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Abstract: Hiking is popular, but mountain accidents are serious problems. 

Accurately predicting hiking travel time is an essential factor in preventing mountain 

accidents. However, it is challenging to accurately reflect individual hiking ability 

and the effects of fatigue in travel time estimation. Therefore, this study proposes a 

deep learning model, “HikingTTE”, for estimating arrival times when hiking. 

HikingTTE estimates hiking travel time by considering complex factors such as 

individual hiking ability, changes in walking pace, terrain, and elevation. The 

proposed model achieved significantly higher accuracy than existing hiking travel 

time estimation methods based on the relation between slope and speed. 

Furthermore, HikingTTE demonstrated higher accuracy in predicting hiking arrival 

times than a deep learning model originally developed to estimate taxi arrival times. 

The source code of HikingTTE is available on github for future development of the 

travel time estimation task. 

Keywords: Travel Time Estimation (TTE), Deep Learning, Mountain hiking, Hiking 

Ability Estimation (HAE), GPS Trajectory Analysis (GPS_TA). 

1. Introduction 

Hiking is a popular activity worldwide [1-2]. In the United States, 175.8 million 

people aged six and older participated in outdoor activities in 2023, with 20% 

engaging in hiking [3]. Hiking is an accessible sport that can be enjoyed even by 

beginners and is popular among a wide range of age groups. 

On the other hand, mountain accidents are a significant problem [4-5]. In 

Yosemite National Park, approximately 3.3 million people visited in 2021, during 

which 214 search and rescue operations were conducted, resulting in 9 fatalities [6]. 

In Japan, a record high of 3126 mountain accidents was reported in 2023, the highest 

number since national records began in 1961 [7]. The primary causes of these 

mountain incidents include losing the way, slipping, falls, fatigue, and illness [7]. To 

prevent such mountain accidents, planning a realistic route in advance and responding 
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appropriately to unexpected delays or accidents by either turning back or preparing 

for a bivouac is essential. 

To plan a hiking route, it is essential to check hiking maps in advance, identify 

trails suited to an individual’s skill level and preferences, and estimate travel times 

accordingly [8-11]. AllTrails [12] provides information on over 450,000 trails and 

includes estimated completion times required to complete each trail. Additionally, it 

offers a function that allows users to refer to past hikers’ GPS trajectories and travel 

times, which can aid in personal trip planning. By reviewing one’s past hiking 

records, hikers can roughly estimate their hiking ability by comparing the estimated 

hiking time for each trail with their actual travel times. 

On the other hand, estimating accurate travel times requires adjustments based 

on the individual characteristics of the hiker. These adjustments are influenced by 

various factors, including the hiker’s experience level, physical stamina, equipment, 

group size, weather, and season. Factors such as reduced speed due to fatigue and 

increased travel time from breaks must also be considered. Moreover, conditions 

change constantly during a hike, necessitating real-time adjustments to estimated 

travel times. An estimation of accurate travel times demands substantial experience 

and knowledge. Experienced hikers can roughly estimate their walking pace from 

past hiking records. However, for beginners with limited or no prior records, 

accurately estimating their travel time is challenging. 

In this study, we propose a travel time estimation method for hiking that 

considers the hiking ability of individuals using GPS trajectory data. Specifically, we 

apply deep learning-based travel time estimation techniques, originally developed in 

the field of transportation systems, to predict hiking travel time based on hikers’ GPS 

trajectories. 

Furthermore, in Travel Time Estimation (TTE) tasks, releasing code in an 

accessible form is important to further promote the development of deep learning 

methods. However, even in the transportation field, the release of code for TTE tasks 

remains limited. Therefore, by publicly releasing the implementation of our proposed 

model, we aim to advance hiking TTE, contribute to the technological development 

of the entire TTE field, and support future research and practical applications. 

In summary, the contributions of this study are as follows: 

1. This study is the first to apply deep learning methods to the task of hiking 

travel time estimation. As a result, it achieved higher accuracy than existing methods 

for hiking time estimation, demonstrating the effectiveness of deep learning-based 

approaches for this task. 

2. To address the unique challenge of individual variation in hiking speeds, we 

integrated a slope-speed function using a modified Lorentz function into the deep 

learning model, developing a proposed model, “HikingTTE”, that accounts for 

individual hiking abilities. 

To advance the development of hiking TTE models in the future, we have made 

the proposed HikingTTE publicly available on GitHub. 

Implementations of TTE tasks are rarely made public, and this is the first time 

a TTE model applicable to hiking tasks has been released. 
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The remainder of this paper is organized as follows: Section 2 reviews existing 

methods for hiking speed estimation and travel time estimation in the field of 

transportation systems. Section 3 provides details on the hiking logs used in this study 

and the hiking travel time estimation task. Section 4 presents the proposed method. 

Section 5 compares the proposed method with existing methods.  Section 6 discusses 

the proposed methodology and Section 7 concludes the study. 

The code for the HikingTTE is available on GitHub at the following link: 

https://github.com/tarutaru2048/HikingTTE 

2. Related works 

2.1.  Existing walking speed estimation methods 

2.1.1. Naismith’s rule 

Naismith’s rule [13] is one of the methods for estimating travel time for hiking. 

Naismith proposed an empirical formula for estimating walking pace: “an hour for 

every three miles on the map, with an additional hour for every 2000 feet of ascent”. 

This rule is simple, allowing quick calculations during a hike. However, it only 

considers uphill sections and does not account for downhill slopes.  

2.1.2. Tobler’s walking model 

Tobler’s walking model [14] represents the relation between the walking speed and 

the slope using an exponential function. Specifically, it is expressed by the following 

equation  

(1)    𝑊 = 6𝑒−3.5|𝑆+0.05|, 𝑆 =
d𝑥

dℎ
, 

where 𝑊 represents walking speed (km/h) and 𝑆 represents slope (%). When the 

slope 𝑆 is –0.05 (–5%), 𝑊 reaches its maximum value of 6 km/h. Although this model 

can be applied to downhill slopes as well, its exponential formula tends to 

underestimate speed on steep slopes. 

2.1.3. Campbell’s walking model 

Campbell’s walking model [15] represents the relation between the walking speed 

and the slope using a modified Lorentz function. Specifically, it is expressed by the 

equation  

(2)    𝑟 = 𝑐 (
1

π𝑏(1+(
𝑠+𝑎

𝑏
)

2
)
) + 𝑑 + 𝑒𝑠, 

where 𝑟 represents the walking speed (m/s), 𝑠 represents the slope (degrees), and 𝑎, 

𝑏, 𝑐, 𝑑, and 𝑒 are model parameters. 

To create this model, GPS trajectory data from 1955 hikers recorded on 20 trails 

near Salt Lake City and Los Angeles were used. Additionally, to account for 

individual variations in walking speed, 39 separate models were created, each 

representing a different percentile (every 2.5th percentile). For example, in the 50th 

percentile model, the parameters are as follows: 𝑎 = −1.4579, 𝑏 = 22.0787,  
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𝑐 = 76.3271, 𝑑 = 0.0525 , 𝑒 = 3.2002 × 10−4. This results in a walking speed of 

4.133 km/h at a 0° slope and 1.707 km/h at a 30° slope. The Lorentz function has the 

advantage of not excessively underestimating speed on steep slopes, compared to 

exponential functions. However, determining which percentile model to use requires 

prior knowledge of the individual hiker’s characteristics. 

2.1.4. Wood’s walking model 

Wood’s walking model [16] considers not only the slope of ascent in the walking 

direction (walking slope) but also the effects of hill slope and obstruction level. The 

walking slope angle refers to the slope relative to the direction in which the hiker is 

walking. In contrast, a hill slope is the slope of the terrain itself, uniquely defined at 

specific points on the terrain. The model was developed using 7636 trajectory logs of 

hikers from hikr.org [17]. Elevation and slope were derived from a Digital Elevation 

Model (DEM). Additionally, the obstruction level was calculated based on the 

elevation difference between the Digital Surface Model (DSM) and the Digital 

Terrain Model (DTM). Using this data, a model to predict walking speed was 

developed based on a Generalized Linear Model (GLM). Specifically, the model is 

represented by the equation  

(3)    𝑣 = exp(𝑎 + 𝑏𝜑 + 𝑐𝜃 + 𝑑𝜃2). 

Here, 𝑣 represents the walking speed (km/h), 𝜑 represents the hill slope (degrees), 

and θ represents the walking slope (degrees). The parameters a, b, c, and 𝑑 are 

adjusted based on the level of obstruction. It was reported that adding hill slope and 

obstruction level improved the accuracy of walking speed predictions. However, like 

Tobler’s model, this exponential formula tends to excessively underestimate speed 

on steep slopes. 

All these existing methods are models that estimate walking speed based on 

slope. Therefore, these models do not effectively consider slower speeds due to 

fatigue or additional travel time from breaks. In Campbell’s walking model and 

Wood’s walking model, break times are excluded during data preprocessing, meaning 

hikers need to consider break times separately when using these models. 

2.2. Travel Time Estimation technology in the Transportation system 

In the transportation field, the task of travel time estimation is a crucial issue, and 

various studies have been conducted to address this challenge. In 2015 W a n g  et al. 

[18] proposed a simple baseline based on the idea that “big data beats algorithms” 

using the origin and destination as inputs and estimating travel time by calculating 

the weighted average of historical trajectories along nearby routes. Recent 

advancements in deep learning have enabled methods that achieve higher accuracy 

than this baseline. Furthermore, advanced algorithms such as deep learning methods 

have complex internal structures within the model, and sharing research ideas solely 

through equations and proofs is insufficient; therefore, the release of code in an 

accessible form is increasingly important [19]. Based on this, we introduce below the 

TTE methods whose implementation codes are publicly available. 

DeepTTE [20] is a model that takes GPS trajectory logs and attributes 

information as inputs and learns both local path and entire path travel time 
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estimations simultaneously. Although the final goal is to predict the overall travel 

time, the accuracy of the entire travel time estimation was improved by 

simultaneously learning the travel times of the local path. As a result, travel time 

prediction with DeepTTE achieved higher accuracy than W a n g  et al.’s [18] 

baseline, decision tree-based methods, and multilayer perceptron.  

Gct-TTE [21] is a transformer-based model that utilizes GPS sequences, 

weather data, map patches, and road graphs as inputs. It accepts multiple data 

modalities as inputs and uses dedicated feature extraction algorithms for each 

modality. As a result, Gct-TTE outperformed several state-of-the-art models, 

including DeepTTE, on the MAE and RMSE metrics. 

On the other hand, it is difficult to use the road graph information, which  

Gct-TTE uses as input, for hiking tasks. Gct-TTE is constructed based on the 

assumption of complex networks such as urban road networks; however, hiking trails 

are usually composed of simple single paths or narrow trails, lacking the complex 

network structures that Gct-TTE aims to capture through road graphs. As a result, it 

is considered that there is little benefit from feature extraction using graph 

information in hiking trails. For these reasons, DeepTTE, which predicts Travel Time 

Estimation based on GPS trajectories and attribute information, is a more suitable 

choice for hiking tasks. Therefore, in this study, we position DeepTTE as the baseline 

for Travel Time Estimation tasks in hiking and aim to construct an approach that 

additionally considers hiking-specific factors. Specifically, by referring to Travel 

Time Estimation methods developed in the transportation field and adding an 

architecture to consider the hiking-specific “hiking ability,” we enable travel time 

estimation that considers individual hiking abilities. 

3. Preliminary 

In this study, we use “Hiking GPS Trajectory” and “Hiking Attribute Information” 

to estimate arrival times for hiking. 

3.1. Hiking GPS trajectory 

Location data in hiking is stored in GPX format, an XML-based format used to store 

location data recorded by GPS devices. A GPX file includes latitude, longitude, 

elevation, and timestamp data, organized sequentially. Location data can also be 

saved in GPX format using hiking apps like AllTrails [12], Yamap [22], and 

Yamareco [23].  

The goal of this study is to estimate the time required to complete a hike based 

on recorded GPX logs. We define the hiking log as follows:  

• 𝑃: GPS trajectory, 

•  p1, p2, …, pT: Individual data points. 

Each hiking log consists of 𝑇 data points. Additionally, we include the 

cumulative distance from the starting point, the walking slope angle, and the terrain 

slope angle as additional information for each data point. The walking slope angle 

refers to the slope in the walking direction, and the terrain slope refers to the slope of 

the terrain itself. It has been suggested that the walking slope angle and terrain slope 
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are related to walking speed [24]. We include the cumulative distance because it is a 

factor that directly affects TTE. In this study, the cumulative distance and walking 

slope angle were calculated from the differences in latitude, longitude, and elevation, 

and the terrain slope was obtained from DEM data. Therefore, the 𝑖-th data point of 

a hiking GPS trajectory contains the following information: 

• 𝑝𝑖 . lat: latitude 

• 𝑝𝑖 . lng: longitude 

• 𝑝𝑖 . ele: elevation 

• 𝑝𝑖 . dist: cumulative distance from the starting point 

• 𝑝𝑖 . ws: walking slope angle 

• 𝑝𝑖 . ts: terrain slope angle 

• 𝑝𝑖 . time: travel time from the starting point to this point 

3.2. Hiking attribute information 

Hiking attribute information represents characteristics of the entire hiking log. The 

following information, which can be extracted from the hiking GPS trajectory, is 

added to each log: 

• elemax: maximum elevation point 

• elemin: minimum elevation point 

• D +: cumulative ascent 

• D −: cumulative descent 

• disttotal: total distance of the log 

• timetotal: total time of the log 

Collectively, these six attributes characterizing the entire log are referred to as 

Attr. These hiking attributes are useful indicators for understanding the overall 

profile of a hike and are essential data for estimating its difficulty level. For example, 

courses with higher cumulative ascent and total distance are expected to be more 

physically demanding for hikers, while lower values indicate less physical strain. 

Considering these attributes is expected to enable more accurate predictions. 

3.3. Problem definition 

This study aims to estimate the travel time to complete a section of the hiking route 

using the Hiking GPS trajectory 𝑃 and Hiking attribute information Attr. The GPS 

trajectory is divided into a front segment of 𝑋% and a back segment of (100 − 𝑋)%. 

In the front 𝑋% of the log, arrival time information 𝑝𝑖. time at each point is used to 

extract hiker-specific characteristics. The goal is to predict the travel time required 

for the back (100 − 𝑋)% using the characteristics extracted from the front 𝑋% and 

the trajectory information in the back segment. The front segment of the  

GPS trajectory is denoted as 𝑃front = {𝑝1, 𝑝2, … , 𝑝𝑥}, and the back segment as 

𝑃back = {𝑝𝑥+1, 𝑝𝑥+2, … , 𝑝𝑇}. 

This problem setting reflects the situation where a hiker estimates the remaining 

time on a route based on their prior walking record. In hiking, if a hiker falls behind 

schedule, they may need to turn back or choose an escape route. Therefore, it is 

essential to adjust estimated arrival times based on their walking record, providing 
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more accurate predictions. Extracting characteristics from the first 𝑋% of the hiking 

record allows indirect consideration of factors like experience, physical condition, 

equipment, group size, weather, and season that impact hiking speed. Even if these 

factors cannot be directly measured, they can be inferred from the hiking record in 

the first 𝑋%. 

The model proposed in this study incorporates hiking ability by extracting it 

from the first 𝑋% of the GPS trajectory log, then uses this ability to estimate the travel 

time required to complete the remaining (100 − 𝑋)% of the route. The next section 

details the architecture of the proposed model. 

4. Proposed method 

In this study, we develop a travel time estimation model, HikingTTE, which 

incorporates hiking ability by utilizing a slope-speed function and the multitask 

learning approach. An overview of the model architecture is shown in Fig. 1. This 

model consists of three main components. The first is the Hiking Ability Estimation 

Component, which estimates the hiker’s walking ability. The second is the Spatio-

Temporal Component, responsible for extracting spatio-temporal features. The third 

is the Multi-Task Learning Component, which performs multitask learning. 
 

  
Fig. 1. Overview of model architecture: HikingTTE 

4.1. Hiking ability estimation component 

The Hiking ability estimation component estimates individual hiking ability. 

C a m p b e l l, D e n n i s o n  and T h o m p s o n  [15] used a modified Lorentz 

function, shown in (2), to model the relationship between slope and walking speed. 

This study also assumes that slope and walking speed can be represented by a 
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modified Lorentz function and estimates individual hiking characteristics from the 

first 𝑋% of the GPS trajectory log (𝑃front). We concatenate the attribute 

representation attr with the output ℎatt of the attention mechanism. Then, through 

three layers of fully connected layers with residual connections, we output the target 

�̂�entire. This mechanism enables travel time prediction that considers both attribute 

information and location information.  

These fixed parameters use values from Campbell’s 50th percentile model  

(𝑎 = −1.4579,  𝑏 = 22.0787,  𝑑 = 0.0525,  𝑒 = 3.2002 × 10−4), and parameter 𝑐 

is estimated by fitting it to the hiking record in the first 𝑋% using the equation  

(4)    𝑟 = 𝑐 (
1

π×22.0787(1+(
𝑠−1.4579

22.0787
)

2
)
) + 0.0525 + 3.2002 × 10−4𝑠. 

The slope-speed function generated by this component is passed to the next 

Spatio-Temporal Component, and it is also used to calculate the estimated speeds 

𝑣−30° , 𝑣−20° , 𝑣−10° , 𝑣0° , 𝑣10° , 𝑣20° , 𝑣30° at slopes of [–30°, –20°, –10°, 0°, 10°, 20°, 

30°]. These estimated speeds for the seven slope patterns are then added to the 

attribute information Attr, providing the model with data on the hiker’s walking 

speed ability at specific slopes.  

4.2. Spatio-Temporal Component 

The Spatio-Temporal Component takes the GPS trajectory log of the remaining 

(100 − 𝑋)% of the hiking route as input to learn spatio-temporal relationships. This 

study is based on the DeepTTE [20] architecture but excludes the GeoConv layer, 

instead using a simple LSTM [25] to extract spatio-temporal features. The GeoConv 

layer was designed to account for left-right turns on roads by convolving latitude and 

longitude data, but such considerations are unnecessary in hiking, where trails are 

generally single-track. Additionally, W a n g  et al. [26] noted that the GeoConv layer, 

due to its fixed kernel size, may fail to capture features smaller or larger than the 

kernel. For these reasons, this study uses a simple LSTM to extract spatio-temporal 

features. 

First, the model takes the back segment of the GPS trajectory log,  

𝑃back = {𝑝𝑥+1, 𝑝𝑥+2, … , 𝑝𝑇}, as input. Each data point 𝑝𝑖 contains six attributes: 

latitude (lat), longitude (lng), elevation (ele), cumulative distance (dist), walking 

slope (ws), and terrain slope (ts). Next, Using the slope-speed function created in the 

Hiking Ability Estimation Component (Section 4.1), the estimated speed (𝑣) is added 

to each data point 𝑝𝑖 as an additional attribute. As a result, each data point 𝑝𝑖 now 

contains seven attributes, with the estimated speed 𝑣 reflecting the hiker’s walking 

ability. Utilizing this estimated speed is expected to enable more accurate predictions. 

Second, the elevation (𝑝𝑖 . ele), latitude (𝑝𝑖 . lat), longitude (𝑝𝑖 . lng), and 

cumulative distance (𝑝𝑖 . dist) are each converted into a differential format relative to 

the previous data point, as 𝑝𝑖. elediff, 𝑝𝑖. latdiff, 𝑝𝑖 . lngdiff, 𝑝𝑖 . distdiff. This 

approach incorporates route information between data points, rather than the GPS 

data points themselves. Additionally, since elevation itself may impact walking 

speed, both the differential and original elevation values are retained. As a result, 

each data point contains eight attributes: elevation (𝑝𝑖 . ele), elevation difference 
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(𝑝𝑖. elediff), latitude difference (𝑝𝑖 . latdiff), longitude difference (𝑝𝑖. lngdiff), distance 

difference (𝑝𝑖 . distdiff), walking slope (𝑝𝑖 . ws), terrain slope (𝑝𝑖. ts), and estimated 

speed (𝑝𝑖 . 𝑣). 

Third, each data point 𝑝𝑖 = {𝑝𝑖 . ele,  𝑝𝑖 . elediff,  𝑝𝑖 . 𝑙atdiff, 𝑝𝑖. lngdiff,
𝑝𝑖 . distdiff, 𝑝𝑖 . ws,  𝑝𝑖 . ts,  𝑝𝑖. 𝑣} is normalized, then transformed by a learned weight 

matrix 𝑊loc and activated with the tanh function to create a 16-dimensional spatial 

representation loc (the next equation) 

(5)    loc𝑖 =  tanh(𝑊loc ⋅ 𝑝𝑖). 
Finally, the spatial representation loc is concatenated with the normalized 

attribute information Attr. The attribute information Attr = {elemax, elemin, 𝐷+,
𝐷−, disttotal , 𝑣−30° , 𝑣−20° , 𝑣−10° , 𝑣0° , 𝑣10° , 𝑣20° , 𝑣30°} consists of 12 elements. The 

concatenated data is then input to a two-layer LSTM (Equation (6)). LSTM (Long 

Short-Term Memory) [25] is a type of recurrent neural network designed to capture 

long-term dependencies in time-series data, using three gate mechanisms: input gate, 

forget gate, and output gate to regulate information flow, 

(6)    ℎ = 𝜎lstm(𝑊ℎ ⋅ [loc, Attr]). 

The LSTM is composed of two layers, producing a final hidden state ℎ. The 

hidden state ℎ has 128 dimensions. Each hidden state ℎ𝑖 corresponds to the location 

information representation loc𝑖 of a segment of the hiking log. This mechanism 

enables the model to account for spatio-temporal relationships within the hiking log. 

4.3. Multi-task learning component 

The multi-task learning component simultaneously predicts the travel time for both 

the local path and the entire path. Multi-task learning, as proposed in DeepTTE [20], 

involves learning both local path and entire path travel times simultaneously to 

enhance the prediction accuracy for each during training. In DeepTTE’s taxi 

transportation task, the primary objective is to predict the travel time for the entire 

path; however, incorporating local path predictions enhances the accuracy of the 

entire path estimation. Following this approach, our study also incorporates  

multi-task learning from DeepTTE. 

Local path travel time estimation module.  The local path travel time 

estimation module takes the hidden state ℎ, output from the Spatio-Temporal 

Component, as input and performs a nonlinear transformation. As shown in Fig. 1, 

this nonlinear transformation consists of two layers of (Affine + LeakyReLU), 

followed by a linear transformation, resulting in the final local path travel time 

predictions �̂�local = {�̂�local
𝑥+1 , �̂�local

𝑥+2 , … , �̂�local
𝑇 }. Each prediction �̂�local

𝑖  corresponds to 

the GPS data point 𝑝𝑖 and represents the model's estimate of the time required to 

complete that local path.  

Entire path travel time estimation module. The entire path travel time 

estimation module utilizes an Attention mechanism, taking the attribute information 

and the hidden state ℎ from the Spatio-Temporal Component as input to calculate the 

entire path travel time. An overview of the model is shown in Fig. 2. First, we perform 

a nonlinear transformation on the attribute information, matching its dimensionality 

with the hidden states ℎ. Then, using the nonlinearly transformed attribute 

information as the Query, and the hidden states ℎ as the Key and Value, we compute 
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the weighted sum ℎatt via the attention mechanism (the next equations); here, 𝜎att 

represents the nonlinear transformation layer: 

(7)    𝑧𝑖 =  〈𝜎att(attr), ℎ𝑖〉, 

(8)    𝛼𝑖 =
exp(𝑧𝑖)

∑ exp(𝑧𝑗)
, 

(9)    ℎatt =  ∑ 𝛼𝑖 × ℎ𝑖
𝑇
𝑖=𝑥+1 . 

This mechanism allows us to consider the importance of different local paths in 

the hiking log.  

Subsequently, we predict the final travel time through fully connected layers and 

residual connections (the next equations; here, 𝑊att 𝑊𝑙, and 𝑊𝑦 are learnable weights, 

and ℎ𝑙 is the hidden state in the residual connection layer), 

(10)    ℎ𝑙 = 𝑊att × [attr, ℎatt], 
(11)    ℎ𝑙+1 = LeakyReLU(𝑊𝑙 × ℎ𝑙) + ℎ𝑙, 

(12)    �̂�entire = 𝑊𝑦 + ℎ𝑛. 

We concatenate the attribute representation attr with the output ℎatt of the 

attention mechanism. Then, through three layers of fully connected layers with 

residual connections, we output the target �̂�entire. This mechanism enables travel 

time estimation that considers both attribute information and location information. 
 

 
Fig. 2. Overview of Entire path travel time estimation module 

 

Model Training. During the training phase, we use a weighted loss combining 

the MAPE loss (𝐿local) for local path predictions and the MAPE loss (𝐿entire) for the 

entire travel time prediction. The loss for local path predictions is calculated by the 

equation  

(13)    𝐿local =
1

length(𝑃back)
∑ |

�̂�local
𝑖 −𝑦local

𝑖

𝑦local
𝑖 +𝜖

|𝑇
𝑖=𝑥+1 . 
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Here, 𝜖 is a constant used to prevent the MAPE loss from becoming too large 

and destabilizing the training. Additionally, the loss for the entire path is expressed 

by the equation  

(14)    𝐿entire = | 
�̂�entire−𝑦entire

𝑦entire
 |. 

By weighting 𝐿local and 𝐿entire, we proceed with training to minimize the equation 

(15)    𝛼 × 𝐿local + (1 − 𝛼) × 𝐿entire. 

Here, 𝛼 is a weighting coefficient that takes a value between 0 and 1.  Since the final 

goal is to minimize 𝐿entire the evaluation is conducted using MAPE, MAE, and MSE 

between the predicted entire travel time (�̂�entire) and the actual entire travel time 

(𝑦entire). 

5. Experiment 

In this section, we present the results of experiments conducted using real historical 

GPS trajectories of hikers. In the experiments, we first conduct a preliminary 

experiment where we do not use the hiker’s walking performance (i.e., 𝑋 = 0%) to 

compare existing hiking arrival time estimation methods with our proposed method.  

Then, as the main experiment, we evaluate the prediction accuracy when using 

historical hiker information, comparing it against a baseline. 

5.1. Dataset 

In this study, we used the dataset “GPS recorded hikes from hikr.org” [27], which is 

publicly available on Kaggle. This dataset consists of approximately 12,000 hiking 

logs collected from GPS trajectories of hikers posted on hikr.org [17]. Each hiking 

log contains information for each GPS point 𝑝𝑖, including latitude (lat), longitude 

(lng), elevation (ele), and timestamp (time). 

5.1.1. Preprocessing of the hikr.org dataset 

First, since the dataset contains missing values, we performed the following steps on 

each hiking log to eliminate them.  

1. Remove points containing missing values. 

2. Exclude hiking logs with fewer than 50 data points. 

3. Identify invalid data (data where speed exceeds 5 m/s = 18 km/h or the 

interval between data points exceeds 1200 s): 

a. If a segment with at least 50 consecutive valid points exists, extract 

and use that segment, 

b. If not, exclude that hiking log. 

As a result of these operations, we obtained 8538 hiking logs. Then, we 

calculated and added the time difference timediff between each point 𝑝𝑖 and the 

previous one. Next, we calculated the total travel time timetotal from the time 

difference between the first and last data points of the GPS trajectory. The timetotal 

is the target we ultimately aim to estimate in this study. 

Next, to create the attribute information of the logs, we extracted the maximum 

elevation elemax and minimum elevation elemin from the elevation data of the hiking 
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logs. Additionally, we calculated the cumulative ascent D+ and cumulative descent 

D– from the elevation differences between each point. 

5.1.2. Addition of slopes 

The walking slope angle ws (degrees) was calculated from the horizontal distance 

and elevation difference between each point in the log. For obtaining the terrain slope 

angle ts (degrees), we used NASADEM [28] for regions below 60° latitude and 

ArcticDEM Mosaic [29] for regions above 60° latitude. These datasets are freely 

available, highly accurate, and widely used in numerous studies [30-33]. 

Ultimately, each log 𝑃 contains attribute information Attr = { elemax, elemin,
𝐷+, 𝐷−, disttotal, timetotal} and each data point 𝑝𝑖 = {lat, lng, ele, dist, ws, ts,
time}. The GPS trajectory is handled in the form of differences from the previous 

data point, as explained in Section 4.2. The final goal is to estimate the travel time 

timetotal of the entire path. Note that the travel time of local path 𝑝𝑖 . time is used 

only during training. 

5.2. Model training 

To train the model, we split the dataset into training data, validation data, and test 

data. We allocated 80% of the data as training data and 20% as test data, with 5% of 

the training data used as validation data. Using MAPE as the loss function, we trained 

the model by weighting the losses of local path travel time estimation and entire travel 

time estimation as described in Section 4.3. We used Adam [34] as the optimizer with 

a learning rate of 0.001 and trained the model for 1000 epochs. As hyperparameters, 

we selected a batch size of 64 and a weighting coefficient 𝛼 = 0.5 for the losses of 

the local travel time prediction 𝐿local and the entire travel time prediction 𝐿entire. 

5.3. Evaluation 

We used MAE (Mean Absolute Error), MSE (Mean Squared Error), and MAPE 

(Mean Absolute Percentage Error) as evaluation metrics. Additionally, we tracked 

validation loss on the validation data over the course of 1000 training epochs. 
Specifically, we recorded the validation loss at each epoch, computed a moving 

average of the loss with a filter size of 50 epochs, and selected the model at the point 

where this moving average was minimized as the final model. Since we saved the 

model weights every 10 epochs, we selected the weights closest to the epoch where 

the moving average was minimized. We then calculated MAPE, MAE, and MSE on 

the test data to compare our proposed method with existing methods. 

5.4. Preliminary experiment 

In the preliminary experiment, we perform the task of estimating the travel time of 

the entire GPS trajectory. In this preliminary experiment, we first examine whether 

deep learning methods are effective for travel time estimation in hiking. Therefore, 

we compare a model that excludes the “Hiking Ability Estimation Component” from 

our proposed method with existing hiking speed estimation methods. Excluding the 

“Hiking Ability Estimation Component” means setting the front segment ratio  
𝑋 = 0% of the GPS trajectory 𝑃, not creating the slope-speed function, and not using 
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the estimated speed 𝑣 information. We compared our method with four existing 

hiking travel time estimation models: Naismith’s Rule [13], Tobler’s hiking model 

[14], Campbell’s hiking model [15], and Wood’s hiking model [16]. 

Naismith’s Rule. By fitting Naismith’s Rule to the relation between walking 

slope angle 𝑤𝑠 (degrees) and speed 𝑣 (m/s) we can express it with the following 

equation: 

(16)    𝑣 =
4828.02

3600(1+tan(ws)×7.92)
. 

Therefore, we calculated the travel time for each local path using the walking 

slope 𝑤𝑠 and estimated the total travel time by summing them. However, since 

Naismith’s Rule cannot handle downhill slopes, we set ws = 0 when ws < 0. 

Tobler’s Hiking model. Since Tobler’s hiking function is expressed by (1), we 

calculated the travel time for each segment from the walking slope 𝑤𝑠 and estimated 

the total travel time. However, Tobler’s hiking function has the drawback of 

underestimating speed when the slope is large. Therefore, when the absolute value of 

the slope exceeds 80% (38.66°), we set ws = 38.66°. This value was selected by 

comparing the MAPE when applying different slope (%) limits to the training data 

and choosing the value with the smallest MAPE. 

Campbell’s Hiking model. Campbell’s hiking model is given by (2), and since 

it has different model parameters a, b, c, d, and 𝑒 for each percentile of hiking speed, 

we estimated the parameters using the training data. In constructing the model, 

Campbell performed the following steps: (1) excluding invalid data, (2) correcting 

for variability in individual logs, and (3) aggregating across the entire dataset.   

1. For the invalid data exclusion step, like Campbell, [15], we excluded points 

where the movement speed was less than 0.2 m/s, considering them as breaks, and 

points where the speed was 5 m/s or higher, as they might not hiking. Additionally, 

we excluded data points with a slope of 30° during model construction due to the 

small number of such points. 

2. To correct for variation in individual walking speed, C a m p b e l l, 

D e n n i s o n  and T h o m p s o n  [15] calculated the median speed at every 1-degree 

slope interval for each individual log and used this value as the hiking speed at that 

slope for that log. However, since the dataset used in this study has fewer data points 

compared to Campbell’s dataset, we aggregated data at every 2-degree slope interval. 

3. For aggregation over the entire dataset, C a m p b e l l, D e n n i s o n  and 

T h o m p s o n  [15] further grouped the previously calculated “median speed at each 

2-degree slope interval” into 2.5 percentiles based on hiking speed, obtained the 

medians, and then fitted the relationship between slope and speed for each percentile 

to (2). In contrast, in this study, we aggregated and fitted data every 5 percentiles.  

We created 19 different models at every 5th percentile and adopted  

the 50th percentile model as the median model for all logs. As a result, we  

obtained the parameters 𝑎 =  −2.730, 𝑏 = 17.33, 𝑐 = 53.96, 𝑑 = 0.1070, 
𝑒 =  −1.041 × 10−3  for (2). 

Wood’s Hiking Model. Wood’s hiking model is given by (3) and has different 

parameters a, b, c, and 𝑑 depending on the obstruction level. However, in this study, 

since DSM and DTM data required for calculating the obstruction level were not 

available, we used the same parameters. Additionally, since this study aims to 
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estimate the total travel time including breaks, we did not exclude break times during 

the preprocessing of Wood’s hiking model. Then, by training Wood’s hiking model 

using a Generalized Linear Model (GLM) on the training data, we obtained the 

parameters  𝑎 = 1.4806, 𝑏 =  −0.0046, 𝑐 =  −0.0106, 𝑑 = −0.0015 for (3). 

Furthermore, since Wood’s hiking model, like Tobler’s hiking function, tends 

to excessively underestimate speed when the slope is large, we set ws = 40 when the 

absolute value of the slope exceeds 40°. This value was determined by applying 

Wood’s hiking model to the training data with various slope limits, predicting the 

total travel time for the entire path, comparing the MAPE for each slope limit, and 

selecting the slope limit that resulted in the lowest MAPE. 

The comparison results between these existing hiking TTE methods and our 

proposed method are shown in Table 1. 

Table 1. Preliminary experimental results (Split ratio X = 0%) 

Model MAPE↓(%) MAE↓(h) MSE↓(h2) 

Proposed method 15.62 0.475 0.704 

N a i s m i t h  [13] 30.54 1.005 1.766 

T o b l e r  [14] 28.77 0.962 1.607 

C a m p b e l l, 

D e n n i s o n  and 

T h o m p s o n  [15] 

28.57 0.965 1.675 

W o o d  et al.[16] 30.11 1.047 1.824 
 

From Table 1, our proposed method outperformed the existing methods in all 

evaluation metrics. Among the existing hiking models, Campbell’s method had the 

best MAPE, but our proposed method improved MAPE by 12.95 points compared to 

Campbell’s method. 

5.5. Main experiment 

As demonstrated in Section 5.4, our proposed method achieved significantly  

higher accuracy than all existing hiking travel time estimation methods, including 

state-of-the-art approaches. In this experiment, we conduct further experiments on 

the task of estimating the time required to walk through the back segment 
(100 − 𝑋)% of the GPS trajectory, based on hiker characteristics extracted from the 

front segment 𝑋%, which is the original task. As comparative methods, we compare 

DeepTTE, which was developed for Travel Time Estimation tasks in the 

transportation field, and the DeepTTE+Ave model, which modifies the data given to 

DeepTTE for this task.  

DeepTTE. DeepTTE[20] is a deep learning model that estimates travel time 

from attribute information and GPS trajectories. In processing GPS trajectories, it 

convolves multiple GPS data points with a kernel size 𝑘 to extract spatio-temporal 

features. Since it is a travel time estimation method developed in the transportation 

field, we cannot use this model as is for hiking travel time estimation. Therefore, to 

use it for hiking travel time estimation, we modified the data given as follows. First, 

as the GPS trajectory, we provided the model with the six elements  

𝑝𝑖 = {lat, lng, ele, dist, ws, ts} explained in Section 3.1. Also, as  
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attribute information, we provided the model with  
Attr = {elemax, elemin, 𝐷+, 𝐷−, disttotal, timetotal} explained in Section 3.2. 

DeepTTE + Ave. DeepTTE+Ave adds the average walking speed �̅� and average 

walking slope angle 𝑤𝑠̅̅̅̅  of the front segment 𝑋% to the attribute information Attr of 

the DeepTTE. By adding these two pieces of information, we provide DeepTTE with 

the hiker’s hiking ability information. 

We trained each model for data split ratios 𝑋 = 5%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% and compared the accuracy of the proposed method 

with DeepTTE and DeepTTE+Ave. The results are shown in Table 2. 

Table 2. Main experimental results 

Split ratio X Model MAPE↓(%) MAE↓(h) MSE↓(h2) 

5% 

Proposed method 11.31 0.3804 0.4009 

DeepTTE+Ave 11.46 0.3935 0.4544 

DeepTTE 15.85 0.4729 0.6645 

10% 

Proposed method 10.48 0.3359 0.3007 

DeepTTE+Ave 10.91 0.3501 0.3248 

DeepTTE 15.73 0.4424 0.5436 

20% 

Proposed method 10.68 0.3022 0.2430 

DeepTTE+Ave 10.99 0.3128 0.2561 

DeepTTE 16.29 0.4123 0.4979 

30% 

Proposed method 10.23 0.2600 0.1900 

DeepTTE+Ave 10.97 0.2781 0.2051 

DeepTTE 18.53 0.3959 0.4353 

40% 

Proposed method 10.72 0.2371 0.1609 

DeepTTE+Ave 10.98 0.2422 0.1645 

DeepTTE 18.60 0.3368 0.3492 

50% 

Proposed method 10.86 0.1971 0.1084 

DeepTTE+Ave 12.02 0.2163 0.1310 

DeepTTE 17.81 0.2745 0.2239 

60% 

Proposed method 11.61 0.1702 0.0834 

DeepTTE+Ave 11.56 0.1679 0.0803 

DeepTTE 18.05 0.2231 0.1516 

70% 

Proposed method 13.05 0.1407 0.0599 

DeepTTE+Ave 13.39 0.1439 0.0589 

DeepTTE 19.56 0.1812 0.0966 

80% 

Proposed method 13.74 0.1004 0.0332 

DeepTTE+Ave 15.34 0.1089 0.0371 

DeepTTE 22.04 0.1344 0.0544 

90% 

Proposed method 16.63 0.0570 0.0113 

DeepTTE+Ave 21.39 0.0707 0.0156 

DeepTTE 27.21 0.0823 0.0210 
 

From Table 2, the proposed method achieved better MAPE and MAE than the 

baseline using DeepTTE in all data split ratios except 𝑋 = 60%. In terms of MSE, 

the proposed method was outperformed by DeepTTE+Ave at X=60% and X=70%, 

but the differences were minimal, at only 0.0031 and 0.001, respectively. On average, 

the proposed method improved MAPE by 0.97 percentage points [ma1]compared to 

DeepTTE+Ave. 
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6. Discussion 

In this study, we developed a model called “HikingTTE” for TTE in hiking. This 

model can predict the estimated time required to complete a planned hiking trail. 

Furthermore, we added a mechanism that estimates the hiker’s hiking ability based 

on their walking performance from the starting point to the current location while on 

the trail. To the best of our knowledge, HikingTTE is the first Travel Time Estimation 

model that includes a mechanism to estimate individual hiking ability, and we expect 

it to become a new standard in hiking travel time estimation. 

Compared to existing hiking travel time estimation models such as “Naismith’s 

Rule”, “Tobler’s Hiking Model”, “Campbell’s Hiking Model”, and “Wood’s Hiking 

Model”, our method significantly improves accuracy. Existing hiking travel time 

estimation models merely describe the relation between slope and speed and cannot 

consider individual hiking ability or the effects of fatigue during hiking. HikingTTE 

can consider individual hiking ability through the Hiking Ability Estimation 

Component and enables learning spatiotemporal dependencies via the Spatio-

Temporal Component. Furthermore, by incorporating deep learning methods, it 

became possible to capture complex interrelationships among various features such 

as terrain, elevation, individual hiking ability, and changes in walking pace, not just 

the simple relation between slope and speed. This allows us to consider various 

factors that existing hiking travel time estimation models could not handle, achieving 

high-precision travel time estimation. 

Moreover, “Campbell's Hiking Model” and “Wood’s Hiking Model” excluded 

break times during the data preprocessing stage. Therefore, when using these models, 

it was necessary to additionally account for break times. HikingTTE uses GPS 

trajectories that include breaks for training, and its predictions consider break times. 

Therefore, the predictions can be used directly as arrival times. Furthermore, the 

Kaggle dataset [27] used in this study consists of hiking logs from various regions 

worldwide obtained from hikr.org [17]. Therefore, the predictions by HikingTTE can 

be applied to hiking courses in general, regardless of specific trails. 

However, the dataset used in this study does not include features such as age, 

gender, weather, and party size, which are considered to affect hiking speed. 

Although these features can be indirectly considered through the relation between 

slope and hiking speed from the front segment 𝑋% of the data, it is thought that using 

these data directly could further improve accuracy. If we were to add these data to 

HikingTTE, information such as “age”, “gender”, and “party size” could be 

additionally included in the attribute information Attr, and “weather” information 

could be added to the GPS trajectory 𝑝𝑖. 

Additionally, as a method to estimate the hiker’s hiking ability, it is conceivable 

to reference their past hiking logs. However, the dataset used in this study had the 

limitation that there were few hiking records of the same user. Therefore, in this 

experimental setup, we estimated the hiker’s hiking ability using the front segment 

𝑋% of the data. If the hiker’s past hiking logs are available, it would be possible to 

make even more accurate predictions by considering past hiking characteristics. 

Specifically, by utilizing past data, it would be possible not only to obtain estimated 
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arrival times during hiking as in the current task but also to obtain estimated arrival 

times that reflect one’s hiking ability before starting the hike. This would expand the 

applicability of the model, making it possible to use it when planning hikes. 

Regarding changes in the prediction accuracy of the model when varying the 

split ratio 𝑋, several trends were observed. First, as 𝑋 increased, the MAE (Mean 

Absolute Error) and MSE (Mean Squared Error) improved. This is because the 

prediction interval becomes shorter, naturally reducing the absolute error. On the 

other hand, MAPE is an indicator based on relative error, and even if the absolute 

error is small, MAPE tends to become larger when the prediction path is short. 

Therefore, as the value of the split ratio 𝑋 increases, MAPE tends to become larger. 

In the proposed method, MAPE was 11.31% when 𝑋 = 5% and accuracy improved 

in the range of X is from 10% up to 30%. This is because, at 𝑋 = 5%, the small 

number of data points makes it difficult to adequately consider individual hiking 

ability, whereas using data points of around X is from 10% up to 30% or more allows 

hiking characteristics to be more appropriately considered. Furthermore, when 𝑋 

reaches 40% or more, MAPE worsens again, but this is not because the individual’s 

ability can no longer be estimated, but due to the characteristics of the MAPE 

evaluation metric. 

7. Conclusion 

In this study, we proposed “HikingTTE”, a deep-learning model for Travel Time 

Estimation in hiking. Existing hiking Travel Time Estimation models primarily 

estimate walking speed from the slope and could not incorporate individual hiking 

ability or reductions in walking speed due to fatigue into their predictions. 

HikingTTE, proposed in this study, integrates a Hiking Ability Estimation 

Component using a modified Lorentz function into a deep learning-based Travel 

Time Estimation model, enabling comprehensive consideration of individual hiking 

ability, changes in walking pace, terrain, elevation, and more. As a result, our 

proposed method demonstrated a significant improvement over existing hiking travel 

time estimation models based on the relation between slope and speed, allowing us 

to provide hikers with more precise estimated arrival times. Moreover, compared to 

methods that apply DeepTTE – a taxi TTE method for a similar task – to hiking, our 

model achieved higher prediction accuracy. This study is the first to propose a deep 

learning-based hiking TTE model that considers individual hiking ability, and it is 

expected to become an important baseline in this field. Furthermore, by releasing 

HikingTTE as the first open-source resource for the hiking TTE task, we aim to 

contribute to the advancement of the entire field.  Future challenges include adding 

additional features to the data that are considered to affect hiking ability, such as age, 

gender, weather, and party size, and incorporating the hiker’s past hiking logs into 

the model. 
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