
 78

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 24, No 4

Sofia • 2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0037

Software Requirement Smells and Detection Techniques: A

Systematic Literature Review

Esubalew Alemneh1, Fekerte Berhanu2
1ICT4D Research Center, Bahir Dar Institute of Technology, Bahir Dar University, P.O.Box 26, Bahir

Dar, Ethiopia
2Department of Software Engineering, Kombolcha Institute of Technology, P.O.Box, Kombolcha,

Ethiopia

E-mails: esubalew.alemneh@bdu.edu.et fekerlight@gmail.com

ORCIDs: https://orcid.org/0000-0002-1970-3537 https://orcid.org/0009-0006-2304-3443

Abstract: One of the major reasons for software project failure is poor requirements,

so numerous requirement smells detection solutions are proposed. Critical appraisal

of the proposed requirement fault detection methods is crucial for refining knowledge

of requirement smells and developing new research ideas. The objective of this paper

was to systematically review studies that focused on detecting requirement

discrepancies in textual requirements. After applying inclusion and exclusion criteria

and forward and backward snowball sampling techniques using database-specific

search queries, 19 primary studies were selected. A deep analysis of the studies shows

that classical NLP-based requirement smells detection techniques are the most

commonly used ones and ambiguity is the requirement smell that has the utmost

attention. Further investigation depicts the scarcity of open-access datasets, and

tools employed to detect requirement faults. The review has also revealed there is no

comprehensive definition and classification of requirement smells.

Keywords: Requirements, Software requirement specification, Requirement smells,

Ambiguity, Requirement smell detection, Natural language processing.

1. Introduction

Requirement engineering is the process of eliciting, analyzing, specifying, validating,

and managing requirements of large and complex software systems, and as such it

comprises critical activities in software engineering [1, 2]. It is an initial stage of the

Software Development Life Cycle (SDLC) to create high-quality software

requirements, which eventually should result in high-quality and cost-effective

software delivered in time. It provides an appropriate mechanism to understand and

analyze customer needs, specify and validate the specifications, and manage the

requirements. Software requirements are a description of what the system should do

(functional requirements) and the qualities the system should possess while offering

the functions (non-functional requirements) [2-5] The description of the intended

mailto:esubalew.alemneh@bdu.edu.et
mailto:fekerlight@gmail.com
https://orcid.org/0000-0002-1970-3537
https://orcid.org/0009-0006-2304-3443

 79

purpose and environment of software under development is presented in one of the

significant outputs of the software development process which is Software

Requirements Specification (SRS) document. SRS is a specification and elucidation

of software requirements that are supposed to satisfy customer needs and increase

product quality.

During software development, the quality of specified requirements has a direct

impact on the success and failure of the software development project [6-8].

Therefore, software requirements should assuage the characteristics of individual

requirements as well as requirements together in an SRS document [9, 10].

Developing qualified software requires well-written software requirements with no

indicator of defects as the quality of requirements has a great impact on the success

of the software project [2, 4, 10]. Hence, to produce quality software, problems with

requirements must be detected at the earliest stage of SDLC and removed without

further ado. The later the requirement errors are identified, the more difficult and

expensive it becomes to correct them [10]. For instance, 11] found that requirement

defects are 10 to 200 times more expensive to fix once they have infiltrated the system

compared to being detected at the initial stage of development. In large-scale software

development projects, requirement problems gradually evolve to design, code and

test case smells, causing unprecedented risk in software development projects.

Indicators of software requirement defects or quality problems in software

requirements are known as requirement bad smells or just requirement smells [10].

Since, poor quality requirements are reasons for software project failure, ensuring

requirement quality is an important activity in the software development process [11].

Despite initiatives and efforts to write quality requirements and SRS documents, the

software industry is dodged with poor requirements. Literature has shown that 40%

to 60% of smells in software development phases are because of poor quality

requirements [3, 12].

Several studies have been conducted on identifying requirement smells in both

textual requirements and requirements written in other forms. To detect bad smells

from the use case description S e k i, H a y a s h i and S a e k i [13], proposed an

automated bad smell detection approach. A way to detect requirement smells from

linguistic goal models is proposed in [14] and the impact of requirement smells on

test case design is studied in [15]. Various techniques ranging from traditional

dictionary-based detection to advanced machine learning techniques [16] have been

applied for smell detection. For instance, a multi-class multi-label requirements smell

classification is proposed using deep learning [17]. Besides studies that aim at the

analysis and improvement of requirement quality, numerous studies from academia

and industry are devoted to detecting and classifying requirement smells and

assessing their impact.

In this study, we appraise the outputs of the research on requirement smells and

detection approaches via Systematic Literature Review (SLR). The SLR is vital to

refine the knowledge on requirement smell, to develop new research ideas, to gain

critical skills in synthesizing existing literature, and to combine findings from

different studies and discover new findings. Even though plenty of SLRs are available

on code smells [18, 19], and test smells [20], as far as our knowledge there is no SLR

 80

on requirement smells. However, a systematic mapping study was conducted in [21]

to create and structure research areas in relation to requirement smells. The study

provided an overview of requirement smells in general terms. Moreover, in [7] a

classical literature review on analyzing the quality of textual requirements using

Natural Language Processing (NLP) was conducted. However, the focus of the

review was on tools to analyze requirements using quality models.

This systematic literature review aimed to identify different kinds of

requirement smells and to assess the existing smell detection techniques and tools

on textual requirements using guidelines formulated by K i t c h e n h a m

and C h a r t e r s [22] and PRISMA reporting guidelines for software

engineering [23]. The SLR is registered at OSF REGISTRIES and its Peer

Review of Electronic Search Strategies (PRESS) with registration

(DOI: 10.17605/OSF.IO/VZ83P).

The rest of the paper is organized as follows. Section two explains the

background on requirement smells and techniques to detect the bad smells. Next, the

research methodology is presented in detail. Results and discussions are elucidated

in section four. Threats in the validity and future research direction are discussed in

section five and six, respectively. Finally, conclusions are drawn in section seven.

2. Background

2.1. Requirement smells

In software engineering, “bad smell” refers to symptoms that show something is

wrong with an artifact produced during the software development process or bad

practices in developing software [24]. Most literature attributes bad smell in software

engineering to computer programs [18, 25-27]. However, there are bad smells on

requirements [4], on architecture [28], on design [29], and on testing [20, 30]. In some

literature, bad smells together are termed software smells [31, 32]. Bad smells are

also viewed from another dimension as usability smells [33], services

antipatterns/smells [34], aspect-oriented system smells [35], object-oriented system

smells [25], software product line smells [36], configuration smells [26], etc.

However, even though bad smells can be classified based on different angles, the

smells can be traced back to problems in requirements, architecture, design, code, or

tests. All types of bad smells must be detected and removed with no exception.

Definitions of a software “smell” provided at [24] don’t address the requirement

small. The phrase “Requirement smell” was originally coined by [10] in 2013 and it

originates from code smell which was introduced by Fowler and Beck [27]. Since the

introduction of requirement smells, various definitions have been provided for

requirement smells by different authors from their perspectives. Table 1 provides a

consolidated list of definitions for requirement smells. A comprehensive and

agreeable definition for requirement smells is yet to come from scholars as the

existing definitions exclude some aspects related to ill-defined requirements. For

instance, [8] associates requirement smell to functional requirements only whereas

[37] states that only quality indicators that are evolved to defects are termed

requirement smells.

https://doi.org/10.17605/OSF.IO/VZ83P

 81

Table 1. Definitions of requirement smells

Definition of requirement smell Reference

Requirement smell is a concrete symptom of a requirement artifact’s quality defect in the

usage context of a certain activity
[10]

Requirement smells are indicators of a quality violation, which may lead to a defect, with a

concrete location and a detection mechanism
[37]

Requirement smells are quality problems in functional requirements that can lead to

defects at different levels of severity
[8]

Requirement smells or feature request smells are quality defects on requests/ requirements [38]

Requirement smells are concrete symptoms of a requirement artifact’s quality defect [4]

Requirement smells are quality violations in requirements or are defects in requirements [39]

Requirement smells as a specific symptom that can generate defects in a requirement [21]

Requirement smells are software requirements that suffer from imprecision, ambiguity,

and other quality issues
[40]

Generally, requirement smells are indicators of poor quality of software

requirements. We can say that a requirement has poor quality if the requirement does

not satisfy quality standards set at [3] and [9] or if the requirement doesn’t meet user

needs. Quality of requirements may be attributed to individual requirements or a

group of requirements altogether as presented in the SRS document (Table 2).

Table 2. Characteristics of individual requirements and set of requirements

Classification by Individual requirements Group of requirements in SRS

K a t a s o n o v

and S a k k i n e n

[41]

Complete, correct, unambiguous,

feasible, necessary, prioritized, verifiable,

concise

Complete, consistent, non-

redundant, traceable, organized,

conformant to standards

F e m m e r [10]

Necessity, implementation freeness, non-

ambiguity, completeness, singularity,

feasibility, traceability, verifiability

Completeness, consistency,

affordability, and boundedness

ISO/IEC/IEEE

29148 [9]

Necessary, appropriate, correct,

confirming, unambiguous, complete

(requirement level completeness),

singular, feasible, verifiable

Complete, consistent, feasible,

comprehensible, able to be

validated

Requirements may be written using natural language, structured natural

language (tables and diagrams), or using formal methods. Despite writing

requirements using natural language has proven advantages, natural languages are

inherently ambiguous, imprecise, and subject to misinterpretation. Formal language

effectively addresses ambiguity, but it is costly and it is not understood by most

stakeholders. Hence, most requirements (about 79%) are written in natural languages

[42].

Requirement smells can be categorized in a different way. A catalog of bad

smells in use case descriptions developed at [43]. Walia and Carver developed a

taxonomy of errors that may occur during the requirements phase by referring to 149

papers [44]. The errors are broadly categorized as people errors, process errors, and

documentation errors. Requirement quality can also be classified based on the

characteristics that interest developers/engineers or clients [45]. Validability,

completeness, consistency, and precision are concerns of clients while verifiability,

 82

modifiability, understandability, unambiguity, traceability, abstraction, and atomicity

are desirable properties of requirements as seen by engineers.

Table 3. Taxonomies of requirement smells

Smell category Smells

Morphological

requirement smells

Very long/short sentences, very long/short paragraphs, unreadability (long

words, long and complex sentences), excessive punction, lack of

punctuation, excessive use of acronyms, use of abbreviations

Lexical requirement

smells

use of copulative-disjunctive terms (alternative terms/phrases = non-atomic

requirement, optional, more than one verb, coordinating conjunction, use

of coordinator), excessive use of negative terms, too many control flow

terms, use of anaphorical terms (alternative terms/phrases = vague

pronouns, demonstrative adjective), use of imprecise or subjective terms

(alternative terms/phrases = subjective language, ambiguous adverbs and

adjectives, loopholes, open-ended, non-verifiable terms, superlatives,

comparatives, not precise verb, ambiguity (coordination, referential,

lexical, syntactic, semantic, pragmatic, attachment, analytical),

vagueness/vague terms and symbols, weakness, generality (not specific),

speculative expression, non-explicit requirements (implicit), use of modal

adverbs, use of quantifiers), use of design or technology related terms

(alternative terms/phrases = not requirement, use of pseudocode and

control-flow expression, requirement expressing a solution (design))

Analytical requirement

smells

Excessive use of imperative forms, not having at least one imperative verb

(imperative), usage of conditional mood or non-assertive requirement

(conditional), passive voice, excessive domain terms, alternative

terms/phrases (use of a large number of domain concepts too many, domain

verbs), rare use of domain terms

Relational requirement

smells

Excessive number of versions, too low or too high nesting, excessive

number of dependencies, too low or too high coupling of requirements

Incompleteness and

Language related

requirement smells

Incomplete requirement (alternative terms/phrases = incomplete references,

incomplete condition / missing condition, incomplete system response,

incorrect order requirement, missing description, partial content, incomplete

enumerations, justifications in the requirement (rationale), missing unit of

measurement, use of continuance, use of directives), undefined terms,

language error, use of plural nouns

K r o g s t i e and L i n d l a n d [46] proposed a requirement quality framework

that has four parts: syntactic quality (correctness of the language used to express the

requirement), semantic quality (validity and completeness of the requirements),

pragmatic quality (comprehensibility of the requirements by audience), and social

quality (level of agreement between stakeholders). However, the latter three groups

of quality are immeasurable in practice and evaluation can be made only heuristically.

Authors of [44] adapted the classification from [45] and organized textual

requirements into four groups based on requirement quality indicators. Requirement

smells can be classified into four categories which correspond to the four requirement

quality indicators as requirement smells are indicators of quality violation of

requirements [37]. Any requirement smell that doesn’t fit into the four categories

could be included in the fifth category which we named incompleteness and

language-related requirement smells (Table 3). We used the definitions and/or

descriptions provided at selected papers, to allocate the individual smells to the smell

categories. The classification is open to debate as few smells have overlapping

definitions, and some others conflict with each other.

 83

2.2. Smell detection methods

The primary issue with requirements quality is that they are written in natural

language, which lacks formal semantics. This makes them difficult to understand and

prone to ambiguity and vagueness [4, 25]. Moreover, the processes and tools used in

the requirement engineering process can affect the quality of requirements [47, 48].

Additionally, the majority of requirements originate from stakeholders who have

limited domain knowledge and have often conflicting needs [14, 18]. Customers

don’t tell all the requirements at the outset, rather they come with new requirements

after implementation. The problem may also come from the requirement engineer

due to a lack of experience in writing requirements or understanding customers’

needs. Requirement smells need to be detected as early as possible to minimize their

impact in subsequent phases of SDLC [21, 49] especially when the iteration is long

and feedback comes late [4]. This is because flaws in requirements cause software

project delays, reworks, and low customer satisfaction [40, 50]. Therefore, early

detection and removal of smells from requirement statements play its parts to produce

quality design, code, and test cases. Literature has shown that more than half of the

errors detected during software development happen in the requirement specification

stage [25, 36]. That is why the identification of requirement smells has a vital role

in the success of software projects by ensuring the quality of requirements [8, 27,

40, 51].

However, automatic requirement smell detection is very challenging in

comparison with smell detection at the coding and design phases as the latter involves

formal representations [35]. Hence, many requirements for smell detection

approaches depend on manual reviews at various levels of formality (informal,

formal, walkthrough, inspection, audit) [52]. However, it is not feasible to manually

review SRS documents of large and complex systems [4, 53]. Therefore, manual

review of SRS needs to be supported by automatic smell detection CASE (Computer

Assisted Software Engineering) tools. Various tools that employ different smell

detection techniques have been already proposed. Some requirement smell detections

rely on Natural Language Processing (NLP) [8, 37, 38, 54, 55] NLP-based techniques

involve analysis of the syntactic (arrangement of words) and the semantic (meaning)

characteristics of requirements written in natural languages. NLP techniques such as

the use of language models, Part-Of-Speech (POS) tagging, tokenization,

lemmatization, etc. have been reported in the literature.

Rule-based requirement smell detection technique is the other approach reported

in some papers [56-59]. In this method, rules are defined, usually manually, by

experts to detect one or more required bad smells. Then, the requirements or SRS

documents are evaluated against the rules. The other method is the knowledge

dictionary-based requirement smell identification technique [60]. In this method, a

dictionary is constructed manually from some language elements (e.g., from

transitive verbs and their associated object words [60]) and used for smell detection.

A huge effort due to extensive human involvement in the rule and knowledge-based

methods has forced scholars to look for other smell detection mechanisms.

Recent requirement smell detection techniques depend on Machine Learning

(ML) or Deep Learning (DL) techniques [16, 39, 61]. To boost the performance of

 84

such solutions classical NLP or text mining techniques are used in conjugation with

the solutions. Machine learning algorithms can classify/detect requirement smells

based on the rules and thresholds provided by the experts. There is literature that

reports the application of machine learning techniques for the assessment and

improvement of requirement quality [61] and for identifying requirement smells

[15, 62]. Decision Tree (DT), Feed-Forward Neural Network (FNN), K-Nearest

Neighbor (KNN), Logistic Regression (LR), Naïve Bayes (NB), Random Forest

(RF), and Support Vector Machine (SVM) are among machine learning algorithms

used for requirement smell detection [17, 63-65] Combining DL with conventional

NLP provides more robust, generalized and more precise prediction for requirement

smell detection [39]. However, utilizing ML/DL techniques for requirement bad

smell detection is hampered by insufficient requirement datasets.

3. Research method

The systematic literature review methodology proposed by K i t c h e n h a m and

C h a r t e r s [22] was strictly followed to conduct this SLR. The guideline is fine-

tuned specifically for performing SLR in software engineering. As per the guidelines,

planning, execution, and reporting are the main tasks in the review. This section

provides a complete overview of how the planning and execution steps are applied in

the research.

3.1. Planning review

In the planning stage, the objectives of the review are reiterated, research questions

are defined together with their respective motivations and review protocols are

developed and evaluated.

3.1.1. Review objectives and research questions

The main objectives of the study are to identify different kinds of requirement smells

and smell detection techniques. Moreover, the study aims to assess the performance

of the smell detection tools and the size of the dataset used in selected literature.

Table 4. Research Questions (RQ)

RQ Research question Motivation

RQ1

What type of requirement smells are

Most commonly detected by the selected

studies?

This question aims to know different kinds of

requirement smells that are detected by the

studies

RQ2
What are the existing requirements for smell

identification techniques?

With this question, we aim to assess and

understand the techniques for the identification

of requirement quality and smell

RQ3

How many requirements are used to assess

and evaluate the proposed approaches in the

selected studies?

To know whether the researchers have used a

small or large number of requirements to

evaluate their approach

RQ4
What is the overall performance of

requirement smell detection mechanisms?

This question intends to find out the best-

performing requirement smell detection

techniques

RQ5

What are the tools/libraries/APIs used or

produced in the selected study for requirement

smell detection?

This question intends to find out the tools,

libraries, or Application Programming Interfaces

(APIs) used for smell detection

 85

No SLR has been conducted so far on textual requirement smells and their

detection methods. To guide the overall direction of the systematic review process

Research Questions (RQ) presented in Table 4 are defined. Motivation for each

question is also provided.

3.1.2. Develop review protocol

Pre-defining review protocol is essential in a systematic review to reduce the risk and

possibility of research biases. The review protocol defines the procedures and

rudimentary research processes that are followed during the systematic review.

Development of a search strategy (digital libraries and search terms), establishment

of inclusion and exclusion criteria, formation of a quality assessment checklist,

development of data extraction tools, and identification of study synthesis techniques

are part of the definition of review protocol.

Digital libraries. The main databases selected to execute the search string are

shown in Table 5. We selected those sources because the databases are prominent

academic databases and the quality of software engineering and computer science-

related papers published in the databases are proven to have good quality [66].

Table 5. Digital libraries used in search process

Source Link

ACM Digital Library https:/dl.acm.org/

Springer Link https:/link.springer.com/

ScienceDirect https:// ScienceDirect.google.com/

Google Scholar https:/scholar.google.com/

IEEE Xplore https:/ieeexplore.ieee.org/

Search query. We have used a search string that includes a set of keywords

related to software requirements smell and quality. It helps in the completeness of the

search studies. After selecting different string options, “AND” and “OR” operators

are applied to interconnect those keywords or strings. Then the following string is

selected as a general search string:

(“Software requirement” OR “requirement”) AND (“smell” OR “bad smell” OR

“quality” OR “ambiguity”) AND (“detection” OR “identification” OR “analysis”)

The search string is customized for databases that suggest different query

formats as depicted in Table 6.

Table 6. Search string for the databases

Database Search string

IEEE
((software requirement smell) OR requirement smell) OR requirement quality) OR

(requirement bad smell) AND (detection OR identification OR analysis))

Springer

“requirement” AND “smell” OR “software” AND “requirement” AND “smell” OR

“requirement” AND “bad” AND “smell” OR “requirement” AND “quality” AND

“detection” OR “identification” OR “analysis”

ACM
(+requirement + smell+ detection) OR (requirement + bad + smell + detection) OR

(requirement + bad + smell+ dentification) OR (software + requirement + quality + analysis)

Study selection. The inclusion criteria and exclusion criteria listed below are

defined and applied for the selection of the primary studies. The criteria are vital to

reduce bias, to reduce search space, and to select only relevant scientific literature.

 86

Inclusion Criteria (IC):

• The studies were published from 2010 to 2023.

• The study was written in English and is open access.

• The studies which are journals and conference papers.

• The studies focused on software requirement smell and requirement quality.

Exclusion Criteria (EC):

• The study is a secondary and tertiary study.

• The study before 2010 was not included in this review.

• The study is an opinion article, workshop, or magazine.

The study selection has been made in four phases. In each phase, inclusion and

exclusion criteria were used to minimize the number of studies to select relevant

studies (Table 7).

Table 7. Phases for study selection

Phase Inclusion Exclusion

1 IC1: The studies were published from 2010 to 2023
EC1: The study was published before

2010

2
IC2: The studies were published in English and are

open-access
EC2

3 IC3: The study is a journal or conference paper EC3: The study is secondary or tertiary

4
IC4: The focused-on-study software requirement

smells and requirement quality

EC4: The study is an opinion article,

workshop, or magazine

Study Quality Assessment (QA). The quality assessment of the papers was

made using a checklist to rate and evaluate the quality of each study identified in the

previous step.

• QA1: Were the objectives of the study clearly stated?

• QA2: Did the study describe the main research problem?

• QA3: Were the methodologies of the study clearly stated?

• QA4: Were the study findings evaluated and results discussed?

• QA5: Are limitations, negative findings, or threats to validity explained?

• QA6. Did the study point out any future research direction?

• QA7: Were the detected requirements smells classified based on a criterion?

To evaluate the quality of selected studies, we have used six quality assessment

criteria. The quality assessment criteria are needed to define quality criteria and to

minimize bias while ensuring the external and internal validity of selected studies.

Quality checklists are used as proposed by [22] and other checklists are added

according to the research questions.

Data extraction form. The list in Table 8 contains a data extraction form that

describes the data that have been extracted from selected papers. These data are

summarized and tabulated in a way that can serve the objectives of this SLR. The

extracted data are: study identifier, article title, the article source, publication venue,

publication year, author/s, and objectives.

 87

Table 8. Data extraction form

Element Description
Related

RQ

Title Title of the selected study RQ2

Authors Authors of the selected study -

Years The year the selected study was published -

Source The collection in which the study was published -

Publication type Type of publication, e.g., journal or conference paper -

Keywords Keywords of the study All

Abstract Abstract at the beginning of the study All

Number of requirements
Number of requirements used in the evaluation of the selected

study
RQ3

Source requirements The source the requirements are obtained RQ4

Requirement smell type The type of requirement smell detected RQ1

NLP technique

Different kinds of NLP techniques are employed to identify

smells or quality indicators from software requirements if the

study employs NLP

RQ1

Requirements smell

identification techniques/

tool/method.

Requirement smell detection techniques/tool/method reported

in the study
RQ5

Performance measure The metrics used for measuring the performance RQ4

Performance values The achieved performance measurement value RQ4

Data synthesis techniques. To summarize and present the knowledge gained

from the existing studies, tabulation, textual descriptions, and visual diagrams are

used.

3.2. Conducting the review

This section discusses the execution of the systematic review. The developed review

protocol is executed based on the plan. That is, a search is conducted, primary studies are

selected, a data extraction form is filled, the quality of the studies is assessed and data

synthesis is performed.

3.2.1. Study search and selection

The selection of the primary studies on requirement smell detection is limited to

papers published in the span of thirteen years from 2010 up to 2023 by the scope of

this study. The search is made on the five digital libraries: ACM digital library,

Springer, IEEE Xplore, Google Scholar, and Science Direct. The appropriate search

query is applied to each database and the search result is recorded in a spreadsheet

and the reference management tool Mendeley.

Repetitive articles and publications that are not related to the subject area are

removed from screening. Next, the papers were distributed to two reviewers, and the

screening was performed based on the title and abstract of the papers. At this stage,

the application of inclusion and exclusion criteria has resulted in candidate papers for

analysis. The papers are downloaded and the full text is reviewed by each reviewer

independently. Journal and conference articles that are found irrelevant by both

reviewers are discarded. The reviewers resolved most of the conflicts through

consensus. In a few instances, the third reviewer is involved in resolving the

disagreement. For some papers full text is not available and hence such papers are

 88

rejected from the study. Papers that are just reviews and do not make any kind of

evaluation of the proposed solutions are not included in the study. Papers that deal

with smell detection on different form requirements (for instance, goal modeling [14],

and use case descriptions [13]) are also removed. There are also papers removed after

quality assessment. Two papers are added to the selected paper list after following

backward and forward snowball sampling guidelines for SLR in software engineering

[67] on the eligible seventeen papers. Nineteen studies were finally selected from the

five electronic databases. Fig. 1 displays the final result of the selection process.

Fig. 1. PRISMA flowchart showing selection and inclusion of the studies in the review

3.2.2. Study quality assessment

The quality assessment of the papers is executed based on the predetermined quality

assessment criteria. Quality assessment rate 1 indicates that the corresponding quality

assessment question was answered, whereas 0 indicates the corresponding quality

assessment was not answered, and 0.5 indicates the corresponding quality assessment

question was answered partially. Then the threshold is decided to be 5 to show that

the candidate study has fulfilled more than half of the quality assessment criteria.

Therefore, studies with a total quality assessment score of less than 5 were excluded

from this SLR. The quality scores of selected papers are shown in Table 9. Each of

the quality assessment questions has received more than half responses that favor the

assessment criteria. QA4 has received the highest score (92.11%) among the criteria.

Records identified from*:
IEEE (n = 112)
ACM (n = 2, 619)
Springer (n = 2, 697)
ScienceDirect (n= 1, 295)
Google Scholar (n=7, 573)
Registers (n = 0)

Records removed before screening:
Duplicate records removed (n = 354)

Records marked as ineligible by
automation tools (n = 0)

Records removed for other reasons (n = 0)

Records screened
(n = 13,942)

Records excluded** (n = 13, 907)
Phase 1 & 2 (n = 9, 132)
Phase 3 (n = 1, 089)
Phase 4 (n = 3, 690)

Reports sought for retrieval
(n = 28)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 28)

Reports excluded:
Found irrelevant after full-text review (n = 2)
Full-text unavailable (n= 2)
Excluded after quality screen (n = 3)
Other reasons (n = 4)

Studies included in review
(n = 19)
Reports of included studies
(n = 19)

Id
e

n
ti

fi
c
a
ti

o
n

S

c
re

e
n

in
g

In

c
lu

d
e
d

Records retrieved via Snowball Sampling
(n = 2)

 89

That is almost all selected studies have made some kind of evaluations and

discussions on the study results. Some studies fail to classify the detected requirement

smells resulting 65% quality score for QA7. Quality score of 71.05% is registered for

QA3 as some studies fail to describe the methodology followed clearly. The quality

score of other quality assessment criteria can be viewed in Fig 2.

3.2.3. Data extraction and synthesis

The data extraction process was executed considering the parameters presented in

Table 8 (Data extraction form) to find information important to answer the research

questions. Thematic analysis [68], an approach based on relationships and recurring

patterns, was used to synthesize the identified themes related to requirements

validation. Thematic analysis, which relies on relationships and recurring patterns,

was employed to mingle the discerned themes concerning requirements smells using

the procedures stated in [68].

Fig. 2. Percentage scores for the quality assessments of the studies

Table 9. Studies and their quality scores

Study ID QA1 QA2 QA3 QA4 QA5 QA6 QA7 Total

P1 1 1 0.5 1 0 1 1 5.5

P2 1 1 1 1 1 1 0 6

P3 0.5 1 1 1 1 0 1 5.5

P4 1 1 0.5 1 1 0.5 0 5

P5 1 0.5 1 1 1 1 1 6.5

P6 1 0.5 0.5 1 0.5 1 0.5 5

P7 1 0.5 1 1 1 1 1 6.5

P8 1 1 1 1 1 1 0 6

P9 0.5 1 0.5 0.5 1 0.5 1 5

P10 0.5 1 1 1 0.5 1 0 5

P11 1 0.5 0.5 0.5 1 1 1 5.5

P12 0.5 1 0.5 1 0 1 1 5

P13 1 1 0.5 0.5 0 1 1 5

P14 0.5 1 1 1 1 0 1 5.5

P15 0.5 0.5 1 1 1 1 0 5

P16 1 1 0.5 1 1 1 1 6.5

P17 1 0.5 0.5 1 0 1 1 5

P18 0.5 0.5 0.5 1 1 1 1 5.5

P19 1 0.5 0.5 1 1 1 0 5

 90

Each select paper was carefully scrutinized to understand the topics very well

and then the information that answers the research questions was extracted and coded.

Subsequently, the codes were translated to hierarchical themes, the relationship

among themes was investigated and finally, the trustworthiness of the interpretations

was assessed and approved. Two reviewers worked independently in the extraction

of the data independently using the thematic analysis procedures. While merging the

results whenever there was disagreement an invited reviewer was involved. Table 10

reports the final selected primary studies that were used in this review with their

publication venue/type, year, and source. The organizational structure of most

selected studies was almost similar, they first dealt with the purpose of software

requirement then they dealt with the problem with quality of requirement or smells

finally most of them tried to suggest their researched solution.

Table 10. Selected Studies within their Information
Paper

ID
Title Year

Paper
venue

Publication
type

Reference

P1
NERO: a text-based tool for content annotation and detection

of smells in feature requests
2020 IEEE Conference [38]

P2
A methodology for the classification of quality of
requirements using machine learning techniques

2015
Science
Direct

Journal [16]

P3
Application of machine learning techniques to the flexible

assessment and improvement of requirements quality
2020 Springer Journal [61]

P4
Using NLP to detect requirements defects: an industrial
experience in the railway domain

2017 Springer Journal [53]

P5
Rapid requirements checks with requirements smells: two case

studies henning
2014 ACM Journal [4]

P6
Detecting requirements smells with deep learning:
experiences, challenges and future work

2021 IEEE Journal [39]

P7 Rapid quality assurance with requirements smells 2017
Science

Direct
Journal [37]

P8
Quality assessment method for software requirements
specifications based on document characteristics and its

structure

2015 IEEE Conference [56]

P9
Ambiguity detection: towards a tool explaining ambiguity
sources

2010 Springer Journal [57]

P10
On the ability of lightweight checks to detect ambiguity in

requirements documentation
2017 Springer Journal [58]

P11
Automated smell detection and recommendation in natural
language requirements

2023
Google
Scholar

Journal [8]

P12
Classification and prioritization of requirements smells using

machine learning techniques
2023 IEEE Conference [17]

P13
A Method of ambiguity detection in requirement
specifications by using a knowledge dictionary

2022
Science
Direct

Conference [60]

P14
Ambiguous software requirement specification detection: an

automated approach
2018 IEEE Conference [53]

P15
Using domain-specific corpora for improved handling of
ambiguity in requirements

2021 IEEE Conference [54]

P16
The design of sree – a prototype potential ambiguity finder for

requirements specifications and lessons learned
2013 Springer Conference [59]

P17
Score-based automatic detection and resolution of syntactic
ambiguity in natural language requirements

2020 IEEE Conference [55]

P18
Analysing anaphoric ambiguity in natural language

requirements
2011 Springer Journal [64]

P19
Automated handling of anaphoric ambiguity in requirements:
a multi-solution study

2022 ACM Conference [65]

 91

The distribution of the selected papers over the digital libraries is shown in

Fig 3. The majority of the papers (69%) are from Springer and IEEE.

Fig. 3. Selected studies within their source

The distribution of the studies extracted from the five databases over the years

(2010-2023) is shown in Fig 4. The increase in the number of studies over time

depicts the attention given to requirement smells.

Fig. 4. Distribution of selected studies over the years

The word cloud formed by taking the titles of selected studies using

https://tagcrowd.com is shown in Fig 5. Non-common English words repeated at

least twice appear in the diagram. The word cloud shows the concepts focused on by

this study and it helped us to shape the title and keywords of the study.

Fig. 5. Word cloud from the titles primary studies

4. Result and discussions

This section presents the results of the systematic literature review, in which nineteen

(19) studies have been discussed to respond to defined research questions.

4.1. Requirement smell types

RQ1: What type of requirement smells are most commonly detected by the selected

studies?

https://tagcrowd.com/

 92

Different kinds of requirement smells are considered by the selected studies and

needless to say each smell has its own undesirable impact on the activities of the

requirements and software development lifecycle. Most of the selected studies

introduced an automated detection of requirement smells or quality problems. After

fetching requirement smells detected from the selected papers we have grouped them

into five categories: morphological, lexical, analytical, relational, and incompleteness

& language requirement smells. The detection mechanism may target specific

requirement smell or multiple smells. For instance, P15 is dedicated to the detection

of speculative sentences while P2 is involved in the detection of many types of smells.

As shown in Table 11 most of the studies are able to detect requirement smells from

more than one requirement smell category. Especially, P1, P2, P3, P4, P8 and P11

are able to detect smells from three or more requirement smell groups. Many studies

are dedicated to only one type of the requirement smells፡ P6, P10, P13, P14, P15,

P17, P18, & P19.

Fig. 6. Category of detected requirement smells by the selected studies

Fig. 6 shows the number of studies against the categories of the requirement

smells. Lexical requirement smells are addressed by all selected studies. The main

reason could be lexical requirement smells are a direct manifestation of natural

language problems. On the other hand, relational requirement smells are the least

studied group of smells. To detect relational requirement quality problems, more than

a word, phrase or statement has to be scrutinized as relational requirement smells

consider more than one statement.

Considering individual smells, we have identified the most frequently detected

requirement smells. For this purpose, we have grouped smells that have the same

meaning but are described in different wordings. For instance, the use of coordinators

in different studies is described as coordinating conjunction, connective terms, non-

atomic requirements, or the use of multiple connectors. All of them describe

requirement amalgamation (describing more than one requirement in a single

statement) [9]. Statements should include a single requirement with no use of

conjunctions that describe multiple requirements. Fig. 7 shows the top six frequently

detected requirement smells by the selected studies. Ambiguity is detected more than

twenty times. There are studies that have detected more than one type of ambiguity:

P1, P4, P9, P15 & P17. The use of coordinators, vague pronouns, non-verifiable

terms, passive voices, and subjective languages are the next smells in the rank.

 93

Table 11. Detected requirement smells collected from selected studies

Paper Requirement smell type
Morpho-
logical

Lexical Analytical Relational
Incompleteness
and language

P1

Vagueness, weakness, generality,
coordination ambiguity, referential
ambiguity, passive voice, missing
description, missing condition,
unreadability, partial content

x x x x

P2

Ambiguous expression, verbal tense
and mood, connective terms, high
dependencies of a requirement, design
terms, domain terms, incomplete
listing/incompleteness expressions,
degree of nesting, punctuation, too
many wording/paragraphs, imprecise
terms, speculative expression,
unreadability

x x x x

P3

Too many paragraphs, an excessive
number of words, unreadability,
incorrect punctuation, use of multiple
connectors, use of negative
expressions, use of pseudocode and
control-flow expression, non-explicit
requirements (implicit), ambiguous,
incomplete enumerations, speculative
expressions, justifications in the
requirement (rationale), requirement
expressing a solution (design), do not
have at least one imperative verb
(imperative), the non-assertive
requirement (conditional), use of
passive voice, use of a large number
of domain concepts, too many
domain verbs

x x x

P4

Anaphoric ambiguity, coordination
ambiguity, vague terms, use of modal
adverbs, passive voice, excessive
length, missing condition, missing
unit of measurement, missing
reference, undefined terms

x x x

P5

Ambiguous adverbs & adjectives,
vague pronouns, subjective language
smell, comparative phrases,
superlatives, negative statements,
non-verifiable terms, loopholes smell,
incomplete references

 x x

P6
Subjective language, ambiguous
adverbs and adjectives, superlatives,
comparatives, and vague pronouns

 x

P7

Subjective language, ambiguous
adverbs, and adjectives, loopholes,
open-ended, non-verifiable terms,
superlatives, comparatives, negative
statements, vague pronouns,
incomplete references

 x x

 94

Table 11 (c o n t i n u e d)
Paper Requirement smell

type
Morpho-
logical

Lexical Analytical Relational
Incompleteness
and language

P8

Ambiguous word,
abbreviation, acronym,
subjectivity, optional,
modal verb, more than
one verb, pronoun,
demonstrative adjective,
quantifier, coordinating
conjunction,
punctuation

x x x

P9

Lexical ambiguity,
syntactic ambiguity,
semantic ambiguity,
pragmatic ambiguity,
vagueness, language
error, passive voice,
ambiguous adjectives
and adverbs

 x x

P10 Ambiguity x

P11

Non-atomic
requirement, incomplete
requirement, not
requirement, incomplete
condition, incomplete
system response,
passive voice, incorrect
order requirement,
coordination ambiguity,
not precise verb

 x x x

P12

Superlative phrase,
comparative phrase,
subjective language,
vague pronoun,
loopholes, ambiguous
adverb adjective stive,
negative statements,
open-ended non-
verifiable term, passive
voice

 x x

P13 Ambiguity x

P14 Ambiguity x

P15
Coordination ambiguity
and prepositional-phrase
attachment ambiguity

 x

P16

Use of continuance, use
of coordinator, use of
directives, incomplete
(missing), use options,
use of the pronoun, use
of quantifier, use of
vague terms and
symbols, weakness, use
of plural nouns

 x x

P17
Coordination,
attachment, & analytical
ambiguities

 x

P18
Nocuous anaphoric
ambiguity

 x

P19 Anaphoric ambiguity x

 95

Fig. 7. Frequently detected requirement smells

On the other hand, many requirements are detected by just a single study. Some

of such requirements are missing unit of measurement – P4, high dependencies of a

requirement – P2, missing description – P1, undefined terms – P4, incorrect

requirement order – P11, and use of plural nouns – P16. Moreover, we have found

smells like user interface details smells [69], terms that imply totality (for example

“all”, “always”, “never”, and “every”) [9], test clones, and long tests [70] from other

literature but are not addressed by any of the selected studies.

4.2. Requirement smell identification techniques

RQ2: What are the existing requirements for smell identification techniques?

The requirement smell detection techniques reported by the selected studies can

be grouped into five as natural language processing, machine learning, natural

language processing, and machine learning, rule-based, and knowledge dictionary-

based techniques. NLP-based techniques involve processing or linguistic analysis of

textual requirements to find smells from the requirements using detailed handwritten

rules [71]. Machine learning techniques take a raw set of requirements, possibly pre-

annotated by experts, and emulate experts by learning from the input data [61]. If the

approach applies explicitly stated NLP and ML tasks, we grouped the detection

technique as NLP and ML. If a selected paper applies IF-THEN-like rules to pinpoint

a smell that is rule rule-based technique. A knowledge dictionary built from transitive

verbs and their objects is also used to detect for detecting ambiguities P13.

Most of the required bad smell detection approaches employed NLP techniques

such as POS tagging, morphological analysis, dictionary-based, lemmatization,

parsing, etc., see Fig. 8. Selected Studies that employee NLP include P1, P4, P5, P7,

P11, P15, and P17. Natural language processing techniques together with machine

learning techniques are also applied in some studies P6, P12, P18 & P19. Rule-based

techniques are applied to detect poor quality requirements: P8, P9, P10 and P16.

Furthermore, machine Learning approaches were introduced by P2, P3, and P14 for

the assessment and classification of requirement quality to check whether the

requirement has a good or bad quality. These techniques use requirements written in

natural languages as an input for the learning algorithms but no explicit NLP

techniques are reported in the papers. Deep learning algorithm also applied by P6 for

detection of multiple classes of requirement smells.

 96

Fig. 8. Requirement smell detection mechanism

Fig. 9. NLP Techniques and frequency of application

The NLP techniques were used for the identification of quality defects and

ambiguity, classification and clustering of large collections of natural language

requirements, and so on. Fig. 9 shows the most commonly used NLP techniques in

the selected study. As it is possible to observe, POS tagging is used by many selected

studies i.e., it is used in nine different instances or selected studies applied it. POS

tagging which involves labeling words in a statement with their respective POS tags

is the most significant text pre-processing task for NLP activities [72]. Tokenization,

lemmatization, consistency parsing, dictionaries, and sentence splitting are the next

most repeatedly used NLP techniques in the selected studies.

4.3. Datasets for requirement smells

RQ3: How many requirements are used to assess and evaluate the proposed

approaches in the selected studies?

The requirements collected from software projects are used as a dataset in the

selected studies. We consider here the total number of requirements that have been

used by each of the selected studies. Some of the studies used a small number of

requirements (10, 100, 126, 293, and 398) to evaluate the performance of their

approaches. Other studies reported the number of datasets used in the range of 1000

to 26, 829. Fig. 10 shows the number of requirements used in the studies. We have

used a logarithmic scale to resolve visualization issues because a few points of data

are much larger than the others [21]. The advised number of requirements depends

 97

on the smell detection technique applied. Generally, a large number of datasets are

recommended if machine/deep learning techniques are used.

The datasets used by the selected studies could be open source which are

available freely to the public or are closed sources which are mostly collected from

industrial projects and are not open to access. Except for one paper which failed to

mention the source of the data P17, other papers have used data from open source P1,

P2, P3, P7, and P18, closed source P4, P5, P8, P9, P10, P11, P13, P14, P15, P16, P17,

and P19 or from both sources P6 and P12. 64% of the primary study used

requirements whose access is restricted (Fig. 11). The availability of free open-source

datasets on requirement smells is vital to conducting more research in the area

Fig. 10. Number of requirements used in the selected studies

Fig. 11. Sources of datasets

4.4. Performance of required smell detection techniques

RQ4: What is the overall performance of requirement smell detection mechanisms?

A review is made on the performance of requirement smell detection techniques

as reported by the selected papers. The performance of the proposed solutions is

measured using accuracy, precession, recall, F-measure, and Spearman’s ρ.

Precession and recall are the most frequently used performance measures, (Fig. 12).

Some papers have employed more than one measure. Spearman’s ρ measure which

measures the strength of the relationship between two variables just like Pearson

correlation is used at one instance P1. The performance average value ranges from

50% accuracy P8 to 100% for precession P13 and 100% recall P13 and P19. We

don’t think comparing the results of the studies is appropriate as each of the studies

used a different method and detected different requirement smells.

 98

Fig. 12. Performance measures

4.5. Tools for requirement smell detection

RQ5: What are the tools/libraries/APIs used or produced in the selected study?

Authors of the selected papers have employed different types of Computer

Aided Software Engineering (CASE) tools, see Table 12. We have categorized the

tools into four Requirement Quality Assessment (RQA) tools, ML tools, NLP tools,

and other tools. RQA tools are used to assess the quality of requirements and possibly

to provide a proposal for resolution. ML tools implement artificial intelligence

algorithms that allow a computer to understand and improve without human

intervention. NLP tools enable to process of natural languages to pave the way for a

computer to interpret, manipulate, and comprehend human languages. Tools that

couldn’t be categorized in either of the three categories of tools are termed other tools.

Table 12. Tools used for required smell detection

Tool

category
Tools

NLP tools

spaCy [73], Stanford CoreNLP [74], AllenNLP [75], DKPro [76], GATE [77], Genia

Tagger [78], jWeb1T library [79], JWPL library [80], NLTK package [81, 82], Oxford

Advanced Learner’s Dictionary [83], QuARS tool [84, 85], RapidMiner [86], Sentence

Boundary, Detector [87], Stanza [88], Stanford CoreNLP [89, 90], WordNet tool [91],

WS4J library [92], Stanford, Parser [74]

RQA tools

SREE [59], Paska [8], Rimay [93], knowledge dictionary-based tool [49], ambiguity

detector2 [57], ambiguity detector1[63], ConQAT [87, 94], NASA ARM tool [95],

NERO [38], RQA for extract quality metrics that measure desirable properties of

requirements [45], SMELL tool [4], Smella [37], Tactile check [58]

ML tools Scikit-learn [96], WEKA [97]

Other tools Stanford Tregex API for Java [98], Wikipedia

As shown in Fig. 13 most studies employ NLP tools (53%) and RQA tools

(37%). A limited number of machine learning and other tools are used. Even though

requirement engineering is the least tool-supported software development phase, a

number of tools are utilized for requirement smell detection.

 99

Fig. 13. Types of tools used for requirement smell detection

5. Threats to the validity

The cogency or accuracy of research including systematic literature review is

negatively influenced by validity threats. The four common categories of threats to

the validity of a research outcome are conclusion, internal, construct, and external

validity [99]. In this research, to evaluate and allay the four types of threats to validity,

guidelines specifically tuned up for SLR in software engineering are used [100]. We

illustrate the threats in terms of the four categories of validity.

External validity on SLR includes restricted time span, incomplete research

information in the primary study, paper/database inaccessibility, and primary study

generalizability [99]. The SLR investigates papers published in thirteen years of time

span and the starting time period goes back to three years from the requirement smell

introduced in the doctoral symposium [10]. Each of the selected studies contains

information that addresses more than 60% of the research questions and this

addresses the primary study's generalizability and incomplete research information

in the primary study. The application of the snowball sampling method and using

customized search strings reduced inadequate primary studies. The papers are

obtained from well-known literature repositories which are frequently used in SLR

research in software engineering [2, 18-20].

Internal validity is about a cause-and-effect relationship established in the study

supported by evidence [100]. As an SLR research, this research is not concerned

about the statistical causal relationship of variables in requirement smells. However,

SLR internal validity threats may arise from improper research methods and analysis

and coding process researcher biases. To overcome the challenges, the SLR research

method which is specifically customized for software engineering [22, 68, 101] is

followed and data is collected from well-known databases. To include as many

primary studies as possible we have applied forward and backward snowball

sampling. The research bias is reduced as two experts are involved in the analysis

and conflicts are resolved by inviting a third reviewer.

Construct validity deals with whether the research made the right/intended

measures for the concepts under study [100, 102]. In this study, construct validity is

maximized by recording all results after a full paper review in Excel by following the

review protocol. Inappropriate research questions are one of the threats to construct

 100

validity [99]. However, the research questions are evaluated for the characteristics

they should possess [103] before structuring the research and reporting.

If a study has conclusion validity, data extraction and interpretation are made

properly and hence the data collection process can be repeated resulting in the same

result [99]. The conclusion validity is enhanced as we have used systematic review

guidelines for software engineering [22, 68] to review the primary studies. Albeit

complete elimination of bias is not feasible, the involvement of at least two reviewers

for each paper and the invitation of the third reviewer to resolve any disagreement

reduces biasedness. The use of Microsoft Excel and Mendeley tackled the threat of

duplication. Misclassification of primary study is another threat to conclusion validity

which is addressed by following the guidelines stated at [68].

6. Future research directions

Developing software that is highly qualified and competent requires good quality

requirements. Writing requirements using textual descriptions makes specifying good

quality requirements challenging. Identifying ill-defined requirements written in

natural language is difficult as human languages increase the complexity and effort

required for software development [10, 39, 89, 104]. Hence, many automated tools

and techniques are proposed in the literature. Findings indicate that existing

approaches are not enough to identify multiple types of requirements smells. So,

taking into account the above consideration, we want to highlight some issues related

to requirement smell detection that could be exploited in the future.

• Utilize machine learning for smell detection – Studies on requirement

smell detection should broadly use machine learning and deep learning techniques

since the techniques are found to be effective in solving many types of problems. In

fact, 36.84% of the selected studies have used machine learning techniques.

However, since machine learning and natural language processing are good

companions to solve requirement engineering problems [71] and as the requirements

are usually written in natural languages [10], extensive use of the techniques will

enable finding out requirement quality indicators that are not easy to detect by using

traditional methods.

• Dataset for requirement smell – One of the reasons for underutilization and

poor performance of machine learning techniques is the lack of sufficient and quality

datasets in the area of requirement engineering in general [105]. Defining annotation

rules, unbalanced distribution of samples, and very high effort for data processing

and data quality improvements are some of the challenges that hinder the application

of ML. There are attempts to produce datasets in requirement engineering [106].

However, there is no known dataset for requirement smells. Producing datasets on

requirement smells will facilitate different research in the area.

• Requirement smell detection and type of requirements – Most studies

focus on requirement bad smell detection. Requirements can be written at various

levels of detail and as such requirements can be categorized as business, user, and

system requirements [107]. The way each type of requirement is written is different.

 101

Consequently, a different way of smell detection approaches should be proposed

based on the type of requirements.

• Types of requirement smells – Types of requirement smells or quality

indicators need further investigation as it may lead to new smell discovery. A catalog

of required smells needs to be prepared and the smells need to be defined and

classified based on their relatedness.

• Impact of requirement smells on software project – The influence of each

requirement on the later phases of SDL and software projects, in general, needs to be

investigated using exhaustive case studies. That is an empirical study on the

impact/evolution of smells on the later stage of the software development life cycle

enables us to know the exact defilement the smells cause on software projects and the

software product itself in the same as it is studied for design smells in [108].

• Prioritizing requirement smells – Bad smells are not expected to have a

similar impact on software projects. Hence, there shall be a way to prioritize

requirement smells based on different criteria and this will help to take appropriate

action and to improve the quality of software

• Beyond detection of the requirement smells – The investigated studies

focus on requirement smell detection mechanisms keeping in mind that once the

smells are detected, they can be manually corrected. However, for large and complex

software systems, automatic smell resolution solutions need to be proposed. Research

should be conducted to find efficient ways to resolve requirement smells.

7. Conclusion

Software development starts with the discovery of requirements. Poor quality

requirements or requirements with smells cause the software project to fail. Hence,

ensuring requirement quality at the earliest possible stage is an important activity in

the process of software development. A requirement smell detected at the

maintenance phase may cost 200% more than detecting it at the requirement

specification phase. This literature review summarizes existing studies obtained from

five known databases and published from 2010 to 2023. The selected studies focused

on proposing NLP, machine learning, rule, and knowledge-based requirement smell

detection solutions. Precession, accuracy, and recall are evaluation metrics used to

evaluate most of the bad smell detection tools and the performance measures vary in

the range of 50% to 100%. The detection mechanisms employed CASE tools like

requirement quality analyzer tool, machine learning tool, and NLP tools. Various

types of requirement smells are detected in the selected primary studies. Requirement

problems that are related to the ambiguity of words, phrases, and statements are given

the highest attention. Finally, the role of machine/deep learning for requirement smell

detection as well as proposing requirement-specific smell detection types needs to be

investigated. Furthermore, tasks such as classifying and prioritizing requirement

smell and providing a requirement smells dataset are assignments for software

engineering researchers in industry and academia.

 102

R e f e r e n c e s

1. J i t n a h, D., J. H a n, P. S t e e l e. Software Requirements Engineering : An Overview 1

Introduction 2 Preliminaries. – Penins Sch. Comput. Inf. Technol. Monash. Univ., 1995, pp.

1-20.

2. A h m a d, A., C. F e n g, M. K h a n, A. K h a n, A. U l l a h, S. N a z i r, A. T a h i r. A Systematic

Literature Review on Using Machine Learning Algorithms for Software Requirements

Identification on Stack Overflow. – Security and Communication Networks, Vol. 2020, 2020.

DOI: 10.1155/2020/8830683.

3. 830-1993, Recommended Practice for Software Requirements Specification. IEEE Computer

Society. – Software Engineering Standard Committee of the IEEE Std Computer Society.

Revision, 1998. p. 32.

4. F e m m e r, H., D. M. F e r n á n d e z, E. J u e r g e n s, M. K l o s e, I. Z i m m e r, J. Z i m m e r.

Rapid Requirements Checks with Requirements Smells: Two Case Studies. – In: Proc. of 1st

International Workshop on Rapid Continuous Software Engineering (RCoSE 2014), 2014,

pp. 10-19. DOI: 10.1145/2593812.2593817.

5. S i t e s, M., R. W. S e l b y. Software Engineering: Barry W. Boehm’s Lifetime Contributions to

Software Development, Management, and Research. – Wiley-IEEE Press, 2007, pp. 1-13.

DOI: 10.1109/9780470187562.ch8.

6. N a e e m, A., Z. A s l a m, M. A. S h a h. Analyzing Quality of Software Requirements ;

A Comparison Study on NLP Tools. – In: Proc. of 25th International Conference

on Automation and Computing (ICAC’19), 2019, No September, pp. 1-6.

DOI: 10.23919/IConAC.2019.8895182.

7. K o c e r k a, Ī. J., Ī. M i c h a, Ī. A. G a. Analysing Quality of Textual Requirements Using

Natural Language Processing. – A Literature Review, 2018, pp. 876-880.

DOI: 10.1109/MMAR.2018.8486143.

8. V e i z a g a, A., S. Y. S h i n, L. C. B r i a n d. Automated Smell Detection and Recommendation in

Natural Language Requirements. – IEEE Transactions on Software Engineering, 2024,

pp. 1-26. DOI: 10.1109/TSE.2024.3361033.

9. Xplore I. International Standard ISO/IEC/IEEE Systems and Software Engineering. – Engineering,

Vol. 2018, 2018.

10. F e m m e r, H. Reviewing Natural Language Requirements with Requirements Smells – A Research

Proposal – Categories and Subject Descriptors. – In: Proc. of 11th International Doctoral

Symposium on Empirical Software Engineering (IDoESE’13 at ESEM’13), 2013.

11. A n g a r a, J., S. P r a s a d, G. S r i d e v i. DevOPs Project Management Tools for Sprint Planning,

Estimation and Execution Maturity. – Cybernetics and Information Technologies, Vol. 20,

2020, No 2, pp. 79-92.

12. M e a d, N. R., T. S t e h n e y. Security Quality Requirements Engineering

(SQUARE) Methodology. –- In: Proc. of 2005 Workshop on Software Engineering for

Secure Systems – Building Trustworthy Applications (SESS’2005), 2005, pp. 1-7.

DOI: 10.1145/1083200.1083214.

13. S e k i, Y., S. H a y a s h i, M. S a e k i. Detecting Bad Smells in Use Case Descriptions. – In: Proc.

of 27th IEEE International Requirements Engineering Conference (RE’19), 2019, pp. 98-108.

DOI: 10.1109/RE.2019.00021.

14. A l t u r a y e i f, N., I. A b d u r a h m a n, B. F a i s a l. Detection of Linguistic Bad Smells in GRL

Models : An NLP Approach. – In: Proc. of ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems Companion (MODELS-C’23), 2023,

pp. 318-327. DOI: 10.1109/MODELS-C59198.2023.00062.

15. C h a i t h r a, P., S. N a y a k. Machine Learning Technique for Identifying Ambiguities of in

Software Requirements. – Turkish Journal of Computer and Mathematics Education, Vol. 12,

2021, No 11, pp. 6852-6857. DOI: 10.17762/turcomat.v12i11.7159.

16. P a r r a, E., C. D i m o u, J. L l o r e n s, V. M o r e n o, A. F r a g a. A Methodology for the

Classification of Quality of Requirements Using Machine Learning Techniques. – Information

and Software Technology, Vol. 67, 2015, pp. 180-195. DOI: 10.1016/j.infsof.2015.07.006.

 103

17. B e r h a n u, F., E. A l e m n e h. Classification and Prioritization of Requirements Smells Using

Machine Learning Techniques. – In: Proc. of International Conference on Information and

Communication Technology for Development for Africa (ICT4DA’23), 2023, pp. 49-54. DOI:

10.1109/ICT4DA59526.2023.10302263.

18. A l, A., S. H a m o u d, A. M o h a m m a d. Bad Smell Detection Using Machine Learning

Techniques : A Systematic Literature Review. – Arabian Journal for Science and Engineering,

Vol. 45, 2020, No 0123456789, pp. 2341-2369. DOI: 10.1007/s13369-019-04311-w.

19. S a b i r, F., F. P a l m a, G. R a s o o l, N. M o h a. A Systematic Literature Review on the Detection

of Smells and Their Evolution in Object-Oriented and Service-Oriented Systems. – Journal of

Software: Practice and Experience, 2019, No July 2018, pp. 3-39. DOI: 10.1002/spe.2639.

20. A l j e d a a n i, W., A. P e r u m a, A. A l j o h a n i, M. A l o t a i b i, M. W. M k a o u e r, A. O u n i,

C. D. N e w m a n, A. G h a l l a b, S. L u d i. Test Smell Detection Tools: A Systematic

Mapping Study. – In: Proc. of 25th International Conference on Evaluation and Assessment in

Software Engineering, 2021, pp. 170-180. DOI: 10.1145/3463274.3463335.

21. M a y r a-A l e j a n d r a, C a s t i l l o-M o t t a, R u b é n-D a r í o, D o r a d o-C ó r d o b a, C é s a r-

J e s ú s. Pardo-Calvache. Systematic Mapping of the Literature on Smells in Software

Development Requirements. – Revista Facultad de Ingeniería, Vol. 32, 2023, No 63 pp. 0-3.

DOI: 10.19053/01211129.v32.n63.2023.15233.

22. K i t c h e n h a m, B., S. M. C h a r t e r s. Guidelines for Performing Systematic Literature Reviews.

– In: Software Engineering, 2007, No October 2021.

23. K i t c h e n h a m, B., L. M a d e y s k i, S. M e m b e r, D. B u d g e n. SEGRESS: Software

Engineering Guidelines for Reporting Secondary Studies. – IEEE Transactions on Software

Engineering, Vol. 49, 2023, No 3, pp. 1273-1298. DOI: 10.1109/TSE.2022.3174092.

24. S h a r m a, T., D. S p i n e l l i s. Definitions of a Software Smell.

https://zenodo.org/records/1066135

25. C h a t z i g e o r g i o u, A., A. M a n a k o s. Investigating the Evolution of Code Smells in Object-

Oriented Systems. – Innovations in Systems and Software Engineering, Vol. 10, 2014,

pp. 3-18. DOI: 10.1007/s11334-013-0205-z.

26. S h a r m a, T., M. F r a g k o u l i s, D. S p i n e l l i s. Does Your Configuration Code Smell ? – In:

Proc. of 13th International Conference on Mining Software Repositories, 2016, pp. 189-200.

DOI: 10.1145/2901739.2901761.

27. B e c k, K., J. B r a n t, W. O p d y k e. Refactoring: Improving the Design of Existing Code. – In:

Addison-Wesley Professional, 2018.

28. G a r c i a, J., D. P o p e s c u, G. E d w a r d s, N. M e d v i d o v i c. Identifying Architectural Bad

Smells. – In: Proc. of 13th European Conference on Software Maintenance and Reengineering,

2009, pp. 255-258. DOI: 10.1109/CSMR.2009.59.

29. B o u h o u r s, C., H. L e b l a n c, C. P e r c e b o i s. Bad Smells in Design and Design

Patterns. – The Journal of Object Technology, Vol. 8, 2010, No 3, pp. 43-63.

DOI: 10.5381/jot.2009.8.3.c5.

30. R a j k o v i c, K., E. E n o i u. NALABS: Detecting Bad Smells in Natural Language Requirements

and Test Specifications. – ArXiv Preprint ArXiv:220205641, 2022, pp. 8-10.

DOI: 10.48550/arXiv.2202.05641.

31. S h a r m a, T., D. S p i n e l l i s. A Survey on Software Smells. – The Journal of Systems &

Software, Vol. 138, 2018, pp. 158-173. DOI: 10.1016/j.jss.2017.12.034.

32. A b u h a s s a n, A. Software Smell Detection Techniques. – A Systematic Literature Review, 2021,

No September 2019, pp. 1-48. DOI: 10.1002/smr.2320.

33. A l m e i d a, D., J. C. C a m p o s, J. S a r a i v a, J. C. S i l v a. Towards a Catalog of Usability

Smells. – In: Proc. of 30th Annual ACM Symposium on Applied Computing, 2014,

pp. 175-181. DOI: 10.1145/2695664.2695670.

34. P a l m a, F., N. M o h a. A Study on the Taxonomy of Service Antipatterns. – In: Proc. of 2nd IEEE

International Workshop on Patterns Promotion and Anti-Patterns Prevention (PPAP’15), 2015,

pp. 5-8.

35. P i v e t a, E. K., M. H e c h t, A. M o r e i r a, M. S. P i m e n t a, J. A r a ú j o, P. G u e r r e i r o,

R. T. P r i c e. Avoiding Bad Smells in Aspect-Oriented Software. – In: Proc. of 19th

International Conference on Software Engineering and Knowledge Engineering (SEKE’07),

2007, pp. 81-86.

 104

36. V a l e, G., E. F i g u e i r e d o, R. A b i l i o, H. C o s t a. Bad Smells in Software Product Lines: A

Systematic Review. – In: Proc. of 8th Brazilian Symposium on Software Components,

Architectures and Reuse (SBCARS’14), 2014, pp. 84-94. DOI: 10.1109/SBCARS.2014.21.

37. F e m m e r, H., D. M é n d e z F e r n á n d e z, S. W a g n e r, S. E d e r. Rapid Quality Assurance

with Requirements Smells. – Journal of Systems and Software, Vol. 123, 2017, pp. 190-213.

DOI: 10.1016/j.jss.2016.02.047.

38. M u, F., L. S h i, W. Z h o u, Y. Z h a n g, H. Z h a o. NERO: A Text-Based Tool for Content

Annotation and Detection of Smells in Feature Requests. – Proceedings of IEEE International

Conference on Requirements Engineering, Vol. 2020-August, 2020, pp. 400-403.

DOI: 10.1109/RE48521.2020.00056.

39. H a b i b, M. K., S. W a g n e r, D. G r a z i o t i n. Detecting Requirements Smells with Deep

Learning: Experiences, Challenges and Future Work. – Proceedings of IEEE International

Conference on Requirements Engineering, Vol. 2021-September, 2021, pp. 153-156.

DOI: 10.1109/REW53955.2021.00027.

40. G e n t i l i, E m a n u e l e, D. F a l e s s i. Characterizing Requirements Smells. – In: Proc. of

International Conference on Product-Focused Software Process Improvement. Submitted on

17 April 2024. DOI: 10.48550/arXiv.2404.11106.

41. K a t a s o n o v, A., M. S a k k i n e n. Requirements Quality Control : A Unifying Framework. –

Requirements Engineering, 2006, pp. 42-57. DOI: 10.1007/s00766-005-0018-1.

42. M i c h, L., M. F r a n c h, P. L. N o v i I n v e r a r d i. Market Research for Requirements Analysis

Using Linguistic Tools. – Requirements Engineering, Vol. 9, 2004, No 2, pp. 151-151.

DOI: 10.1007/s00766-004-0195-3.

43. S e k i, Y., S. H a y a s h i, M. S a e k i. Cataloging Bad Smells in Use Case Descriptions and

Automating. – In: Proc. of 2019 IEEE 27th IEEE International Requirements Engineering

Conference, 2022, No 5, pp. 849-863. DOI: 10.1587/transinf.2021KBP0008.

44. S i n g h, G., J. C. C a r v e r. A Systematic Literature Review to Identify and Classify Software

Requirement Errors. – Information and Software Technology, Vol. 51, 2009, No 7,

pp. 1087-1109. DOI: 10.1016/j.infsof.2009.01.004.

45. G e´n o v a, G., J. M. F u e n t e s, J. L l o r e n s, O. H u r t a d o, V. M o r e n o. A Framework to

Measure and Improve the Quality of Textual Requirements. – Requirement Engineering,

Vol. 16, 2013, pp. 25-41. DOI: 10.1007/s00766-011-0134-z.

46. K r o g s t i e, J., O. I. L i n d l a n d. Towards a Deeper Understanding of Quality in Requirements

Engineering Domain Quality Appropriateness Appropriatenes. – Model I Quality Language I

Pragmatic I Interpretation Audience Appropriateness, Vol. 932, 1995, pp. 82-95.

DOI: 10.1007/978-3-642-36926-1_7.

47. S a a v e d r a, R., L. B a l l e j o s, M. A l e. Software Requirements Quality Evaluation: State of the

Art and Research Challenges. – In: Proc. of 14th Argentine Symposium on Software

Engineering, 2013, pp. 240-257.

48. Ö z k a n, D., A. M i s h r a. Agile Project Management Tools: A Brief Comprative View. –

Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 17-25.

49. Z a k e r i-N a s r a b a d i, M., S. P a r s a. Natural Language Requirements Testability Measurement

Based on Requirement Smells. – Neural Computing and Applications, 2024, pp. 1-35.

50. D o c h e v, D., I. H r i s t o v. On-the-Job e-Training – from Requirements to Design 1. – Cybernetics

and Information Technologies, Vol. 3, 2003, No 2, pp. 45-54.

51. M a y v a n, B. B., A. R a s o o l z a d e g a n, A. J. J a f a r i. Bad Smell Detection Using Quality

Metrics and Refactoring Opportunities. – Software: Evolution and Process, 2020,

No December 2019, pp. 1-33. DOI: 10.1002/smr.2255.

52. O o, K. H., A. N o r d i n, A. R. I s m a i l, S. S u l a i m a n. An Analysis of Ambiguity Detection

Techniques for Software Requirements Specification (SRS). – International Journal of

Engineering & Technology, Vol. 7, 2018, pp. 501-505. DOI: 10.14419/ijet.v7i2.29.13808.

53. F e r r a r i, A., G. G o r i, B. R o s a d i n i, I. T r o t t a, S. B a c h e r i n i, A. F a n t e c h i, S. G n e s i.

Detecting Requirements Defects with NLP Patterns: An Industrial Experience in the Railway

Domain. – Empirical Software Engineering, Vol. 23, 2018, No 6, pp. 3684-3733.

DOI: 10.1007/s10664-018-9596-7.

 105

54. E z z i n i, S., S. A b u a l h a i j a, C. A r o r a, M. S a b e t z a d e h, L. C. B r i a n d. Using Domain-

Specific Corpora for Improved Handling of Ambiguity in Requirements. – In: Proc. of

International Conference on Software Engineering, 2021, pp. 1485-1497.

DOI: 10.1109/ICSE43902.2021.00133.

55. O s a m a, M., A. Z a k i-I s m a i l, M. A b d e l r a z e k, J. G r u n d y, A. I b r a h i m. Score-Based

Automatic Detection and Resolution of Syntactic Ambiguity in Natural Language

Requirements. – In: Proc. of IEEE International Conference on Software Maintenance and

Evolution (ICSME’20), 2020, pp. 651-661. DOI: 10.1109/ICSME46990.2020.00067.

56. T h i t i s a t h i e n k u l, P., N. P r o m p o o n. Quality Assessment Method for Software

Requirements Specifications Based on Document Characteristics and Its Structure. – In: Proc.

of 2nd International Conference on Trustworthy Systems and Their Applications (TSA’15),

2015, pp. 51-60. DOI: 10.1109/TSA.2015.19.

57. G l e i c h, B., O. C r e i g h t o n, L. K o f. Ambiguity Detection: Towards a Tool Explaining

Ambiguity Sources. – Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 6182 LNCS, 2010,

No May, pp. 218-232. DOI: 10.1007/978-3-642-14192-8_20.

58. W i l m i n k, M., C. B o c k i s c h. On the Ability of Lightweight Checks to Detect Ambiguity

in Requirements Documentation. – Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Vol. 10153 LNCS, 2017, pp. 327-343. DOI: 10.1007/978-3-319-54045-0_23.

59. T j o n g, S. F., D. M. B e r r y. The Design of SREE – A Prototype Potential Ambiguity Finder for

Requirements Specifications and Lessons Learned. – Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Vol. 7830 LNCS, 2013, pp. 80-95. DOI: 10.1007/978-3-642-37422-7_6.

60. K a t o, T., K. T s u d a. A Method of Ambiguity Detection in Requirement Specifications by Using

a Knowledge Dictionary. – Procedia Computer Science, Vol. 207, 2022, pp. 1482-1489.

DOI: 10.1016/j.procs.2022.09.205.

61. M o r e n o, V., G. G. O r c i d, E. P a r r a, A. F r a g a. Application of Machine Learning Techniques

to the Flexible Assessment and Improvement of Requirements Quality. 2020.

DOI: 10.1007/s11219-020-09511-4.

62. H a n i s c h, L. Detecting Vague Requirements with Machine Learning Detecting Vague

Requirements with Machine Learning Detektion von Vagen Anforderungen mit Maschinellem

Lernen. – Department of Informatics Technical University of Munich, 2020.

63. O s m a n, M. H., M. F. Z a h a r i n. Ambiguous Software Requirement Specification Detection: An

Automated Approach. – In: Proc. of International Conference on Software Engineering, 2018,

pp. 33-40. DOI: 10.1145/3195538.3195545.

64. Y a n g, H., A. de R o e c k, V. G e r v a s i, A. W i l l i s, B. N u s e i b e h. Analysing Anaphoric

Ambiguity in Natural Language Requirements. – Requirements Engineering, Vol. 16, 2011,

No 3, pp. 163-169. DOI: 10.1007/s00766-011-0119-y.

65. E z z i n i, S., S. A b u a l h a i j a, C. A r o r a, M. S a b e t z a d e h. Automated Handling of

Anaphoric Ambiguity in Requirements: A Multi-Solution Study. – Proceedings International

Conference on Software Engineering, Vol. 2022-May, 2022, pp. 187-199.

DOI: 10.1145/3510003.3510157.

66. Z h a n g, H., M. A l i, P. T e l l. Identifying Relevant Studies in Software Engineering. –
Information and Software Technology, Vol. 53, 2011, No 6, pp. 625-637.

DOI: 10.1016/j.infsof.2010.12.010.

67. W o h l i n, C. Guidelines for Snowballing in Systematic Literature. – Studies and a Replication in

Software Engineering, 2014. DOI: 10.1145/2601248.2601268.

68. C r u z e s, D. S., T. D y b å. Recommended Steps for Thematic Synthesis in Software Engineering.

– In: Proc. of International Symposium on Empirical Software Engineering and Measurement,

2011, No 7491, pp. 275-284. DOI: 10.1109/esem.2011.36.

69. Y a n g, B., Z. X i n g, X. X i a, C. C h e n, D. Y e, S. L i. UIS-Hunter: Detecting UI Design Smells

in Android Apps. – Proceedings International Conference on Software Engineering, Vol. 1,

2021, No c, pp. 89-92. DOI: 10.1109/ICSE-Companion52605.2021.00043.

70. J u n k e r, M., S. E d e r, L. H e i n e m a n n, C. G m b h, R. V a a s, P. B r a u n, V. A g. Hunting for

Smells in Natural Language. – Tests No 1, pp. 4-7. DOI: 10.1109/ICSE.2013.6606682.

 106

71. Z h a o, L., W. A l h o s h a n, A. F e r r a r i, K. J. L e t s h o l o, M. A. A j a g b e, E. V. C h i o a s c a,

R. T. B a t i s t a-N a v a r r o. Natural Language Processing (NLP) for Requirements

Engineering : A Systematic Mapping Study. – ACM Computing Surveys (CSUR), Vol. 54,

2021, No 3, pp. 1-41. DOI: 10.1145/3444689.

72. K u m a w a t, D., V. J a i n. POS Tagging Approaches : A Comparison. – International Journal of

Computer Applications, Vol. 118, 2015, No 6, pp. 32-38. DOI: 10.5120/20752-3148.

73. A l t i n o k, D. Mastering SpaCy – An End-to-End Practical Guide to Implementing NLP

Applications Using the Python Ecosystem. Packt Publishing, Ltd., 2021.

74. T o u t a n o v a, K., D. K l e i n, C. D. M a n n i n g. Feature-Rich Part-of-Speech Tagging with a

Cyclic Dependency Network. – In: Proc. of HLT-NAACL 2003, 2003, No June, pp. 173-180.

DOI: 10.3115/1073445.1073478.

75. G a r d n e r, M., J. G r u s, M. N e u m a n n, O. T a f j o r d, P. D a s i g i, N. F. L i u, M. P e t e r s,

M. S c h m i t z, L. Z e t t l e m o y e r. AllenNLP: A Deep Semantic Natural Language

Processing Platform. – In: Proc. of Workshop for NLP Open Source Software (NLP-OSS’17),

2017, pp. 3-8. DOI: 10.18653/v1/W18-2501.

76. E c k a r t, R., D. C. I r y n a. A Broad-Coverage Collection of Portable NLP Components for

Building Shareable Analysis Pipelines. – Proceedings of Workshop on Open Infrastructures

and Analysis Frameworks for HLT, Vol. 2, 2014, No 1, pp. 1-11.

77. C u n n i n g h a m, H., S. C o m p u t e r s, N. M a y, H. C u n n i n g h a m. GATE, a General

Architecture for Text Engineering GATE, a General Architecture for Text Engineering. –

Computers and the Humanities, Vol. 36, 2002, No 2, pp. 223-254.

DOI: 10.1023/A:1014348124664.

78. T s u r u o k a, Y., Y. T a t e i s h i, J. D. K i m, T. O h t a, J. M c N a u g h t, S. A n a n i a d o u, J.

T s u j i i. Developing a Robust Part-of-Speech Tagger for Biomedical Text. – Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), Vol. 3746 LNCS, 2005, pp. 382-392. DOI: 10.1007/11573036_36.

79. G i u l i a n o, C. jWeb1T : A Library for Searching the Web 1T 5. – Gram Corpus, 2011, pp. 2011.

80. Z e s c h, T., C. M ü l l e r, I. G u r e v y c h. Extracting Lexical Semantic Knowledge from Wikipedia

and Wiktionary. – LREC, Vol. 8, 2007, No 2008, pp. 1646-1652.

81. Y a o, J. Automated Sentiment Analysis of Text Data with Automated Sentiment Analysis of Text

Data with NLTK. 2019, pp. 0-8. DOI: 10.1088/1742-6596/1187/5/052020.

82. L o p e r, E., S. B i r d. NLTK: The Natural Language Toolkit. ArXiv Preprint Cs/0205028, 2002.

83. H o r n b y, A. S. Oxford Advanced Learner’s Dictionary of Current English. – Oxford Univer Press.

84. F a b b r i n i, F., M. F u s a n i, S. G n e s i, G. L a m i. An Automatic Quality Evaluation for Natural

Language Requirements. – In: Proc. of 7th International Workshop on Requirements

Engineering: Foundation for Software Quality REFSQ, 2001, No March 2014.

85. L a m i, G., S. G n e s i, F. F a b b r i n i, M. F u s a n i, G. T r e n t a n n i. An Automatic Tool for the

Analysis of Natural Language Requirements. – Informe Técnico, CNR Information Science

and Technology Institute, 2004.

86. V e r m a, T a n u G a u r D. Tokenization and Filtering Process in RapidMiner. – International

Journal of Applied Information Systems, Vol. 7, 2014, No 2, pp.16-18.

87. R e a d, J., R. D r i d a n, S. O e p e n, L. J. S o l b e r g. Sentence Boundary Detection: A Long Solved

Problem ? – Proceedings of COLING 2012: Posters. No December 2012, pp. 985-994.

88. Q i, P., Y. Z h a n g, Y. Z h a n g, J. B o l t o n, C. D. M a n n i n g. Stanza: A Python Natural

Language Processing Toolkit for Many Human Languages. – ArXiv Preprint

ArXiv:200307082, 2020.

89. A s a n o, K., S. H a y a c h, M. S a e k i. Detecting Bad Smells of Refinement in Goal-Oriented

Requirements Analysis. – Advances in Conceptual Modeling. – In: Proc. of ER 2017

Workshops AHA, MoBiD, MREBA, OntoCom, and QMMQ, 2017, pp. 122-132.

DOI: 10.1007/978-3-319-70625-2.

90. M a n n i n g, C. D., M. S u r d e a n u, J. B a u e r, J. F i n k e l, S. J. B e t h a r d, D. M c C l o s k y.

The Stanford CoreNLP Natural Language Processing Toolkit. – In: Proc. of 52nd Annual

Meeting of the Association for Computational Linguistics: System Demonstrations, 2014,

pp. 55-60.

91. M i l l e r, G. A. WordNet : A Lexical Database for English. – Communications of the ACM,

Vol. 38, 1995, No 11, pp. 39-41. DOI: 10.1145/219717.219748.

 107

92. H i d e k i, S h i m a. WordNet Similarity for Java Relatedness – Similarity Algorithms, pp. 2-7.

93. B r i a n d, L., M. A l f e r e z, D. T o r r e, M. S a b e t z a d e h. On Systematically Building a

Controlled Natural. – Empirical Software Engineering, 2021.

DOI: 10.1007/s10664-021-09956-6.

94. D e i s s e n b o e c k, F., L. H e i n e m a n n, B. H u m m e l, E. J u e r g e n s. Flexible Architecture

Conformance Assessment with ConQAT. – ICSE’10, 2010, No 1.

95. W i l s o n, W. M., W. M. W i l s o n, L. H. R o s e n b e r g, L. R o s e n b e r g, L. E. H y a t t.

Automated Analysis of Requirement Specifications. – In: Proc. of 19th International

Conference on Software Engineering, 1997, pp. 161-171. DOI: 10.1145/253228.253258.

96. P e d r e g o s a, F., G. V a r o q u a u x, A. G r a m f o r t, et al. Scikit-Learn: Machine Learning in

Python. – Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825-2830.

97. H a l l, M., H. N a t i o n a l, E. F r a n k, G. H o l m e s, B. P f a h r i n g e r, P. R e u t e m a n n,

I. H. W i t t e n. The WEKA Data Mining Software. – An Update, Vol. 11, No 1, pp. 10-18.

DOI: 10.1145/1656274.1656278.

98. L e v y, R., G. A n d r e w. Tregex and Tsurgeon: Tools for Querying and Manipulating Tree Data

Structures. – LREC, 2005.

99. Z h o u, X., S. L i. A Map of Threats to Validity of Systematic. – Literature Reviews in Software

Engineering, 2016, pp. 153-160. DOI: 10.1109/APSEC.2016.62.

100. A m p a t z o g l o u, A., S. B i b i, P. A v g e r i o u, M. V e r b e e k, A. C h a t z i g e o r g i o u.

Identifying, Categorizing and Mitigating Threats to Validity in Software Engineering

Secondary Studies. 2016. DOI: 10.1016/j.infsof.2018.10.006.

101. S t a p i c, Z., E. G. L ó p e z, A. G. C a b o t, L. O r t e g a de M., V. S t r a h o n j a. Performing

Systematic literature Review in Software Engineering. – In: Proc. of Central European

Conference on Information and Intelligent Systems, 2012, No 2012, pp. 442-493.

DOI: 10.1145/1134285.1134500.

102. W o h l i n, C., P. R u n e s o n, M a r t i n Ḧ o s t, M. C. O h l s s o n, B. R e g n e l l,

A. W e s s l´e n. Experimentation in Software Engineering. Springer Science & Business

Media, 2012.

103. F a r r u g i a, P., B. A. P e t r i s o r, F. F a r r o k h y a r, M. B h a n d a r i. Practical Tips for

Surgical Research: Research Questions, Hypotheses and Objectives. – Canadian Journal of

Surgery Journal Canadien de Chirurgie, Vol. 53, 2010, No 4, pp. 278-281.

104. B e e r, A., M. F e l d e r e r. Initial Investigations on the Influence of Requirement Smells on Test-

Case Design. – In: Proc. of 25th IEEE International Requirements Engineering Conference

Workshops (REW’17), 2017, pp. 323-326. DOI: 10.1109/REW.2017.43.

105. P e i, Z., L. L i u, C. W a n g, J. W a n g. Requirements Engineering for Machine

Learning : A Review and Reflection. – In: Proc. of 30th IEEE International

Requirements Engineering Conference Workshops (REW’22), 2022, pp. 166-175.

DOI: 10.1109/REW56159.2022.00039.

106. R a t h, M., P. R e m p e l, M. P a t r i c k. The IlmSeven Dataset. – In: Proc. of 25th IEEE

International Requirements Engineering Conference, 2017, pp. 516-519.

107. S o m m e r v i l l e, I. Software Engineering. Ninth Edit. Addison-Wesley, 2011.

108. A v e r s a n o, L., U. C a r p e n i t o, M. I a m m a r i n o. An Empirical Study on the Evolution of

Test Smell. – In: Proc. of 42nd ACM/IEEE International Conference on Software Engineering:

Companion, ICSE-Companion, 2020, pp. 149-151. DOI: 10.1145/3377812.3382176.

Received: 03.10.2024; Accepted: 23.10.2024

