussed? 

• QA5: Are limitations, negative findings, or threats to validity explained?  

• QA6. Did the study point out any future research direction? 

• QA7: Were the detected requirements smells classified based on a criterion?  

To evaluate the quality of selected studies, we have used six quality assessment 

criteria. The quality assessment criteria are needed to define quality criteria and to 

minimize bias while ensuring the external and internal validity of selected studies. 

Quality checklists are used as proposed by [22] and other checklists are added 

according to the research questions.  

Data extraction form. The list in Table 8 contains a data extraction form that 

describes the data that have been extracted from selected papers. These data are 

summarized and tabulated in a way that can serve the objectives of this SLR. The 

extracted data are: study identifier, article title, the article source, publication venue, 

publication year, author/s, and objectives.  
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Table 8. Data extraction form 

Element Description 
Related 

RQ 

Title Title of the selected study RQ2 

Authors Authors of the selected study - 

Years The year the selected study was published - 

Source The collection in which the study was published - 

Publication type Type of publication, e.g., journal or conference paper - 

Keywords Keywords of the study All 

Abstract Abstract at the beginning of the study All 

Number of requirements  
Number of requirements used in the evaluation of the selected 

study 
RQ3 

Source requirements The source the requirements are obtained RQ4 

Requirement smell type The type of requirement smell detected RQ1 

NLP technique 

Different kinds of NLP techniques are employed to identify 

smells or quality indicators from software requirements if the 

study employs NLP 

RQ1 

Requirements smell 

identification techniques/ 

tool/method. 

Requirement smell detection techniques/tool/method reported 

in the study 
RQ5 

Performance measure The metrics used for measuring the performance RQ4 

Performance values The achieved performance measurement value RQ4 
 

Data synthesis techniques. To summarize and present the knowledge gained 

from the existing studies, tabulation, textual descriptions, and visual diagrams are 

used.  

3.2. Conducting the review 

This section discusses the execution of the systematic review. The developed review 

protocol is executed based on the plan. That is, a search is conducted, primary studies are 

selected, a data extraction form is filled, the quality of the studies is assessed and data 

synthesis is performed.   

3.2.1. Study search and selection  

The selection of the primary studies on requirement smell detection is limited to 

papers published in the span of thirteen years from 2010 up to 2023 by the scope of 

this study. The search is made on the five digital libraries: ACM digital library, 

Springer, IEEE Xplore, Google Scholar, and Science Direct.  The appropriate search 

query is applied to each database and the search result is recorded in a spreadsheet 

and the reference management tool Mendeley.  

Repetitive articles and publications that are not related to the subject area are 

removed from screening. Next, the papers were distributed to two reviewers, and the 

screening was performed based on the title and abstract of the papers. At this stage, 

the application of inclusion and exclusion criteria has resulted in candidate papers for 

analysis. The papers are downloaded and the full text is reviewed by each reviewer 

independently. Journal and conference articles that are found irrelevant by both 

reviewers are discarded. The reviewers resolved most of the conflicts through 

consensus. In a few instances, the third reviewer is involved in resolving the 

disagreement. For some papers full text is not available and hence such papers are 
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rejected from the study. Papers that are just reviews and do not make any kind of 

evaluation of the proposed solutions are not included in the study. Papers that deal 

with smell detection on different form requirements (for instance, goal modeling [14], 

and use case descriptions [13]) are also removed. There are also papers removed after 

quality assessment.  Two papers are added to the selected paper list after following 

backward and forward snowball sampling guidelines for SLR in software engineering 

[67] on the eligible seventeen papers. Nineteen studies were finally selected from the 

five electronic databases. Fig. 1 displays the final result of the selection process. 

 

 
Fig. 1. PRISMA flowchart showing selection and inclusion of the studies in the review 

3.2.2. Study quality assessment  

The quality assessment of the papers is executed based on the predetermined quality 

assessment criteria. Quality assessment rate 1 indicates that the corresponding quality 

assessment question was answered, whereas 0 indicates the corresponding quality 

assessment was not answered, and 0.5 indicates the corresponding quality assessment 

question was answered partially. Then the threshold is decided to be 5 to show that 

the candidate study has fulfilled more than half of the quality assessment criteria. 

Therefore, studies with a total quality assessment score of less than 5 were excluded 

from this SLR. The quality scores of selected papers are shown in Table 9. Each of 

the quality assessment questions has received more than half responses that favor the 

assessment criteria. QA4 has received the highest score (92.11%) among the criteria. 

Records identified from*: 
IEEE (n = 112) 
ACM (n = 2, 619) 
Springer (n = 2, 697) 
ScienceDirect (n= 1, 295) 
Google Scholar (n=7, 573) 
Registers (n = 0) 

Records removed before screening: 
Duplicate records removed (n = 354) 

Records marked as ineligible by 
automation tools (n = 0) 

Records removed for other reasons (n = 0) 

Records screened 
(n = 13,942) 

Records excluded** (n = 13, 907) 
Phase 1 & 2 (n = 9, 132) 
Phase 3 (n =  1, 089) 
Phase 4 (n = 3, 690) 

Reports sought for retrieval  
(n = 28) 

Reports not retrieved 
(n = 0) 

Reports assessed for eligibility 
(n = 28) 

Reports excluded: 
Found irrelevant after full-text review (n = 2) 
Full-text unavailable (n= 2) 
Excluded after quality screen (n = 3) 
Other reasons (n = 4) 
 

Studies included in review 
(n = 19) 
Reports of included studies 
(n = 19) 
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That is almost all selected studies have made some kind of evaluations and 

discussions on the study results. Some studies fail to classify the detected requirement 

smells resulting 65% quality score for QA7. Quality score of 71.05% is registered for 

QA3 as some studies fail to describe the methodology followed clearly. The quality 

score of other quality assessment criteria can be viewed in Fig 2.  

3.2.3. Data extraction and synthesis 

The data extraction process was executed considering the parameters presented in 

Table 8 (Data extraction form) to find information important to answer the research 

questions. Thematic analysis [68], an approach based on relationships and recurring 

patterns, was used to synthesize the identified themes related to requirements 

validation. Thematic analysis, which relies on relationships and recurring patterns, 

was employed to mingle the discerned themes concerning requirements smells using 

the procedures stated in [68].  

 
Fig. 2. Percentage scores for the quality assessments of the studies 

Table 9. Studies and their quality scores 

Study ID QA1 QA2 QA3 QA4 QA5 QA6 QA7 Total 

P1 1 1 0.5 1 0 1 1 5.5 

P2 1 1 1 1 1 1 0 6 

P3 0.5 1 1 1 1 0 1 5.5 

P4 1 1 0.5 1 1 0.5 0 5 

P5 1 0.5 1 1 1 1 1 6.5 

P6 1 0.5 0.5 1 0.5 1 0.5 5 

P7 1 0.5 1 1 1 1 1 6.5 

P8 1 1 1 1 1 1 0 6 

P9 0.5 1 0.5 0.5 1 0.5 1 5 

P10 0.5 1 1 1 0.5 1 0 5 

P11 1 0.5 0.5 0.5 1 1 1 5.5 

P12 0.5 1 0.5 1 0 1 1 5 

P13 1 1 0.5 0.5 0 1 1 5 

P14 0.5 1 1 1 1 0 1 5.5 

P15 0.5 0.5 1 1 1 1 0 5 

P16 1 1 0.5 1 1 1 1 6.5 

P17 1 0.5 0.5 1 0 1 1 5 

P18 0.5 0.5 0.5 1 1 1 1 5.5 

P19 1 0.5 0.5 1 1 1 0 5 
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Each select paper was carefully scrutinized to understand the topics very well 

and then the information that answers the research questions was extracted and coded. 

Subsequently, the codes were translated to hierarchical themes, the relationship 

among themes was investigated and finally, the trustworthiness of the interpretations 

was assessed and approved. Two reviewers worked independently in the extraction 

of the data independently using the thematic analysis procedures. While merging the 

results whenever there was disagreement an invited reviewer was involved. Table 10 

reports the final selected primary studies that were used in this review with their 

publication venue/type, year, and source. The organizational structure of most 

selected studies was almost similar, they first dealt with the purpose of software 

requirement then they dealt with the problem with quality of requirement or smells 

finally most of them tried to suggest their researched solution. 

Table 10. Selected Studies within their Information 
Paper 

ID 
Title Year 

Paper 
venue 

Publication 
type 

Reference 

P1 
NERO: a text-based tool for content annotation and detection 

of smells in feature requests 
2020 IEEE Conference [38] 

P2 
A methodology for the classification of quality of 
requirements using machine learning techniques 

2015 
Science 
Direct 

Journal [16] 

P3 
Application of machine learning techniques to the flexible 

assessment and improvement of requirements quality 
2020 Springer Journal [61] 

P4 
Using NLP to detect requirements defects: an industrial 
experience in the railway domain 

2017 Springer Journal [53] 

P5 
Rapid requirements checks with requirements smells: two case 

studies henning 
2014 ACM Journal [4] 

P6 
Detecting requirements smells with deep learning: 
experiences, challenges and future work 

2021 IEEE Journal [39] 

P7 Rapid quality assurance with requirements smells 2017 
Science 

Direct 
Journal [37] 

P8 
Quality assessment method for software requirements 
specifications based on document characteristics and its 

structure 

2015 IEEE Conference [56] 

P9 
Ambiguity detection: towards a tool explaining ambiguity 
sources 

2010 Springer Journal [57] 

P10 
On the ability of lightweight checks to detect ambiguity in 

requirements documentation 
2017 Springer Journal [58] 

P11 
Automated smell detection and recommendation in natural 
language requirements 

2023 
Google 
Scholar 

Journal [8] 

P12 
Classification and prioritization of requirements smells using 

machine learning techniques 
2023 IEEE Conference [17] 

P13 
A Method of ambiguity detection in requirement 
specifications by using a knowledge dictionary 

2022 
Science 
Direct 

Conference [60] 

P14 
Ambiguous software requirement specification detection: an 

automated approach 
2018 IEEE Conference [53] 

P15 
Using domain-specific corpora for improved handling of 
ambiguity in requirements 

2021 IEEE Conference [54] 

P16 
The design of sree – a prototype potential ambiguity finder for 

requirements specifications and lessons learned 
2013 Springer Conference [59] 

P17 
Score-based automatic detection and resolution of syntactic 
ambiguity in natural language requirements 

2020 IEEE Conference [55] 

P18 
Analysing anaphoric ambiguity in natural language 

requirements 
2011 Springer Journal [64] 

P19 
Automated handling of anaphoric ambiguity in requirements: 
a multi-solution study 

2022 ACM Conference [65] 
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The distribution of the selected papers over the digital libraries is shown in  

Fig 3. The majority of the papers (69%) are from Springer and IEEE.  
 

 
Fig. 3. Selected studies within their source 

The distribution of the studies extracted from the five databases over the years 

(2010-2023) is shown in Fig 4. The increase in the number of studies over time 

depicts the attention given to requirement smells.  
 

 
Fig. 4. Distribution of selected studies over the years 

The word cloud formed by taking the titles of selected studies using 

https://tagcrowd.com is shown in Fig 5. Non-common English words repeated at 

least twice appear in the diagram. The word cloud shows the concepts focused on by 

this study and it helped us to shape the title and keywords of the study.  
 

 
Fig. 5. Word cloud from the titles primary studies 

4. Result and discussions 

This section presents the results of the systematic literature review, in which nineteen 

(19) studies have been discussed to respond to defined research questions.  

4.1. Requirement smell types 

RQ1: What type of requirement smells are most commonly detected by the selected 

studies?  

https://tagcrowd.com/
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Different kinds of requirement smells are considered by the selected studies and 

needless to say each smell has its own undesirable impact on the activities of the 

requirements and software development lifecycle. Most of the selected studies 

introduced an automated detection of requirement smells or quality problems. After 

fetching requirement smells detected from the selected papers we have grouped them 

into five categories: morphological, lexical, analytical, relational, and incompleteness 

& language requirement smells. The detection mechanism may target specific 

requirement smell or multiple smells.  For instance, P15 is dedicated to the detection 

of speculative sentences while P2 is involved in the detection of many types of smells.  

As shown in Table 11 most of the studies are able to detect requirement smells from 

more than one requirement smell category. Especially, P1, P2, P3, P4, P8 and P11 

are able to detect smells from three or more requirement smell groups. Many studies 

are dedicated to only one type of the requirement smells፡ P6, P10, P13, P14, P15, 

P17, P18, & P19.  

 
Fig. 6. Category of detected requirement smells by the selected studies 

Fig. 6 shows the number of studies against the categories of the requirement 

smells. Lexical requirement smells are addressed by all selected studies. The main 

reason could be lexical requirement smells are a direct manifestation of natural 

language problems. On the other hand, relational requirement smells are the least 

studied group of smells. To detect relational requirement quality problems, more than 

a word, phrase or statement has to be scrutinized as relational requirement smells 

consider more than one statement.  

Considering individual smells, we have identified the most frequently detected 

requirement smells. For this purpose, we have grouped smells that have the same 

meaning but are described in different wordings. For instance, the use of coordinators 

in different studies is described as coordinating conjunction, connective terms, non-

atomic requirements, or the use of multiple connectors. All of them describe 

requirement amalgamation (describing more than one requirement in a single 

statement) [9]. Statements should include a single requirement with no use of 

conjunctions that describe multiple requirements. Fig. 7 shows the top six frequently 

detected requirement smells by the selected studies. Ambiguity is detected more than 

twenty times. There are studies that have detected more than one type of ambiguity: 

P1, P4, P9, P15 & P17. The use of coordinators, vague pronouns, non-verifiable 

terms, passive voices, and subjective languages are the next smells in the rank. 



 93 

Table 11. Detected requirement smells collected from selected studies 

Paper Requirement smell type 
Morpho-
logical 

Lexical Analytical Relational 
Incompleteness 
and language 

P1 

Vagueness, weakness, generality, 
coordination ambiguity, referential 
ambiguity, passive voice, missing 
description, missing condition, 
unreadability, partial content 

x x x  x 

P2 

Ambiguous expression, verbal tense 
and mood, connective terms, high 
dependencies of a requirement, design 
terms, domain terms, incomplete 
listing/incompleteness expressions, 
degree of nesting, punctuation, too 
many wording/paragraphs, imprecise 
terms, speculative expression, 
unreadability 

x x  x x 

P3 

Too many paragraphs, an excessive 
number of words, unreadability, 
incorrect punctuation, use of multiple 
connectors, use of negative 
expressions, use of pseudocode and 
control-flow expression, non-explicit 
requirements (implicit),  ambiguous, 
incomplete enumerations, speculative 
expressions, justifications in the 
requirement (rationale), requirement 
expressing a solution (design),  do not 
have at least one imperative verb 
(imperative), the non-assertive 
requirement (conditional), use of 
passive voice, use of a large number 
of domain concepts,  too many 
domain verbs  

x x x   

P4 

Anaphoric ambiguity, coordination 
ambiguity, vague terms, use of modal 
adverbs, passive voice, excessive 
length, missing condition, missing 
unit of measurement, missing 
reference, undefined terms 

x x   x 

P5 

Ambiguous adverbs & adjectives, 
vague pronouns, subjective language 
smell, comparative phrases, 
superlatives, negative statements, 
non-verifiable terms, loopholes smell, 
incomplete references  

 x   x 

P6 
Subjective language, ambiguous 
adverbs and adjectives, superlatives, 
comparatives, and vague pronouns 

 x    

P7 

Subjective language, ambiguous 
adverbs, and adjectives, loopholes, 
open-ended, non-verifiable terms, 
superlatives, comparatives, negative 
statements, vague pronouns, 
incomplete references  

 x   x 
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Table 11 (c o n t i n u e d) 
Paper Requirement smell 

type 
Morpho-
logical 

Lexical Analytical Relational 
Incompleteness 
and language 

P8 

Ambiguous word, 
abbreviation, acronym, 
subjectivity, optional, 
modal verb, more than 
one verb, pronoun, 
demonstrative adjective, 
quantifier, coordinating 
conjunction, 
punctuation  

x x   x 

P9 

Lexical ambiguity, 
syntactic ambiguity, 
semantic ambiguity, 
pragmatic ambiguity, 
vagueness, language 
error, passive voice, 
ambiguous adjectives 
and adverbs 

 x x   

P10 Ambiguity   x    

P11 

Non-atomic 
requirement, incomplete 
requirement, not 
requirement, incomplete 
condition, incomplete 
system response, 
passive voice, incorrect 
order requirement, 
coordination ambiguity, 
not precise verb 

 x x  x 

P12 

Superlative phrase, 
comparative phrase, 
subjective language, 
vague pronoun, 
loopholes, ambiguous 
adverb adjective stive, 
negative statements, 
open-ended non-
verifiable term, passive 
voice  

 x x   

P13 Ambiguity  x    

P14 Ambiguity  x    

P15 
Coordination ambiguity 
and prepositional-phrase 
attachment ambiguity 

 x    

P16 

Use of continuance, use 
of coordinator, use of 
directives, incomplete 
(missing), use options, 
use of the pronoun, use 
of quantifier, use of 
vague terms and 
symbols, weakness, use 
of plural nouns 

 x   x 

P17 
Coordination, 
attachment, & analytical 
ambiguities 

 x    

P18 
Nocuous anaphoric 
ambiguity 

 x    

P19 Anaphoric ambiguity  x    
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Fig. 7. Frequently detected requirement smells 

On the other hand, many requirements are detected by just a single study. Some 

of such requirements are missing unit of measurement – P4, high dependencies of a 

requirement – P2, missing description – P1, undefined terms – P4, incorrect 

requirement order – P11, and use of plural nouns – P16.  Moreover, we have found 

smells like user interface details smells [69], terms that imply totality (for example 

“all”, “always”, “never”, and “every”) [9], test clones, and long tests [70] from other 

literature but are not addressed by any of the selected studies.  

4.2. Requirement smell identification techniques 

RQ2: What are the existing requirements for smell identification techniques?  

The requirement smell detection techniques reported by the selected studies can 

be grouped into five as natural language processing, machine learning, natural 

language processing, and machine learning, rule-based, and knowledge dictionary-

based techniques. NLP-based techniques involve processing or linguistic analysis of 

textual requirements to find smells from the requirements using detailed handwritten 

rules [71].  Machine learning techniques take a raw set of requirements, possibly pre-

annotated by experts, and emulate experts by learning from the input data [61]. If the 

approach applies explicitly stated NLP and ML tasks, we grouped the detection 

technique as NLP and ML. If a selected paper applies IF-THEN-like rules to pinpoint 

a smell that is rule rule-based technique. A knowledge dictionary built from transitive 

verbs and their objects is also used to detect for detecting ambiguities P13. 

Most of the required bad smell detection approaches employed NLP techniques 

such as POS tagging, morphological analysis, dictionary-based, lemmatization, 

parsing, etc., see Fig. 8. Selected Studies that employee NLP include P1, P4, P5, P7, 

P11, P15, and P17. Natural language processing techniques together with machine 

learning techniques are also applied in some studies P6, P12, P18 & P19. Rule-based 

techniques are applied to detect poor quality requirements: P8, P9, P10 and P16. 

Furthermore, machine Learning approaches were introduced by P2, P3, and P14 for 

the assessment and classification of requirement quality to check whether the 

requirement has a good or bad quality. These techniques use requirements written in 

natural languages as an input for the learning algorithms but no explicit NLP 

techniques are reported in the papers. Deep learning algorithm also applied by P6 for 

detection of multiple classes of requirement smells. 
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Fig. 8. Requirement smell detection mechanism 

 

 
Fig. 9. NLP Techniques and frequency of application 

The NLP techniques were used for the identification of quality defects and 

ambiguity, classification and clustering of large collections of natural language 

requirements, and so on. Fig. 9 shows the most commonly used NLP techniques in 

the selected study. As it is possible to observe, POS tagging is used by many selected 

studies i.e., it is used in nine different instances or selected studies applied it. POS 

tagging which involves labeling words in a statement with their respective POS tags 

is the most significant text pre-processing task for NLP activities [72]. Tokenization, 

lemmatization, consistency parsing, dictionaries, and sentence splitting are the next 

most repeatedly used NLP techniques in the selected studies.   

4.3. Datasets for requirement smells 

RQ3: How many requirements are used to assess and evaluate the proposed 

approaches in the selected studies?  

The requirements collected from software projects are used as a dataset in the 

selected studies. We consider here the total number of requirements that have been 

used by each of the selected studies. Some of the studies used a small number of 

requirements (10, 100, 126, 293, and 398) to evaluate the performance of their 

approaches. Other studies reported the number of datasets used in the range of 1000 

to 26, 829. Fig. 10 shows the number of requirements used in the studies. We have 

used a logarithmic scale to resolve visualization issues because a few points of data 

are much larger than the others [21]. The advised number of requirements depends 
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on the smell detection technique applied. Generally, a large number of datasets are 

recommended if machine/deep learning techniques are used.  

The datasets used by the selected studies could be open source which are 

available freely to the public or are closed sources which are mostly collected from 

industrial projects and are not open to access.  Except for one paper which failed to 

mention the source of the data P17, other papers have used data from open source P1, 

P2, P3, P7, and P18, closed source P4, P5, P8, P9, P10, P11, P13, P14, P15, P16, P17, 

and P19 or from both sources P6 and P12. 64% of the primary study used 

requirements whose access is restricted (Fig. 11). The availability of free open-source 

datasets on requirement smells is vital to conducting more research in the area 
 

 
Fig. 10. Number of requirements used in the selected studies 

 

 
Fig. 11. Sources of datasets 

4.4. Performance of required smell detection techniques   

RQ4: What is the overall performance of requirement smell detection mechanisms? 

A review is made on the performance of requirement smell detection techniques 

as reported by the selected papers. The performance of the proposed solutions is 

measured using accuracy, precession, recall, F-measure, and Spearman’s ρ. 

Precession and recall are the most frequently used performance measures, (Fig. 12). 

Some papers have employed more than one measure.  Spearman’s ρ measure which 

measures the strength of the relationship between two variables just like Pearson 

correlation is used at one instance P1. The performance average value ranges from 

50% accuracy P8 to 100% for precession P13 and 100% recall P13 and P19.  We 

don’t think comparing the results of the studies is appropriate as each of the studies 

used a different method and detected different requirement smells. 
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Fig. 12. Performance measures 

4.5. Tools for requirement smell detection 

RQ5: What are the tools/libraries/APIs used or produced in the selected study? 

Authors of the selected papers have employed different types of Computer 

Aided Software Engineering (CASE) tools, see Table 12.  We have categorized the 

tools into four Requirement Quality Assessment (RQA) tools, ML tools, NLP tools, 

and other tools. RQA tools are used to assess the quality of requirements and possibly 

to provide a proposal for resolution. ML tools implement artificial intelligence 

algorithms that allow a computer to understand and improve without human 

intervention. NLP tools enable to process of natural languages to pave the way for a 

computer to interpret, manipulate, and comprehend human languages. Tools that 

couldn’t be categorized in either of the three categories of tools are termed other tools.  

Table 12. Tools used for required smell detection 

Tool 

category 
Tools 

NLP tools 

spaCy [73], Stanford CoreNLP [74], AllenNLP [75], DKPro [76], GATE [77], Genia 

Tagger [78], jWeb1T library [79], JWPL library [80], NLTK package [81, 82], Oxford 

Advanced Learner’s Dictionary [83], QuARS tool [84, 85], RapidMiner [86], Sentence 

Boundary, Detector [87], Stanza [88], Stanford CoreNLP [89, 90], WordNet tool [91], 

WS4J library [92], Stanford, Parser [74] 

RQA tools 

SREE [59], Paska [8], Rimay [93], knowledge dictionary-based tool [49], ambiguity 

detector2 [57], ambiguity detector1[63], ConQAT [87, 94], NASA ARM tool [95], 

NERO [38], RQA for extract quality metrics that measure desirable properties of 

requirements [45], SMELL tool [4], Smella [37], Tactile check [58] 

ML tools Scikit-learn [96], WEKA [97] 

Other tools Stanford Tregex API for Java [98], Wikipedia 

As shown in Fig. 13 most studies employ NLP tools (53%) and RQA tools 

(37%). A limited number of machine learning and other tools are used. Even though 

requirement engineering is the least tool-supported software development phase, a 

number of tools are utilized for requirement smell detection.  
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Fig. 13. Types of tools used for requirement smell detection 

5. Threats to the validity 

The cogency or accuracy of research including systematic literature review is 

negatively influenced by validity threats. The four common categories of threats to 

the validity of a research outcome are conclusion, internal, construct, and external 

validity [99]. In this research, to evaluate and allay the four types of threats to validity, 

guidelines specifically tuned up for SLR in software engineering are used [100]. We 

illustrate the threats in terms of the four categories of validity.  

External validity on SLR includes restricted time span, incomplete research 

information in the primary study, paper/database inaccessibility, and primary study 

generalizability [99]. The SLR investigates papers published in thirteen years of time 

span and the starting time period goes back to three years from the requirement smell 

introduced in the doctoral symposium [10]. Each of the selected studies contains 

information that addresses more than 60% of the research questions and this 

addresses the primary study's generalizability and incomplete research information 

in the primary study. The application of the snowball sampling method and using 

customized search strings reduced inadequate primary studies. The papers are 

obtained from well-known literature repositories which are frequently used in SLR 

research in software engineering [2, 18-20].  

Internal validity is about a cause-and-effect relationship established in the study 

supported by evidence [100]. As an SLR research, this research is not concerned 

about the statistical causal relationship of variables in requirement smells. However, 

SLR internal validity threats may arise from improper research methods and analysis 

and coding process researcher biases. To overcome the challenges, the SLR research 

method which is specifically customized for software engineering [22, 68, 101] is 

followed and data is collected from well-known databases. To include as many 

primary studies as possible we have applied forward and backward snowball 

sampling. The research bias is reduced as two experts are involved in the analysis 

and conflicts are resolved by inviting a third reviewer.  

Construct validity deals with whether the research made the right/intended 

measures for the concepts under study [100, 102]. In this study, construct validity is 

maximized by recording all results after a full paper review in Excel by following the 

review protocol. Inappropriate research questions are one of the threats to construct 



 100 

validity [99]. However, the research questions are evaluated for the characteristics 

they should possess [103] before structuring the research and reporting.  

If a study has conclusion validity, data extraction and interpretation are made 

properly and hence the data collection process can be repeated resulting in the same 

result [99]. The conclusion validity is enhanced as we have used systematic review 

guidelines for software engineering [22, 68] to review the primary studies. Albeit 

complete elimination of bias is not feasible, the involvement of at least two reviewers 

for each paper and the invitation of the third reviewer to resolve any disagreement 

reduces biasedness. The use of Microsoft Excel and Mendeley tackled the threat of 

duplication. Misclassification of primary study is another threat to conclusion validity 

which is addressed by following the guidelines stated at [68]. 

6. Future research directions  

Developing software that is highly qualified and competent requires good quality 

requirements. Writing requirements using textual descriptions makes specifying good 

quality requirements challenging. Identifying ill-defined requirements written in 

natural language is difficult as human languages increase the complexity and effort 

required for software development [10, 39, 89, 104]. Hence, many automated tools 

and techniques are proposed in the literature. Findings indicate that existing 

approaches are not enough to identify multiple types of requirements smells. So, 

taking into account the above consideration, we want to highlight some issues related 

to requirement smell detection that could be exploited in the future.  

• Utilize machine learning for smell detection – Studies on requirement 

smell detection should broadly use machine learning and deep learning techniques 

since the techniques are found to be effective in solving many types of problems. In 

fact, 36.84% of the selected studies have used machine learning techniques. 

However, since machine learning and natural language processing are good 

companions to solve requirement engineering problems [71] and as the requirements 

are usually written in natural languages [10], extensive use of the techniques will 

enable finding out requirement quality indicators that are not easy to detect by using 

traditional methods.  

• Dataset for requirement smell – One of the reasons for underutilization and 

poor performance of machine learning techniques is the lack of sufficient and quality 

datasets in the area of requirement engineering in general [105]. Defining annotation 

rules, unbalanced distribution of samples, and very high effort for data processing 

and data quality improvements are some of the challenges that hinder the application 

of ML. There are attempts to produce datasets in requirement engineering [106]. 

However, there is no known dataset for requirement smells. Producing datasets on 

requirement smells will facilitate different research in the area.  

• Requirement smell detection and type of requirements – Most studies 

focus on requirement bad smell detection. Requirements can be written at various 

levels of detail and as such requirements can be categorized as business, user, and 

system requirements [107].  The way each type of requirement is written is different. 



 101 

Consequently, a different way of smell detection approaches should be proposed 

based on the type of requirements.  

• Types of requirement smells – Types of requirement smells or quality 

indicators need further investigation as it may lead to new smell discovery. A catalog 

of required smells needs to be prepared and the smells need to be defined and 

classified based on their relatedness.  

• Impact of requirement smells on software project – The influence of each 

requirement on the later phases of SDL and software projects, in general, needs to be 

investigated using exhaustive case studies. That is an empirical study on the 

impact/evolution of smells on the later stage of the software development life cycle 

enables us to know the exact defilement the smells cause on software projects and the 

software product itself in the same as it is studied for design smells in [108].   

• Prioritizing requirement smells – Bad smells are not expected to have a 

similar impact on software projects. Hence, there shall be a way to prioritize 

requirement smells based on different criteria and this will help to take appropriate 

action and to improve the quality of software  

• Beyond detection of the requirement smells – The investigated studies 

focus on requirement smell detection mechanisms keeping in mind that once the 

smells are detected, they can be manually corrected. However, for large and complex 

software systems, automatic smell resolution solutions need to be proposed. Research 

should be conducted to find efficient ways to resolve requirement smells.  

7. Conclusion  

Software development starts with the discovery of requirements. Poor quality 

requirements or requirements with smells cause the software project to fail. Hence, 

ensuring requirement quality at the earliest possible stage is an important activity in 

the process of software development. A requirement smell detected at the 

maintenance phase may cost 200% more than detecting it at the requirement 

specification phase. This literature review summarizes existing studies obtained from 

five known databases and published from 2010 to 2023. The selected studies focused 

on proposing NLP, machine learning, rule, and knowledge-based requirement smell 

detection solutions. Precession, accuracy, and recall are evaluation metrics used to 

evaluate most of the bad smell detection tools and the performance measures vary in 

the range of 50% to 100%. The detection mechanisms employed CASE tools like 

requirement quality analyzer tool, machine learning tool, and NLP tools. Various 

types of requirement smells are detected in the selected primary studies. Requirement 

problems that are related to the ambiguity of words, phrases, and statements are given 

the highest attention. Finally, the role of machine/deep learning for requirement smell 

detection as well as proposing requirement-specific smell detection types needs to be 

investigated. Furthermore, tasks such as classifying and prioritizing requirement 

smell and providing a requirement smells dataset are assignments for software 

engineering researchers in industry and academia.  
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