
 45

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 24, No 4

Sofia • 2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0035

Billion-Scale Similarity Search Using a Hybrid Indexing Approach

with Advanced Filtering

Simeon Emanuilov, Aleksandar Dimov

Department of Software Technologies, Faculty of Mathematics and Informatics, Sofia University “St.

Kliment Ohridski”, Sofia, Bulgaria

E-mails: ssemanuilo@fmi.uni-sofia.bg aldi@fmi.uni-sofia.bg

Abstract: This paper presents a novel approach for similarity search with complex

filtering capabilities on billion-scale datasets, optimized for CPU inference. Our

method extends the classical IVF-Flat index structure to integrate multi-dimensional

filters. The proposed algorithm combines dense embeddings with discrete filtering

attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically

for CPU-based systems, our disk-based approach offers a cost-effective solution for

large-scale similarity search. We demonstrate the effectiveness of our method

through a case study, showcasing its potential for various practical uses.

Keywords: Similarity search, kNN, Billion-scale, Hybrid vectors, Filtered search.

1. Introduction

Similarity search, the task of finding similar vectors, has become a fundamental

operation in machine learning, with applications in recommendation engines,

semantic search systems, and more [1-3]. As datasets grow to billions of entries, the

challenge of performing efficient searches on high-dimensional vectors becomes

increasingly complex [4]. This is further compounded by the well-known curse of

dimensionality [5], which affects the performance and accuracy of search algorithms

as the number of dimensions increases.
Approximate Nearest Neighbor (ANN) algorithms, such as Inverted File Index

(IVF) [6] and Hierarchical Navigable Small World (HNSW) [7], have been

developed to address scalability and performance issues. IVF segments the search

space into smaller areas, called Voronoi cells [8], while HNSW constructs a

navigable graph structure for efficient search space traversal. Despite their

advancements, these methods often struggle to support complex, multi-dimensional

filtering efficiently. This is crucial in practical scenarios where additional criteria

beyond vector similarity are required to refine search results [6]. Examples of such

scenarios include e-commerce product search and semantic search with filtering and

recommendation systems.

Our key contribution is a disk-based algorithm that integrates dense vectors with

discrete filtering attributes, using an enhanced IVF-Flat structure for unified

mailto:ssemanuilo@fmi.uni-sofia.bg
https://unisofiafaculty-my.sharepoint.com/personal/ssemanuilo_office365faculty_uni-sofia_bg/Documents/Статии/aldi@fmi.uni-sofia.bg

 46

similarity search and filtering. Our approach employs dynamic memory management,

loading only necessary index parts into RAM during searches. This design efficiently

handles datasets exceeding available memory, scaling to billion-scale data on a CPU

server. Combining these elements into a cohesive system provides a practical solution

for performing advanced similarity searches on massive datasets without the need for

expensive GPU resources for inference.

The paper is structured as follows: Section 2 reviews related work; Section 3

provides an overview of important concepts used throughout this article; Section 4

presents our proposed approach in detail; Section 5 demonstrates the applicability of

our method through a case study; and Section 6 concludes the paper with a summary

of our findings and potential future directions.

2. Related work

Similarity search has witnessed significant advancements in recent years, driven by

the increasing prevalence of high-dimensional data in various domains [9]. This

section reviews the most relevant literature to our work, focusing on techniques for

ANN search and filtering in billion-scale datasets.

2.1. Recent advancements in similarity search algorithms

IVF has been a fundamental approach for ANN search in high-dimensional spaces.

J é g o u, D o u z e and S c h m i d [6] introduced the concept of product quantization,

enabling compact representation of high-dimensional vectors and efficient distance

computation. This work laid the foundation for many subsequent IVF-based methods.

B a r a n c h u k, B a b e n k o and M a l k o v [10] further investigated the

scalability of inverted indices for billion-scale ANN search, proposing techniques for

optimizing the index structure and search procedure.

J o h n s o n, D o u z e and J é g o u [11] demonstrated the effectiveness of GPU-

based approaches for billion-scale similarity search, underlining the need for efficient

methods to handle massive datasets. While GPU-based approaches have proven to be

highly effective, they may not be the most cost-efficient solution for all use cases.

Graph-based methods have emerged as another prominent approach for ANN

search. M a l k o v and Y a s h u n i n [7] proposed the HNSW graph, which constructs

a multi-layer navigable structure to facilitate efficient nearest-neighbor retrieval. The

HNSW method has demonstrated strong performance on various benchmark datasets

and has been widely adopted in practice. Later, Y a n g et al. [12] proposed a

hierarchical graph index structure and dual residual encoding scheme to improve the

accuracy and efficiency of similarity search on billion-scale datasets.

Recently, Z h a n g et al. [13] proposed a Hybrid Inverted Index (HI2) that

combines embedding clusters and salient terms to accelerate dense retrieval. HI2 aims

to improve retrieval effectiveness and efficiency by leveraging both semantic and

lexical features.

However, incorporating filtering capabilities into ANN search has received

limited attention in the literature. Filtered-DiskANN, proposed by Gollapudi et al.

[14], represents a notable effort in this direction, extending the DiskANN system [15]

 47

to support simple, one-dimensional filters within a graph-based index. While this

work highlights the importance of filtering in practical similarity search scenarios, it

is limited in efficiently handling complex, multi-dimensional, SQL-like filter

expressions, as stated by the authors [14].

While our work focuses on general similarity search, the proposed hybrid

indexing approach could potentially be applied to specific domains like facial

analysis. For instance, Al-Dujaili et al. propose a hybrid model for age estimation

from facial images using machine learning techniques [16], demonstrating the broad

applicability of combining multiple features for improved performance in various

tasks.

Several other works have explored various similar aspects, such as real-time

updates in ANN indexes [17], distributed indexing techniques for streaming

similarity search on billion-scale tweet datasets [18], and industry solutions like

pgvector [19] and AnalyticDB [20]. However, these systems often face limitations

regarding index size [21], dimensionality, filtering capabilities, or the hardware

required [22, 23]. While these advancements have improved similarity search

capabilities, scaling these methods to billion-scale datasets presents unique

challenges.

2.2. Large-scale similarity search methods

Large-scale similarity search has evolved to meet the challenges of ever-growing

datasets. Quantization-based methods, such as Product Quantization, compress high-

dimensional vectors to reduce memory requirements and accelerate computations,

though they may sacrifice some accuracy. Graph-based approaches like HNSW

construct navigable structures for efficient search, offering high accuracy but

potentially becoming memory-intensive at a billion scale [24].

Tree-based and Locality-Sensitive Hashing (LSH) methods provide alternative

strategies for partitioning the search space. However, they face issues with high-

dimensional data [25]. IVF-PQ (Inverted File with Product Quantization) combines

inverted file structures with product quantization, balancing memory efficiency and

fast search times. FAISS (Facebook AI Similarity Search) [26] offers a

comprehensive library implementing many of these techniques, providing efficient

similarity search and clustering for dense vectors.

Despite these advancements, efficiently incorporating filtering capabilities into

these methods remains a significant challenge for practical applications, often leading

to performance degradation or requiring extensive post-processing.

2.3. Vector search algorithms with filtering capabilities

To contextualize our approach, we compare it with several prominent algorithms that

attempt to address the filtering challenge. Filtered-DiskANN [14], developed by

Microsoft, extends the DiskANN [15] system to support simple, one-dimensional

filters within a graph-based index. While efficient, it’s limited in handling complex,

multi-dimensional filtering expressions.

The popular PostgreSQL extension pgvector [27] implements HNSW and IVF

for vector similarity search. Although it performs well for small datasets, it struggles

 48

with efficient filtering and index construction for billion-scale collections on typical

CPU servers. Similarly, StreamingDiskANN (pgvectorscale [28]) aims to enhance

pgvector's capabilities with disk-resident ANN search but faces challenges with large

datasets on standard hardware.

To illustrate these limitations, we conducted initial experiments before our

large-scale evaluation in Section 5. Using a sample of 15 million 768-dimensional

normalized vectors, we attempted to build indexes using both pgvector and

pgvectorscale. These attempts were unsuccessful on CPU-based hardware, resulting

in system unresponsiveness and excessive processing times [29]. These outcomes

underscore the scalability challenges these methods face when dealing with large

collections, setting the stage for our proposed approach.

While the aforementioned approaches, methods, and libraries have made

significant contributions, there remains a gap in efficient and flexible filtering

capabilities for large-scale similarity searches. Our work aims to address this gap by

proposing a novel approach that integrates similarity search and multi-dimensional

filtering within an optimized IVF-Flat structure.

3. Background

Before exploring the details of our proposed approach, we provide a brief overview

of the important notations used throughout this paper.

3.1. Inverted File index (IVF)

IVF is a fundamental approach for ANN search in high-dimensional spaces [6]. IVF

partitions the search space into Voronoi cells (Section 3.3), each associated with a

centroid vector. The IVF index consists of two main components:

1. A set of 𝐾 centroids, denoted as 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, where each centroid

𝑐𝑘  𝐷
 represents the center of the k-th Voronoi cell, k=1, …, K, and 𝐷 represents

the dimensionality of the vectors in the dataset.

2. A set of 𝐾 inverted lists, denoted as 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝐾}, where each list 𝐿𝑘

contains the identifiers of the vectors assigned to the k-th centroid.

During indexing, the identifiers (pointers) of dataset vectors are assigned to their

nearest centroids, forming these inverted lists (Section 3.3). At query time, the search

is limited to a subset of the most promising inverted lists (Section 4.4).

3.2. IVF-Flat

IVF-Flat extends the basic IVF index by incorporating a flat index structure within

each inverted list. In our implementation, this flat index is stored on disk, maintaining

the actual vectors in a contiguous file layout. The IVF-Flat index inherits the

notations from the IVF index, with the addition of the flat index component within

each inverted list 𝐿𝑘.

3.3. Voronoi cells

Voronoi cells are fundamental geometric structures and divide the vector space into

regions, each containing all points closer to its associated centroid than to any other

 49

centroid. Given a set of centroid vectors 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, the Voronoi cell

associated with a given centroid 𝑐𝑘 is defined as

(1) 𝑉𝑘 = 𝑣  𝐷| 𝑑(𝑣, 𝑐𝑘) < 𝑑(𝑣, 𝑐𝑗) for all j≠𝑘,

where:

• 𝑑(⋅,⋅) is a distance metric (e.g., Euclidean, cosine similarity);

• 𝑣 is any point in the D-dimensional space;

• 𝑑(𝑣, 𝑐𝑘) is the distance between point 𝑣 and centroid 𝑐𝑘;

• (𝑣, 𝑐𝑗) is the distance between point 𝑣 and any other centroid 𝑐𝑗.

3.4. Filtering attributes and conditions

Filters in our approach are defined as additional criteria applied to refine search

results based on specific attributes associated with the data points. These attributes

encompass a range of metadata types, including but not limited to categorical labels,

tags, numerical ranges, and other vector-associated information. For example, in an

image search system, filters might include attributes like size, date, or content tags.

In a given dataset of 𝑁 raw high-dimensional vectors, denoted as

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁, where each vector 𝑥𝑖 ∈  𝐷
, we use 𝑀 as the number of filtering

attributes, and respectively define a filter vector 𝑎𝑖 = [𝑎𝑖1
, 𝑎𝑖2

, … , 𝑎𝑖𝑀
]. These

attributes represent the additional metadata that can be used to refine search results.

A set of filtering conditions 𝐹 = 𝑓1, 𝑓2, … , 𝑓𝑀 specifies criteria for one or more

of these M attributes. Each component fg, g = 1, …, M, of F defines a constraint on

the g-th attribute across all vectors, utilizing relational operators and values to specify

precise filtering criteria. As a practical example, consider a filtering condition that

might require that a specific attribute equals a certain value or falls within a particular

range.

Each attribute is represented as a fixed-size integer value, facilitating rapid

comparisons and bitwise operations. This encoding supports a diverse range of filter

types, including exact match queries, range queries implemented via interval trees,

and multi-attribute logical operations. To accommodate various data types, we

employ one-hot encoding for categorical attributes and adaptive binning techniques

for numerical attributes, striking a balance between expressiveness and

dimensionality reduction.

During a search operation, the filtering condition 𝐹 is applied to narrow down

the set of candidate vectors, using the filter vector (Section 4.4). The search algorithm

ensures that only vectors satisfying all specified conditions in F are considered for

the ANN search.

3.5. Vector types

Throughout this work, we use several types of vectors:

• Core vector (𝑥𝑖). The original, raw, high-dimensional vector representation

of the data point, typically output from a neural network. We use 𝑥𝑖 ∈  𝐷
 to denote

a core vector, where D is the dimensionality of the embedding space.

 50

• Attribute vector (𝑎𝑖). Represents the discrete filtering attributes associated

with each data point. We denote the attribute vector as 𝑎𝑖 = [𝑎𝑖1
, 𝑎𝑖2

, … , 𝑎𝑖𝑀], where

𝑀 is the number of filtering attributes.

• Hybrid vector (ℎ𝑖). The concatenation of the core vector and the attribute

vector. It is represented as ℎ𝑖 (𝐷+𝑀)
, combining both the embeddings and the

filtering attributes.

• Query vector (𝑞). Represents the search query, which is a hybrid vector, a

result from the concatenation from the core search vector and the search filtering

attributes [𝑥input || 𝑎input] (|| denotes concatenation, see Section 4.4).

It’s worth noting that we often use the terms “vector” and “embedding”

interchangeably.

4. Proposed approach

In this section, we present the proposed approach for a cost-efficient, large-scale

similarity search with complex filtering capabilities.

4.1. Constructing hybrid vectors

First, we need to construct the hybrid vector, mentioned in Section 3.5. The hybrid

vectors are denoted as 𝐻 = {ℎ1, ℎ2, … , ℎ𝑁}, where each vector ℎ𝑖  (𝐷+𝑀),

i = 1, …, N. Given a dataset of 𝑁 raw high-dimensional vectors, denoted as

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, where each vector 𝑥𝑖 ∈  D
, and a corresponding set of

𝑀 filtering attributes, denoted as 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑀}, we construct the hybrid

vectors as ℎ𝑖  =  [𝑥𝑖  || 𝑎𝑖], where ℎ𝑖 is the hybrid vector corresponding to the i-th data

point, 𝑁 represents the total number of vectors in the dataset, and 𝑀 represents the

number of filtering attributes available (Fig. 1).

Fig. 1. How the hybrid vectors are constructed

In Fig. 1 each row corresponds to the i-th data point and respectively represents:

• ℎ1 to ℎ𝑁 – hybrid vector index.

• 𝑥𝑖1
 to 𝑥𝑖𝐷

 – the core embedding (typically coming from a neural network).

• 𝑎𝑖1
 to 𝑎𝑖𝑀

 – the filtering attributes.

This unified representation offers several advantages: it eliminates the need for

multiple indexing structures, reducing storage and maintenance overhead while

providing flexible and dynamic filtering. By combining dense embedding vectors and

discrete filtering attributes into a single hybrid vector, we create a compact

representation that encapsulates both semantic similarity information and relevant

 51

metadata for each data point, allowing for easy modification of filtering conditions

without altering the underlying index structure.

4.2. Hybrid index construction

The construction of the hybrid index involves several key steps:

1. Centroid computation. K-Means or MiniBatchKMeans [30] clustering is

performed on the core vectors 𝑥𝑖 ∈  𝐷
 to obtain 𝐾 cluster centroids, denoted as

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, where each centroid 𝑐𝑘  𝐷
. These centroids serve as the

representatives of the inverted lists and are used to guide the search process.

2. Vector assignment. Each core vector 𝑥𝑖 is assigned to its nearest centroid cₖ

based on a distance metric 𝑑(·,·), e.g., cosine similarity. This forms the inverted lists,

denoted as 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝐾}, where each list Lₖ, k = 1, …, K, contains the indices

of the core vectors assigned to the k-th centroid.

3. Flat index construction. For each inverted list 𝐿𝑘, the full core vectors are

stored. This flat storage approach means that the complete vector data is retained, as

opposed to pointers or compressed, quantized representations.

4. Filter attribute association. In addition to the core vectors, the index

structure maintains the corresponding filter attributes for each vector. These attributes

are stored in a manner that preserves their association with the core vectors, allowing

for efficient filtering operations during the search process.

The resulting structure (Fig. 2) allows quick identification of relevant clusters

during search and enables filtering and precise distance calculations within those

clusters.

Fig. 2. Centroids, index elements, filters

The number of centroids (𝐾) in the IVF-Flat index affects the trade-off between

index size, construction time, and search efficiency [31]. A common heuristic is to

set 𝐾 to 𝑁/1000 for datasets up to 1 million vectors, or sqrt(𝑁) for larger datasets,

where 𝑁 is the total number of vectors (Section 4.3) [27].

4.3. Centroid selection and search parameters

The number of centroids (𝐾) in our hybrid indexing approach and the number of

nearest centroids (𝑇) selected during the search significantly influence the

performance and accuracy of similarity search with filtering.

During index construction, 𝐾 determines the granularity of space partitioning.

A larger 𝐾 results in finer partitioning, potentially improving search accuracy but

increasing index size and construction time. Conversely, a smaller 𝐾 leads to coarser

partitioning, reducing index size but potentially sacrificing some accuracy. We

 52

empirically confirm the common heuristics that setting 𝐾 to approximately sqrt(𝑁),

where 𝑁 is the total number of vectors, provides a good balance for billion-scale

datasets.

In query execution, 𝑇 affects both accuracy and performance. A small 𝑇 may

miss relevant results, especially when filtering is applied, while a large 𝑇 can lead to

slower search times.

Regarding search complexity, while in the worst case, it can approach 𝑂(𝑁), in

practice, the combination of centroid-based pruning and efficient filtering typically

results in sub-linear search times. We provide empirical results (Section 5)

demonstrating the effectiveness of this approach on billion-scale datasets. To address

potential memory constraints, a future direction could be a disk-based storage

strategy with intelligent caching. Frequently accessed parts of the index are kept in

memory, while less frequently used portions are stored on disk.

Also, it’s important to note that the optimal 𝐾 and 𝑇 can vary depending on

factors such as data distribution, dimensionality, and specific filtering requirements.

Future work could explore adaptive methods for determining 𝐾 and 𝑇 based on

dataset characteristics, query patterns, and filter selectivity to further optimize the

trade-off between search accuracy and speed.

4.4. Search

Given a query vector 𝑞 ∈ 
(𝐷+𝑀)

, containing an input for the search (core vector),

denoted as 𝑥input, and list of filtering conditions as an attribute vector 𝑎input, our

method performs the following steps to retrieve the top-k most similar vectors that

satisfy the filtering criteria:

Step 1. Construct the hybrid query vector 𝑞ℎ by concatenating the query vector

𝑥input with the representation of the filtering conditions 𝑎input, i.e.,

𝑞ℎ = [𝑥input || 𝑎input].

Step 2. Identify the 𝑇 nearest centroids to the hybrid query vector 𝑞ℎ based on

the distance metric on 𝑥input part. This step narrows down the search space to the

most promising inverted lists. All centroids should be stored in memory and each of

the target centroids is denoted with 𝑐𝑡, where 𝑡 = 1, 2, … , 𝑇 (Fig. 3).

Step 3. Apply the filtering conditions 𝐹 (as attribute vector) on the 𝑇 selected

inverted lists by using an in-memory structure for the filters, discarding any vectors

that do not satisfy the specified constraints in 𝑎input. This step ensures that only

embeddings meeting the filtering criteria are considered for the next step.

Step 4. For each of the filtered results, compute the distances between the input

query vector 𝑥input and the vectors in the inverted lists. We leverage optimized BLAS

(Basic Linear Algebra Subprograms) routines for efficient matrix operations.

Step 5. Merge the filtered results from the 𝑇 inverted lists and select the top-k

most similar vectors based on their distances to the query vector 𝑥input.

The choice of 𝑇, the number of nearest centroids to consider, significantly

impacts the trade-off between search accuracy and computational cost. A larger 𝑇

increases the likelihood of finding relevant vectors but also increases search time and

memory usage, while a smaller 𝑇 offers faster searches at the potential cost of recall.

 53

Fig. 3. Searching procedure

One key adaptation in our approach is the dynamic, memory-efficient loading

strategy. During a search operation, only the vectors from the 𝑇 most relevant

inverted lists that meet the filtering conditions are loaded into memory. This selective

loading significantly reduces memory usage while maintaining high performance.

Our disk-based, dynamically loaded structure effectively manages billion-scale

datasets that exceed available RAM. By balancing disk storage with smart, on-

demand memory usage, our method achieves an optimal trade-off between

scalability, memory efficiency, and search speed, making it well-suited for large-

scale similarity search tasks.

4.5. Adding a new vector

In real-world applications, the underlying vector dataset may undergo frequent

updates, with new vectors being added. We propose a method for adding a new

instance to the index. When a new vector 𝑥new and its corresponding filtering

attributes 𝑎new are added to the dataset, we perform the following steps:

Step 1. Construct the hybrid vector ℎnew by concatenating 𝑥𝑛𝑒𝑤 with the

representation of 𝑎new, i.e., ℎnew = [𝑥new || 𝑎new].
Step 2. Identify the nearest centroid 𝑐𝑘 to ℎnew based on the distance metric,

calculated from 𝑥new part.

Step 3. Append ℎnew to the inverted list 𝐿𝑘 associated with centroid 𝑐𝑘.

Step 4. Update the flat index within 𝐿𝑘 to include ℎnew.

5. Case study

As stated in Section 2.3, our initial experiments demonstrated the limitations of

existing methods like pgvector and pgvectorscale when dealing with large-scale

datasets. Building upon these initial findings, we conducted a comprehensive case

study to demonstrate the effectiveness and efficiency of our proposed algorithm. For

this, we utilized the LAION-5B dataset [32], a large-scale multi-modal dataset

containing over 5 billion image-text pairs. Specifically, we focused on a subset of 1

billion image embeddings (Laion1B-nolang), each represented as a 768-dimensional

vector generated by the CLIP ViT-L/14 model [33], along with their corresponding

pre-constructed indexes.

 54

The dataset also includes associated metadata, such as textual captions, URLs,

and various attributes like image dimensions and licensing information. We set 𝑇

(the number of nearest centroids to identify) to 7 as it provides a good balance

between search accuracy and computational efficiency.

Table 1 shows the values of parameters used in this case study.

Table 1. Parameters and values

Parameter Name Value

N Dataset size 1 billion (109)

K Number of centroids (~sqrt(N)) 32,000

D Dimensionality of vectors 768

T Number of nearest centroids to identify 7

M Number of filtering attributes 10

V Average number of vectors per centroid 31,250

We implement the algorithm using Python and the NumPy library for efficient

numerical computations. The experiments are conducted on a server with the

following specifications: CPU Intel(R) Xeon(R) E-2274G @ 4.00 GHz; 64 GB

DDR4 RAM, 1×512 GB NVME HDD + 2×6 TB SATA.

5.1. Hybrid vectors construction

Hybrid vectors were constructed by concatenating 768-dimensional CLIP

embeddings [33] with synthetic attribute vectors. For this case study, we append a

10-dimensional vector (𝑀) to each CLIP embedding, resulting in hybrid vectors of

dimensionality 778.

The attribute vectors are generated to simulate realistic metadata while

maintaining a controlled environment. Each dimension of the attribute vector is

assigned a random integer value drawn from a uniform distribution in the range

[–32768, 32767]. This range is chosen to fully utilize the float16 data type for storage

efficiency while maintaining precision.

By using synthetically generated attribute vectors, we can systematically

evaluate our algorithm’s performance across a wide range of potential metadata

configurations.

5.2. Hybrid index construction

Building indexes for billion-scale datasets is computationally intensive. The creators

of LAION-5B addressed this challenge [34] using a distributed approach with

Autofaiss (wrapper on FAISS [24]), splitting the 9TB embedding collection into 100

parts, and leveraging 10 nodes for parallel processing, with construction time to

approximately 16 hours.

For our experiments, we utilized the pre-existing kNN index provided with the

LAION-5B dataset and a few processing steps (e.g., merging with filters). To assess

scalability, we also tested sci-kit-learn’s MiniBatchKMeans [30], constructing an

index for our subset in a few hours on a CPU server. The exact time varied with

parameters like batch size and iteration count.

While GPU acceleration can significantly reduce indexing time, our focus

remains on efficient CPU-based inference. Our proposed algorithm and optimizations

 55

enable fast similarity search with complex filtering on billion-scale datasets without

requiring GPU resources during the search phase.

5.3. Search

For the search, we used parallel processing by configuring 12 BLAS threads using

the OMP_NUM_THREADS environment variable. The sequential execution on a

single CPU initially took around 16 s, with the filtering step being the most time-

consuming. By utilizing this parallel processing setup, we were able to reduce the

search time to approximately 1.428 s.

Table 2. Search performance

Operation Time, s

Search in centroids 0.008

Filtering 1.090

Detailed search in clusters 0.330

Total 1.428

These results highlight the impact of hardware and parallelization [3, 35] on the

performance of index creation and search algorithms.

5.4. Discussions and limitations

The case study demonstrates the effectiveness and efficiency of our proposed

algorithm. However, certain limitations exist.

Index construction time for billion-scale datasets can be substantial. Potential

mitigations include using MiniBatchKMeans [30] for faster clustering or leveraging

pre-constructed indexes when available. But the quality of search (i.e., recall) will

not be as good as in standard k-Means. Also, some filter attributes may require

preprocessing to fit storage constraints (e.g., float32), necessitating normalization or

rescaling.

Concurrent searches could also become a bottleneck, as different parts of the

index are considered and transferred to memory in the various steps. The proposed

approach is more suitable for less frequent access, such as in semantic search or

recommendation systems. To overcome this challenge, several solutions can be

adopted, including asynchronous request-reply patterns, utilizing a server with more

memory or a GPU.

In our experiments, we primarily tested with an exact match for the attribute

vector. However, the method is designed to support a range of relational operators

allowing for more complex filtering conditions (F, Section 3.4). This flexibility

enables the system to handle diverse query requirements, though implementing and

optimizing for various operators may require additional development and testing.

Despite these challenges, our algorithm provides a practical and cost-efficient

solution for similarity search with complex filtering. Future work could address these

limitations, exploring adaptive techniques to balance index construction time, search

efficiency, intelligent caching, and storage requirements.

 56

6. Conclusion

In this paper, we presented a novel algorithm for cost-efficient similarity search with

complex filtering capabilities on billion-scale datasets, optimized for CPU inference.

Our approach extends the classical IVF-Flat structure by introducing hybrid vectors

that integrate dense embeddings and discrete filtering attributes. This method,

coupled with a dynamic memory management strategy, enables fast retrieval of

relevant vectors while supporting a wide range of filtering conditions.

Our method combines a hybrid vector representation, an efficient IVF-Flat

structure, and a similarity search algorithm that utilizes these components to retrieve

the most relevant vectors while satisfying complex filtering criteria. Through a case

study on the LAION-5B dataset, we demonstrated the practical applicability and

efficiency of our approach for large-scale, filterable similarity search.

This work has implications for various applications, including semantic search,

recommendation systems, and multimedia retrieval. It also opens avenues for future

research, such as adaptive filtering techniques, parallel access improvements, and

attribute compression methods. These potential enhancements could further extend

our approach to handle an even wider range of real-world scenarios, providing more

efficient and effective similarity search capabilities in the era of big data.

Acknowledgment: This study is financed by the European Union-NextGenerationEU,

through the National Recovery and Resilience Plan of the Republic of Bulgaria,

Project No BG-RRP-2.004-0008-C01.

R e f e r e n c e s

1. B ö h m, C. Similarity Search and Data Mining: Database Techniques Supporting Next Decade’s

Applications. – Unit for Database Systems, University for Health Informatics and Technology.

2. F o s t e r, C., B. S e v i l m i s, B. K i m i a. Generalized Relative Neighborhood Graph (GRNG) for

Similarity Search. – In: Proc. of International Conference on Similarity Search and

Applications, Cham: Springer International Publishing, September 2022, pp. 133-149.

3. G e d i k, B. Auto-Tuning Similarity Search Algorithms on Multi-Core Architectures. – International

Journal of Parallel Programming, Vol. 41, 2013, No 5, pp. 595-620.

4. K h o r s h i d i, M. S., N. Y a z d a n j u e, H. G h a r o u n, D. Y a z d a n i, M. R. N i k o o, F. C h e n,

A. H. G a n d o m i. Semantic-Preserving Feature Partitioning for Multi-View Ensemble

Learning. arXiv Preprint arXiv:2401.06251, 2024.

5. K ö p p e n, M. The Curse of Dimensionality. – In: Proc. of 5th Online World Conference on Soft

Computing in Industrial Applications (WSC5’00), Vol. 1, September 2000, pp. 4-8.

6. J é g o u, H., M. D o u z e, C. S c h m i d. Product Quantization for Nearest Neighbor Search. – IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, 2011, No 1, pp. 117-128.

https://doi.org/10.1109/TPAMI.2010.57

7. M a l k o v, Y. A., D. A. Y a s h u n i n. Efficient and Robust Approximate Nearest Neighbor Search

Using Hierarchical Navigable Small World Graphs. – IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 42, 2020, No 4, pp. 824-836.

https://doi.org/10.1109/TPAMI.2018.2889473

8. S t u r m f e l s, B. Voronoi Cells. University of California, Berkeley, 2023 (Last accessed:

26.07.2024).

https://math.berkeley.edu/~bernd/wednesday.pdf

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2018.2889473

 57

9. E c h i h a b i, K., K. Z o u m p a t i a n o s, T. P a l p a n a s. High-Dimensional Similarity Search for

Scalable Data Science. – In: Proc. of 37th IEEE International Conference on Data Engineering

(ICDE’21), April 2021, pp. 2369-2372.

10. B a r a n c h u k, D., A. B a b e n k o, Y. M a l k o v. Revisiting the Inverted Indices for Billion-Scale

Approximate Nearest Neighbors. – In: Proc. of European Conference on Computer Vision

(ECCV’18), 2018, pp. 202-216.

11. J o h n s o n, J., M. D o u z e, H. J é g o u. Billion-Scale Similarity Search with GPUs. – IEEE

Transactions on Big Data, Vol. 7, 2019, No 3, pp. 535-547.

12. Y a n g, K., H. W a n g, M. D u, Z. W a n g, Z. T a n, Y. X i a o. Hierarchical Link and Code: Efficient

Similarity Search for Billion-Scale Image Sets. – In: PG (Short Papers, Posters, and Work-in-

Progress Papers), 2021, pp. 81-86.

13. Z h a n g, P., Z. L i u, S. X i a o, Z. D o u, J. Y a o. Hybrid Inverted Index Is a Robust Accelerator for

Dense Retrieval. – In: Proc. of 2023 Conference on Empirical Methods in Natural Language

Processing, December 2023, pp. 1877-1888.

14. G o l l a p u d i, S., N. K a r i a, V. S i v a s h a n k a r, R. K r i s h n a s w a m y, N. B e g w a n i,

S. R a z, Y. L i n, Y. Z h a n g, N. M a h a p a t r o, P. S r i n i v a s a n, A. S i n g h. Filtered-

DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters. – In:

Proc. of ACM Web Conference 2023, April 2023, pp. 3406-3416.

15. J a y a r a m S u b r a m a n y a, S., F. D e v v r i t, H. V. S i m h a d r i, R. K r i s h n a w a m y,

R. K a d e k o d i. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single

Node. – Advances in Neural Information Processing Systems, 2019, 32.

16. A l-D u j a i l i, M. J., H. J a b a r S a b a t A h i l y. A New Hybrid Model to Predict Human Age

Estimation from Face Images Based on Supervised Machine Learning Algorithms. –

Cybernetics and Information Technologies, Vol. 23, 2023, No 2, pp. 20-33.

17. S i n g h, A., S. J. S u b r a m a n y a, R. K r i s h n a s w a m y, H. V. S i m h a d r i. FreshDiskANN:

A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search.

arXiv Preprint arXiv:2105.09613, 2021.

18. S u n d a r a m, N., A. T u r m u k h a m e t o v a, N. S a t i s h, T. M o s t a k, P. I n d y k,

S. M a d d e n, P. D u b e y. Streaming Similarity Search over One Billion Tweets Using

Parallel Locality-Sensitive Hashing. – In: Proc. of VLDB Endowment, Vol. 6, 2013, No 14,

pp. 1930-1941.

19. Pganalyze Blog. 5mins on Postgres: Vectors with PGvector. 2021 (Last accessed: 26.07.2024).

https://pganalyze.com/blog/5mins-postgres-vectors-pgvector

20. Alibaba Cloud. AnalyticDB: Real-time OLAP Database. 2021 (Last accessed: 26.07.2024).

https://www.alibabacloud.com/product/analyticdb

21. PostgreSQL Documentation: 16: 73.2. TOAST (Last accessed: 26.07.2024).

https://www.postgresql.org/docs/current/storage-toast.html

22. NVIDIA Developer Blog. Accelerating Vector Search Using GPU-Powered Indexes with RAPIDS

Raft. 2021 (Last accessed: 26.07.2024).

https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-

indexes-with-rapids-raft/

23. NVIDIA Developer Blog. Accelerated Vector Search: Approximating with RAPIDS raft IVF-Flat.

2021 (Last accessed: 26.07.2024).

https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-

rapids-raft-ivf-flat/

24. D o s h i, I., D. D a s, A. B h u t a n i, R. K u m a r, R. B h a t t, N. B a l a s u b r a m a n i a n. LANNS:

A Web-Scale Approximate Nearest Neighbor Lookup System. – Proc. of VLDB Endowment,

Vol. 15, 2021, pp. 850-858.

25. S c h ä f e r, P., M. H ö g q v i s t. SFA: A Symbolic Fourier Approximation and Index for Similarity

Search in High Dimensional Datasets. – In: Proc. of 15th International Conference on

Extending Database Technology, March 2012, pp. 516-527.

26. D o u z e, M., A. G u z h v a, C. D e n g, J. J o h n s o n, G. S z i l v a s y, P. E. M a z a r é,

M. L o m e l i, L. H o s s e i n i, H. J é g o u. The FAISS Library. arXiv Preprint

arXiv:2401.08281, 2024.

27. Pgvector (Last accessed: 26.07.2024).

https://github.com/pgvector/pgvector

https://pganalyze.com/blog/5mins-postgres-vectors-pgvector
https://www.alibabacloud.com/product/analyticdb
https://www.postgresql.org/docs/current/storage-toast.html
https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/
https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/
https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-rapids-raft-ivf-flat/
https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-rapids-raft-ivf-flat/
https://github.com/pgvector/pgvector

 58

28. Pgvectorscale (Last accessed: 16.10.2024).

https://github.com/timescale/pgvectorscale

29. E m a n u i l o v, S. pgvectorscale – Accelerating AI Development with High-Performance Vector

Search (Last accessed: 16.10.2024).

https://unfoldai.com/pgvectorscale-extension-for-ai-apps/

30. Scikit Learn, MiniBatchKMeans API Reference and Documentation (Last accessed: 26.07.2024).

https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

31. G u p t a, G., T. M e d i n i, A. S h r i v a s t a v a, A. J. S m o l a. Bliss: A Billion Scale Index Using

Iterative Re-Partitioning. – In: Proc. of 28th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, August 2022, pp. 486-495.

32. S c h u h m a n n, C., R. V e n c u, R. B e a u m o n t, R. K a c z m a r c z y k, C. M u l l i s, A. K a t t a,

T. C o o m b e s, J. J i t s e v, A. K o m a t s u z a k i. LAION-5B: An Open Large-Scale Dataset

for Training Next-Generation Image-Text Models. arXiv Preprint arXiv:2210.08402, 2022.

33. R a d f o r d, A., J. W. K i m, C. H a l l a c y, A. R a m e s h, G. G o h, S. A g a r w a l, G. S a s t r y,

A. A s k e l l, P. M i s h k i n, J. C l a r k, G. K r u e g e r. Learning Transferable Visual Models

from Natural Language Supervision. – In: Proc. of International Conference on Machine

Learning, July 2021, pp. 8748-8763.

34. B e a u m o n t, R. Semantic Search at Billions Scale (Last accessed: 26.07.2024).

https://rom1504.medium.com/semantic-search-at-billions-scale-95f21695689a

35. A z a d, A., O. S e l v i t o p i, M. T. H u s s a i n, J. R. G i l b e r t, A. B u l u ç. Combinatorial BLAS

2.0: Scaling Combinatorial Algorithms on Distributed-Memory Systems. – IEEE Transactions

on Parallel and Distributed Systems, Vol. 33, 2021, No 4, pp. 989-1001.

Received: 27.07.2024; Second version: 11.10.2024; Accepted: 18.10.2024

https://unfoldai.com/pgvectorscale-extension-for-ai-apps/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://rom1504.medium.com/semantic-search-at-billions-scale-95f21695689a

