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Abstract: This paper presents a novel approach for similarity search with complex 

filtering capabilities on billion-scale datasets, optimized for CPU inference. Our 

method extends the classical IVF-Flat index structure to integrate multi-dimensional 

filters. The proposed algorithm combines dense embeddings with discrete filtering 

attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically 

for CPU-based systems, our disk-based approach offers a cost-effective solution for 

large-scale similarity search. We demonstrate the effectiveness of our method 

through a case study, showcasing its potential for various practical uses. 
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1. Introduction 

Similarity search, the task of finding similar vectors, has become a fundamental 

operation in machine learning, with applications in recommendation engines, 

semantic search systems, and more [1-3]. As datasets grow to billions of entries, the 

challenge of performing efficient searches on high-dimensional vectors becomes 

increasingly complex [4]. This is further compounded by the well-known curse of 

dimensionality [5], which affects the performance and accuracy of search algorithms 

as the number of dimensions increases. 
Approximate Nearest Neighbor (ANN) algorithms, such as Inverted File Index 

(IVF) [6] and Hierarchical Navigable Small World (HNSW) [7], have been 

developed to address scalability and performance issues. IVF segments the search 

space into smaller areas, called Voronoi cells [8], while HNSW constructs a 

navigable graph structure for efficient search space traversal. Despite their 

advancements, these methods often struggle to support complex, multi-dimensional 

filtering efficiently. This is crucial in practical scenarios where additional criteria 

beyond vector similarity are required to refine search results [6]. Examples of such 

scenarios include e-commerce product search and semantic search with filtering and 

recommendation systems. 

Our key contribution is a disk-based algorithm that integrates dense vectors with 

discrete filtering attributes, using an enhanced IVF-Flat structure for unified 
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similarity search and filtering. Our approach employs dynamic memory management, 

loading only necessary index parts into RAM during searches. This design efficiently 

handles datasets exceeding available memory, scaling to billion-scale data on a CPU 

server. Combining these elements into a cohesive system provides a practical solution 

for performing advanced similarity searches on massive datasets without the need for 

expensive GPU resources for inference. 

The paper is structured as follows: Section 2 reviews related work; Section 3 

provides an overview of important concepts used throughout this article; Section 4 

presents our proposed approach in detail; Section 5 demonstrates the applicability of 

our method through a case study; and Section 6 concludes the paper with a summary 

of our findings and potential future directions. 

2. Related work 

Similarity search has witnessed significant advancements in recent years, driven by 

the increasing prevalence of high-dimensional data in various domains [9]. This 

section reviews the most relevant literature to our work, focusing on techniques for 

ANN search and filtering in billion-scale datasets. 

2.1. Recent advancements in similarity search algorithms 

IVF has been a fundamental approach for ANN search in high-dimensional spaces. 

J é g o u, D o u z e  and S c h m i d  [6] introduced the concept of product quantization, 

enabling compact representation of high-dimensional vectors and efficient distance 

computation. This work laid the foundation for many subsequent IVF-based methods.  

B a r a n c h u k, B a b e n k o  and M a l k o v  [10] further investigated the 

scalability of inverted indices for billion-scale ANN search, proposing techniques for 

optimizing the index structure and search procedure. 

J o h n s o n, D o u z e  and J é g o u  [11] demonstrated the effectiveness of GPU-

based approaches for billion-scale similarity search, underlining the need for efficient 

methods to handle massive datasets. While GPU-based approaches have proven to be 

highly effective, they may not be the most cost-efficient solution for all use cases. 

Graph-based methods have emerged as another prominent approach for ANN 

search. M a l k o v  and Y a s h u n i n  [7] proposed the HNSW graph, which constructs 

a multi-layer navigable structure to facilitate efficient nearest-neighbor retrieval. The 

HNSW method has demonstrated strong performance on various benchmark datasets 

and has been widely adopted in practice. Later, Y a n g  et al. [12] proposed a 

hierarchical graph index structure and dual residual encoding scheme to improve the 

accuracy and efficiency of similarity search on billion-scale datasets.  

Recently, Z h a n g  et al. [13] proposed a Hybrid Inverted Index (HI2) that 

combines embedding clusters and salient terms to accelerate dense retrieval. HI2 aims 

to improve retrieval effectiveness and efficiency by leveraging both semantic and 

lexical features. 

However, incorporating filtering capabilities into ANN search has received 

limited attention in the literature. Filtered-DiskANN, proposed by Gollapudi et al. 

[14], represents a notable effort in this direction, extending the DiskANN system [15] 
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to support simple, one-dimensional filters within a graph-based index. While this 

work highlights the importance of filtering in practical similarity search scenarios, it 

is limited in efficiently handling complex, multi-dimensional, SQL-like filter 

expressions, as stated by the authors [14].  

While our work focuses on general similarity search, the proposed hybrid 

indexing approach could potentially be applied to specific domains like facial 

analysis. For instance, Al-Dujaili et al. propose a hybrid model for age estimation 

from facial images using machine learning techniques [16], demonstrating the broad 

applicability of combining multiple features for improved performance in various 

tasks. 

Several other works have explored various similar aspects, such as real-time 

updates in ANN indexes [17], distributed indexing techniques for streaming 

similarity search on billion-scale tweet datasets [18], and industry solutions like 

pgvector [19] and AnalyticDB [20]. However, these systems often face limitations 

regarding index size [21], dimensionality, filtering capabilities, or the hardware 

required [22, 23]. While these advancements have improved similarity search 

capabilities, scaling these methods to billion-scale datasets presents unique 

challenges. 

2.2. Large-scale similarity search methods 

Large-scale similarity search has evolved to meet the challenges of ever-growing 

datasets. Quantization-based methods, such as Product Quantization, compress high-

dimensional vectors to reduce memory requirements and accelerate computations, 

though they may sacrifice some accuracy. Graph-based approaches like HNSW 

construct navigable structures for efficient search, offering high accuracy but 

potentially becoming memory-intensive at a billion scale [24]. 

Tree-based and Locality-Sensitive Hashing (LSH) methods provide alternative 

strategies for partitioning the search space. However, they face issues with high-

dimensional data [25]. IVF-PQ (Inverted File with Product Quantization) combines 

inverted file structures with product quantization, balancing memory efficiency and 

fast search times. FAISS (Facebook AI Similarity Search) [26] offers a 

comprehensive library implementing many of these techniques, providing efficient 

similarity search and clustering for dense vectors. 

Despite these advancements, efficiently incorporating filtering capabilities into 

these methods remains a significant challenge for practical applications, often leading 

to performance degradation or requiring extensive post-processing.  

2.3. Vector search algorithms with filtering capabilities 

To contextualize our approach, we compare it with several prominent algorithms that 

attempt to address the filtering challenge. Filtered-DiskANN [14], developed by 

Microsoft, extends the DiskANN [15] system to support simple, one-dimensional 

filters within a graph-based index. While efficient, it’s limited in handling complex, 

multi-dimensional filtering expressions. 

The popular PostgreSQL extension pgvector [27] implements HNSW and IVF 

for vector similarity search. Although it performs well for small datasets, it struggles 
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with efficient filtering and index construction for billion-scale collections on typical 

CPU servers. Similarly, StreamingDiskANN (pgvectorscale [28]) aims to enhance 

pgvector's capabilities with disk-resident ANN search but faces challenges with large 

datasets on standard hardware. 

To illustrate these limitations, we conducted initial experiments before our 

large-scale evaluation in Section 5. Using a sample of 15 million 768-dimensional 

normalized vectors, we attempted to build indexes using both pgvector and 

pgvectorscale. These attempts were unsuccessful on CPU-based hardware, resulting 

in system unresponsiveness and excessive processing times [29]. These outcomes 

underscore the scalability challenges these methods face when dealing with large 

collections, setting the stage for our proposed approach. 

While the aforementioned approaches, methods, and libraries have made 

significant contributions, there remains a gap in efficient and flexible filtering 

capabilities for large-scale similarity searches. Our work aims to address this gap by 

proposing a novel approach that integrates similarity search and multi-dimensional 

filtering within an optimized IVF-Flat structure.  

3. Background 

Before exploring the details of our proposed approach, we provide a brief overview 

of the important notations used throughout this paper. 

3.1. Inverted File index (IVF) 

IVF is a fundamental approach for ANN search in high-dimensional spaces [6]. IVF 

partitions the search space into Voronoi cells (Section 3.3), each associated with a 

centroid vector. The IVF index consists of two main components: 

1. A set of 𝐾 centroids, denoted as 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, where each centroid 

𝑐𝑘  𝐷
 represents the center of the k-th Voronoi cell, k=1, …, K, and 𝐷 represents 

the dimensionality of the vectors in the dataset. 

2. A set of 𝐾 inverted lists, denoted as 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝐾}, where each list 𝐿𝑘 

contains the identifiers of the vectors assigned to the k-th centroid. 

During indexing, the identifiers (pointers) of dataset vectors are assigned to their 

nearest centroids, forming these inverted lists (Section 3.3). At query time, the search 

is limited to a subset of the most promising inverted lists (Section 4.4). 

3.2. IVF-Flat 

IVF-Flat extends the basic IVF index by incorporating a flat index structure within 

each inverted list. In our implementation, this flat index is stored on disk, maintaining 

the actual vectors in a contiguous file layout. The IVF-Flat index inherits the 

notations from the IVF index, with the addition of the flat index component within 

each inverted list 𝐿𝑘. 

3.3. Voronoi cells 

Voronoi cells are fundamental geometric structures and divide the vector space into 

regions, each containing all points closer to its associated centroid than to any other 
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centroid. Given a set of centroid vectors 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, the Voronoi cell 

associated with a given centroid 𝑐𝑘 is defined as 

(1)    𝑉𝑘 = 𝑣  𝐷| 𝑑(𝑣, 𝑐𝑘) < 𝑑(𝑣, 𝑐𝑗) for all j≠𝑘,  

where: 

• 𝑑(⋅,⋅) is a distance metric (e.g., Euclidean, cosine similarity); 

• 𝑣 is any point in the D-dimensional space; 

• 𝑑(𝑣, 𝑐𝑘) is the distance between point 𝑣 and centroid 𝑐𝑘; 

• (𝑣, 𝑐𝑗) is the distance between point 𝑣 and any other centroid 𝑐𝑗. 

3.4. Filtering attributes and conditions 

Filters in our approach are defined as additional criteria applied to refine search 

results based on specific attributes associated with the data points. These attributes 

encompass a range of metadata types, including but not limited to categorical labels, 

tags, numerical ranges, and other vector-associated information. For example, in an 

image search system, filters might include attributes like size, date, or content tags. 

In a given dataset of 𝑁 raw high-dimensional vectors, denoted as  

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁, where each vector 𝑥𝑖 ∈  𝐷
, we use 𝑀 as the number of filtering 

attributes, and respectively define a filter vector 𝑎𝑖 = [𝑎𝑖1
, 𝑎𝑖2

, … , 𝑎𝑖𝑀
]. These 

attributes represent the additional metadata that can be used to refine search results. 

A set of filtering conditions 𝐹 = 𝑓1, 𝑓2, … , 𝑓𝑀 specifies criteria for one or more 

of these M attributes. Each component fg, g = 1, …, M, of F defines a constraint on 

the g-th attribute across all vectors, utilizing relational operators and values to specify 

precise filtering criteria. As a practical example, consider a filtering condition that 

might require that a specific attribute equals a certain value or falls within a particular 

range. 

Each attribute is represented as a fixed-size integer value, facilitating rapid 

comparisons and bitwise operations. This encoding supports a diverse range of filter 

types, including exact match queries, range queries implemented via interval trees, 

and multi-attribute logical operations. To accommodate various data types, we 

employ one-hot encoding for categorical attributes and adaptive binning techniques 

for numerical attributes, striking a balance between expressiveness and 

dimensionality reduction.  

During a search operation, the filtering condition 𝐹 is applied to narrow down 

the set of candidate vectors, using the filter vector (Section 4.4). The search algorithm 

ensures that only vectors satisfying all specified conditions in F are considered for 

the ANN search.  

3.5. Vector types 

Throughout this work, we use several types of vectors: 

• Core vector (𝑥𝑖). The original, raw, high-dimensional vector representation 

of the data point, typically output from a neural network. We use 𝑥𝑖 ∈  𝐷
 to denote 

a core vector, where D is the dimensionality of the embedding space. 
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• Attribute vector (𝑎𝑖). Represents the discrete filtering attributes associated 

with each data point. We denote the attribute vector as 𝑎𝑖 = [𝑎𝑖1
, 𝑎𝑖2

, … , 𝑎𝑖𝑀 ], where 

𝑀 is the number of filtering attributes. 

• Hybrid vector (ℎ𝑖). The concatenation of the core vector and the attribute 

vector. It is represented as ℎ𝑖 (𝐷+𝑀)
, combining both the embeddings and the 

filtering attributes. 

• Query vector (𝑞). Represents the search query, which is a hybrid vector, a 

result from the concatenation from the core search vector and the search filtering 

attributes [ 𝑥input || 𝑎input] (|| denotes concatenation, see Section 4.4). 

It’s worth noting that we often use the terms “vector” and “embedding” 

interchangeably. 

4. Proposed approach 

In this section, we present the proposed approach for a cost-efficient, large-scale 

similarity search with complex filtering capabilities.  

4.1.  Constructing hybrid vectors 

First, we need to construct the hybrid vector, mentioned in Section 3.5. The hybrid 

vectors are denoted as 𝐻 = {ℎ1, ℎ2, … , ℎ𝑁}, where each vector ℎ𝑖  (𝐷+𝑀),  

i = 1, …, N. Given a dataset of 𝑁 raw high-dimensional vectors, denoted as  

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, where each vector 𝑥𝑖 ∈  D
, and a corresponding set of 

𝑀 filtering attributes, denoted as 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑀}, we construct the hybrid 

vectors as ℎ𝑖  =  [𝑥𝑖  || 𝑎𝑖], where ℎ𝑖 is the hybrid vector corresponding to the i-th data 

point, 𝑁 represents the total number of vectors in the dataset, and 𝑀 represents the 

number of filtering attributes available (Fig. 1). 

 
Fig. 1. How the hybrid vectors are constructed 

In Fig. 1 each row corresponds to the i-th data point and respectively represents: 

• ℎ1 to ℎ𝑁 – hybrid vector index. 

• 𝑥𝑖1
 to 𝑥𝑖𝐷

 – the core embedding (typically coming from a neural network). 

• 𝑎𝑖1
 to 𝑎𝑖𝑀

 – the filtering attributes. 

This unified representation offers several advantages: it eliminates the need for 

multiple indexing structures, reducing storage and maintenance overhead while 

providing flexible and dynamic filtering. By combining dense embedding vectors and 

discrete filtering attributes into a single hybrid vector, we create a compact 

representation that encapsulates both semantic similarity information and relevant 



 51 

metadata for each data point, allowing for easy modification of filtering conditions 

without altering the underlying index structure.  

4.2. Hybrid index construction 

The construction of the hybrid index involves several key steps: 

1. Centroid computation. K-Means or MiniBatchKMeans [30] clustering is 

performed on the core vectors 𝑥𝑖 ∈  𝐷
 to obtain 𝐾 cluster centroids, denoted as  

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, where each centroid 𝑐𝑘  𝐷
. These centroids serve as the 

representatives of the inverted lists and are used to guide the search process. 

2. Vector assignment. Each core vector 𝑥𝑖 is assigned to its nearest centroid cₖ 

based on a distance metric 𝑑(·,·), e.g., cosine similarity. This forms the inverted lists, 

denoted as 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝐾}, where each list Lₖ, k = 1, …, K, contains the indices 

of the core vectors assigned to the k-th centroid. 

3. Flat index construction. For each inverted list 𝐿𝑘, the full core vectors are 

stored. This flat storage approach means that the complete vector data is retained, as 

opposed to pointers or compressed, quantized representations.  

4. Filter attribute association. In addition to the core vectors, the index 

structure maintains the corresponding filter attributes for each vector. These attributes 

are stored in a manner that preserves their association with the core vectors, allowing 

for efficient filtering operations during the search process. 

The resulting structure (Fig. 2) allows quick identification of relevant clusters 

during search and enables filtering and precise distance calculations within those 

clusters. 

 
Fig. 2. Centroids, index elements, filters 

The number of centroids (𝐾) in the IVF-Flat index affects the trade-off between 

index size, construction time, and search efficiency [31]. A common heuristic is to 

set 𝐾 to 𝑁/1000 for datasets up to 1 million vectors, or sqrt(𝑁) for larger datasets, 

where 𝑁 is the total number of vectors (Section 4.3) [27].  

4.3. Centroid selection and search parameters 

The number of centroids (𝐾) in our hybrid indexing approach and the number of 

nearest centroids (𝑇) selected during the search significantly influence the 

performance and accuracy of similarity search with filtering. 

During index construction, 𝐾 determines the granularity of space partitioning. 

A larger 𝐾 results in finer partitioning, potentially improving search accuracy but 

increasing index size and construction time. Conversely, a smaller 𝐾 leads to coarser 

partitioning, reducing index size but potentially sacrificing some accuracy. We 
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empirically confirm the common heuristics that setting 𝐾 to approximately sqrt(𝑁), 

where 𝑁 is the total number of vectors, provides a good balance for billion-scale 

datasets. 

In query execution, 𝑇 affects both accuracy and performance. A small 𝑇 may 

miss relevant results, especially when filtering is applied, while a large 𝑇 can lead to 

slower search times. 

Regarding search complexity, while in the worst case, it can approach 𝑂(𝑁), in 

practice, the combination of centroid-based pruning and efficient filtering typically 

results in sub-linear search times. We provide empirical results (Section 5) 

demonstrating the effectiveness of this approach on billion-scale datasets. To address 

potential memory constraints, a future direction could be a disk-based storage 

strategy with intelligent caching. Frequently accessed parts of the index are kept in 

memory, while less frequently used portions are stored on disk.  

Also, it’s important to note that the optimal 𝐾 and 𝑇 can vary depending on 

factors such as data distribution, dimensionality, and specific filtering requirements. 

Future work could explore adaptive methods for determining 𝐾 and 𝑇 based on 

dataset characteristics, query patterns, and filter selectivity to further optimize the 

trade-off between search accuracy and speed. 

4.4. Search 

Given a query vector 𝑞 ∈ 
(𝐷+𝑀)

, containing an input for the search (core vector), 

denoted as 𝑥input, and list of filtering conditions as an attribute vector 𝑎input, our 

method performs the following steps to retrieve the top-k most similar vectors that 

satisfy the filtering criteria: 

Step 1. Construct the hybrid query vector 𝑞ℎ by concatenating the query vector 

𝑥input with the representation of the filtering conditions 𝑎input, i.e.,  

𝑞ℎ  =  [ 𝑥input || 𝑎input]. 

Step 2. Identify the 𝑇 nearest centroids to the hybrid query vector 𝑞ℎ based on 

the distance metric on 𝑥input part. This step narrows down the search space to the 

most promising inverted lists. All centroids should be stored in memory and each of 

the target centroids is denoted with 𝑐𝑡, where 𝑡 =  1, 2, … , 𝑇 (Fig. 3). 

Step 3. Apply the filtering conditions 𝐹 (as attribute vector) on the 𝑇 selected 

inverted lists by using an in-memory structure for the filters, discarding any vectors 

that do not satisfy the specified constraints in 𝑎input. This step ensures that only 

embeddings meeting the filtering criteria are considered for the next step. 

Step 4. For each of the filtered results, compute the distances between the input 

query vector 𝑥input and the vectors in the inverted lists. We leverage optimized BLAS 

(Basic Linear Algebra Subprograms) routines for efficient matrix operations.  

Step 5. Merge the filtered results from the 𝑇 inverted lists and select the top-k 

most similar vectors based on their distances to the query vector 𝑥input.  

The choice of 𝑇, the number of nearest centroids to consider, significantly 

impacts the trade-off between search accuracy and computational cost. A larger 𝑇 

increases the likelihood of finding relevant vectors but also increases search time and 

memory usage, while a smaller 𝑇 offers faster searches at the potential cost of recall. 
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Fig. 3. Searching procedure 

One key adaptation in our approach is the dynamic, memory-efficient loading 

strategy. During a search operation, only the vectors from the 𝑇 most relevant 

inverted lists that meet the filtering conditions are loaded into memory. This selective 

loading significantly reduces memory usage while maintaining high performance. 

Our disk-based, dynamically loaded structure effectively manages billion-scale 

datasets that exceed available RAM. By balancing disk storage with smart, on-

demand memory usage, our method achieves an optimal trade-off between 

scalability, memory efficiency, and search speed, making it well-suited for large-

scale similarity search tasks. 

4.5. Adding a new vector 

In real-world applications, the underlying vector dataset may undergo frequent 

updates, with new vectors being added. We propose a method for adding a new 

instance to the index. When a new vector 𝑥new and its corresponding filtering 

attributes 𝑎new are added to the dataset, we perform the following steps: 

Step 1. Construct the hybrid vector ℎnew by concatenating 𝑥𝑛𝑒𝑤 with the 

representation of 𝑎new, i.e., ℎnew  =  [𝑥new || 𝑎new]. 
Step 2. Identify the nearest centroid 𝑐𝑘 to  ℎnew based on the distance metric, 

calculated from 𝑥new part. 

Step 3. Append ℎnew to the inverted list 𝐿𝑘 associated with centroid 𝑐𝑘. 

Step 4. Update the flat index within 𝐿𝑘 to include ℎnew. 

5. Case study 

As stated in Section 2.3, our initial experiments demonstrated the limitations of 

existing methods like pgvector and pgvectorscale when dealing with large-scale 

datasets. Building upon these initial findings, we conducted a comprehensive case 

study to demonstrate the effectiveness and efficiency of our proposed algorithm. For 

this, we utilized the LAION-5B dataset [32], a large-scale multi-modal dataset 

containing over 5 billion image-text pairs. Specifically, we focused on a subset of 1 

billion image embeddings (Laion1B-nolang), each represented as a 768-dimensional 

vector generated by the CLIP ViT-L/14 model [33], along with their corresponding 

pre-constructed indexes.  
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The dataset also includes associated metadata, such as textual captions, URLs, 

and various attributes like image dimensions and licensing information.  We set 𝑇 

(the number of nearest centroids to identify) to 7 as it provides a good balance 

between search accuracy and computational efficiency. 

Table 1 shows the values of parameters used in this case study. 

Table 1. Parameters and values 

Parameter Name Value 

N Dataset size 1 billion (109) 

K Number of centroids (~sqrt(N)) 32,000 

D Dimensionality of vectors  768 

T Number of nearest centroids to identify 7 

M Number of filtering attributes 10 

V Average number of vectors per centroid 31,250 

We implement the algorithm using Python and the NumPy library for efficient 

numerical computations. The experiments are conducted on a server with the 

following specifications: CPU Intel(R) Xeon(R) E-2274G @ 4.00 GHz; 64 GB 

DDR4 RAM, 1×512 GB NVME HDD + 2×6 TB SATA. 

5.1. Hybrid vectors construction 

Hybrid vectors were constructed by concatenating 768-dimensional CLIP 

embeddings [33] with synthetic attribute vectors. For this case study, we append a 

10-dimensional vector (𝑀) to each CLIP embedding, resulting in hybrid vectors of 

dimensionality 778. 

The attribute vectors are generated to simulate realistic metadata while 

maintaining a controlled environment. Each dimension of the attribute vector is 

assigned a random integer value drawn from a uniform distribution in the range  

[–32768, 32767]. This range is chosen to fully utilize the float16 data type for storage 

efficiency while maintaining precision. 

By using synthetically generated attribute vectors, we can systematically 

evaluate our algorithm’s performance across a wide range of potential metadata 

configurations.  

5.2. Hybrid index construction 

Building indexes for billion-scale datasets is computationally intensive. The creators 

of LAION-5B addressed this challenge [34] using a distributed approach with 

Autofaiss (wrapper on FAISS [24]), splitting the 9TB embedding collection into 100 

parts, and leveraging 10 nodes for parallel processing, with construction time to 

approximately 16 hours. 

For our experiments, we utilized the pre-existing kNN index provided with the 

LAION-5B dataset and a few processing steps (e.g., merging with filters). To assess 

scalability, we also tested sci-kit-learn’s MiniBatchKMeans [30], constructing an 

index for our subset in a few hours on a CPU server. The exact time varied with 

parameters like batch size and iteration count. 

While GPU acceleration can significantly reduce indexing time, our focus 

remains on efficient CPU-based inference. Our proposed algorithm and optimizations 
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enable fast similarity search with complex filtering on billion-scale datasets without 

requiring GPU resources during the search phase. 

5.3. Search 

For the search, we used parallel processing by configuring 12 BLAS threads using 

the OMP_NUM_THREADS environment variable. The sequential execution on a 

single CPU initially took around 16 s, with the filtering step being the most time-

consuming. By utilizing this parallel processing setup, we were able to reduce the 

search time to approximately 1.428 s. 

Table 2. Search performance 

Operation Time, s 

Search in centroids 0.008 

Filtering 1.090 

Detailed search in clusters 0.330 

Total 1.428 

 

These results highlight the impact of hardware and parallelization [3, 35] on the 

performance of index creation and search algorithms. 

5.4. Discussions and limitations 

The case study demonstrates the effectiveness and efficiency of our proposed 

algorithm. However, certain limitations exist.  

Index construction time for billion-scale datasets can be substantial. Potential 

mitigations include using MiniBatchKMeans [30] for faster clustering or leveraging 

pre-constructed indexes when available. But the quality of search (i.e., recall) will 

not be as good as in standard k-Means. Also, some filter attributes may require 

preprocessing to fit storage constraints (e.g., float32), necessitating normalization or 

rescaling. 

Concurrent searches could also become a bottleneck, as different parts of the 

index are considered and transferred to memory in the various steps. The proposed 

approach is more suitable for less frequent access, such as in semantic search or 

recommendation systems. To overcome this challenge, several solutions can be 

adopted, including asynchronous request-reply patterns, utilizing a server with more 

memory or a GPU. 

In our experiments, we primarily tested with an exact match for the attribute 

vector. However, the method is designed to support a range of relational operators 

allowing for more complex filtering conditions (F, Section 3.4). This flexibility 

enables the system to handle diverse query requirements, though implementing and 

optimizing for various operators may require additional development and testing. 

Despite these challenges, our algorithm provides a practical and cost-efficient 

solution for similarity search with complex filtering. Future work could address these 

limitations, exploring adaptive techniques to balance index construction time, search 

efficiency, intelligent caching, and storage requirements. 



 56 

6. Conclusion 

In this paper, we presented a novel algorithm for cost-efficient similarity search with 

complex filtering capabilities on billion-scale datasets, optimized for CPU inference. 

Our approach extends the classical IVF-Flat structure by introducing hybrid vectors 

that integrate dense embeddings and discrete filtering attributes. This method, 

coupled with a dynamic memory management strategy, enables fast retrieval of 

relevant vectors while supporting a wide range of filtering conditions. 

Our method combines a hybrid vector representation, an efficient IVF-Flat 

structure, and a similarity search algorithm that utilizes these components to retrieve 

the most relevant vectors while satisfying complex filtering criteria. Through a case 

study on the LAION-5B dataset, we demonstrated the practical applicability and 

efficiency of our approach for large-scale, filterable similarity search. 

This work has implications for various applications, including semantic search, 

recommendation systems, and multimedia retrieval. It also opens avenues for future 

research, such as adaptive filtering techniques, parallel access improvements, and 

attribute compression methods. These potential enhancements could further extend 

our approach to handle an even wider range of real-world scenarios, providing more 

efficient and effective similarity search capabilities in the era of big data. 

 
Acknowledgment: This study is financed by the European Union-NextGenerationEU,  

through the National Recovery and Resilience Plan of the Republic of Bulgaria,  

Project No BG-RRP-2.004-0008-C01. 

R e f e r e n c e s 

1. B ö h m, C. Similarity Search and Data Mining: Database Techniques Supporting Next Decade’s 

Applications. – Unit for Database Systems, University for Health Informatics and Technology. 

2. F o s t e r, C., B. S e v i l m i s, B. K i m i a. Generalized Relative Neighborhood Graph (GRNG) for 

Similarity Search. – In: Proc. of International Conference on Similarity Search and 

Applications, Cham: Springer International Publishing, September 2022, pp. 133-149.  

3. G e d i k, B. Auto-Tuning Similarity Search Algorithms on Multi-Core Architectures. – International 

Journal of Parallel Programming, Vol. 41,  2013, No 5, pp. 595-620. 

4. K h o r s h i d i, M. S., N. Y a z d a n j u e, H. G h a r o u n, D. Y a z d a n i, M. R. N i k o o, F. C h e n, 

A. H. G a n d o m i. Semantic-Preserving Feature Partitioning for Multi-View Ensemble 

Learning. arXiv Preprint arXiv:2401.06251, 2024. 

5. K ö p p e n, M. The Curse of Dimensionality. – In: Proc. of 5th Online World Conference on Soft 

Computing in Industrial Applications (WSC5’00), Vol. 1, September 2000, pp. 4-8.  

6. J é g o u, H., M. D o u z e, C. S c h m i d. Product Quantization for Nearest Neighbor Search. – IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, 2011, No 1, pp. 117-128.  

https://doi.org/10.1109/TPAMI.2010.57 

7. M a l k o v, Y. A., D. A. Y a s h u n i n. Efficient and Robust Approximate Nearest Neighbor Search 

Using Hierarchical Navigable Small World Graphs. – IEEE Transactions on Pattern Analysis 

and Machine Intelligence, Vol. 42, 2020, No 4, pp. 824-836.  

https://doi.org/10.1109/TPAMI.2018.2889473 

8. S t u r m f e l s, B. Voronoi Cells. University of California, Berkeley,  2023 (Last accessed: 

26.07.2024).  

https://math.berkeley.edu/~bernd/wednesday.pdf 

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2018.2889473


 57 

9. E c h i h a b i, K., K. Z o u m p a t i a n o s, T. P a l p a n a s. High-Dimensional Similarity Search for 

Scalable Data Science. – In: Proc. of 37th IEEE International Conference on Data Engineering 

(ICDE’21), April 2021, pp. 2369-2372. 

10. B a r a n c h u k, D., A. B a b e n k o, Y. M a l k o v. Revisiting the Inverted Indices for Billion-Scale 

Approximate Nearest Neighbors. – In: Proc. of European Conference on Computer Vision 

(ECCV’18), 2018, pp. 202-216. 

11. J o h n s o n, J., M. D o u z e, H. J é g o u. Billion-Scale Similarity Search with GPUs. – IEEE 

Transactions on Big Data, Vol. 7,  2019, No 3, pp. 535-547. 

12. Y a n g, K., H. W a n g, M. D u, Z. W a n g, Z. T a n, Y. X i a o. Hierarchical Link and Code: Efficient 

Similarity Search for Billion-Scale Image Sets. – In: PG (Short Papers, Posters, and Work-in-

Progress Papers),  2021, pp. 81-86. 

13. Z h a n g, P., Z. L i u, S. X i a o, Z. D o u, J. Y a o. Hybrid Inverted Index Is a Robust Accelerator for 

Dense Retrieval. – In: Proc. of 2023 Conference on Empirical Methods in Natural Language 

Processing, December 2023, pp. 1877-1888. 

14. G o l l a p u d i, S., N. K a r i a, V. S i v a s h a n k a r, R. K r i s h n a s w a m y, N. B e g w a n i,  

S. R a z, Y. L i n, Y. Z h a n g, N. M a h a p a t r o, P. S r i n i v a s a n, A. S i n g h. Filtered-

DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters. – In: 

Proc. of ACM Web Conference 2023,  April 2023, pp. 3406-3416. 

15. J a y a r a m  S u b r a m a n y a, S., F. D e v v r i t, H. V. S i m h a d r i, R. K r i s h n a w a m y,  

R. K a d e k o d i. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single 

Node. – Advances in Neural Information Processing Systems, 2019, 32. 

16. A l-D u j a i l i, M. J., H. J a b a r  S a b a t  A h i l y. A New Hybrid Model to Predict Human Age 

Estimation from Face Images Based on Supervised Machine Learning Algorithms. – 

Cybernetics and Information Technologies, Vol. 23,  2023, No 2, pp. 20-33. 

17. S i n g h, A., S. J. S u b r a m a n y a, R. K r i s h n a s w a m y, H. V. S i m h a d r i. FreshDiskANN: 

A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search.  

arXiv Preprint arXiv:2105.09613,  2021. 

18. S u n d a r a m, N., A. T u r m u k h a m e t o v a, N. S a t i s h, T. M o s t a k, P. I n d y k,  

S. M a d d e n, P. D u b e y. Streaming Similarity Search over One Billion Tweets Using 

Parallel Locality-Sensitive Hashing. – In: Proc. of VLDB Endowment, Vol. 6,  2013, No 14, 

pp. 1930-1941. 

19. Pganalyze Blog. 5mins on Postgres: Vectors with PGvector. 2021 (Last accessed: 26.07.2024). 

https://pganalyze.com/blog/5mins-postgres-vectors-pgvector  

20. Alibaba Cloud. AnalyticDB: Real-time OLAP Database. 2021 (Last accessed: 26.07.2024).  

https://www.alibabacloud.com/product/analyticdb  

21. PostgreSQL Documentation: 16: 73.2. TOAST (Last accessed: 26.07.2024).  

https://www.postgresql.org/docs/current/storage-toast.html  

22. NVIDIA Developer Blog. Accelerating Vector Search Using GPU-Powered Indexes with RAPIDS 

Raft. 2021 (Last accessed: 26.07.2024).  

https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-

indexes-with-rapids-raft/  

23. NVIDIA Developer Blog. Accelerated Vector Search: Approximating with RAPIDS raft IVF-Flat. 

2021 (Last accessed: 26.07.2024).  

https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-

rapids-raft-ivf-flat/  

24. D o s h i, I., D. D a s, A. B h u t a n i, R. K u m a r, R. B h a t t, N. B a l a s u b r a m a n i a n. LANNS: 

A Web-Scale Approximate Nearest Neighbor Lookup System. – Proc. of VLDB Endowment, 

Vol. 15,  2021, pp. 850-858. 

25. S c h ä f e r, P., M. H ö g q v i s t. SFA: A Symbolic Fourier Approximation and Index for Similarity 

Search in High Dimensional Datasets. – In: Proc. of 15th International Conference on 

Extending Database Technology,  March 2012, pp. 516-527. 

26. D o u z e, M., A. G u z h v a, C. D e n g, J. J o h n s o n, G. S z i l v a s y, P. E. M a z a r é,  

M. L o m e l i, L. H o s s e i n i, H. J é g o u. The FAISS Library. arXiv Preprint 

arXiv:2401.08281,  2024. 

27. Pgvector (Last accessed: 26.07.2024).  

https://github.com/pgvector/pgvector  

https://pganalyze.com/blog/5mins-postgres-vectors-pgvector
https://www.alibabacloud.com/product/analyticdb
https://www.postgresql.org/docs/current/storage-toast.html
https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/
https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/
https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-rapids-raft-ivf-flat/
https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-rapids-raft-ivf-flat/
https://github.com/pgvector/pgvector


 58 

28. Pgvectorscale (Last accessed: 16.10.2024).  

https://github.com/timescale/pgvectorscale  

29. E m a n u i l o v, S. pgvectorscale – Accelerating AI Development with High-Performance Vector 

Search (Last accessed: 16.10.2024).  

https://unfoldai.com/pgvectorscale-extension-for-ai-apps/  

30. Scikit Learn,  MiniBatchKMeans  API  Reference and Documentation  (Last accessed: 26.07.2024). 

https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html  

31. G u p t a, G., T. M e d i n i, A. S h r i v a s t a v a, A. J. S m o l a. Bliss: A Billion Scale Index Using 

Iterative Re-Partitioning. – In: Proc. of 28th ACM SIGKDD Conference on Knowledge 

Discovery and Data Mining, August 2022, pp. 486-495. 

32. S c h u h m a n n, C., R. V e n c u, R. B e a u m o n t, R. K a c z m a r c z y k, C. M u l l i s, A. K a t t a, 

T. C o o m b e s, J. J i t s e v, A. K o m a t s u z a k i. LAION-5B: An Open Large-Scale Dataset 

for Training Next-Generation Image-Text Models. arXiv Preprint arXiv:2210.08402,  2022. 

33. R a d f o r d, A., J. W. K i m, C. H a l l a c y, A. R a m e s h, G. G o h, S. A g a r w a l, G. S a s t r y, 

A. A s k e l l, P. M i s h k i n, J. C l a r k, G. K r u e g e r. Learning Transferable Visual Models 

from Natural Language Supervision. – In: Proc. of International Conference on Machine 

Learning,  July 2021, pp. 8748-8763. 

34. B e a u m o n t, R. Semantic Search at Billions Scale (Last accessed: 26.07.2024).  

https://rom1504.medium.com/semantic-search-at-billions-scale-95f21695689a  

35. A z a d, A., O. S e l v i t o p i, M. T. H u s s a i n, J. R. G i l b e r t, A. B u l u ç. Combinatorial BLAS 

2.0: Scaling Combinatorial Algorithms on Distributed-Memory Systems. – IEEE Transactions 

on Parallel and Distributed Systems, Vol. 33, 2021, No 4, pp. 989-1001. 

 

Received: 27.07.2024; Second version: 11.10.2024; Accepted: 18.10.2024 
 

https://unfoldai.com/pgvectorscale-extension-for-ai-apps/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://rom1504.medium.com/semantic-search-at-billions-scale-95f21695689a

