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Abstract: Penetration Testing (PT), which mimics actual cyber attacks, has become 

an essential procedure for assessing the security posture of network infrastructures 

in recent years. Automated PT reduces human labor, increases scalability, and 

allows for more frequent evaluations. Real-world exploitation still challenges RL-

based penetration testing because the agent’s many possible actions make it hard for 

the algorithm to converge. To resolve these shortcomings, a deep learning- model 

named Adaptive Hunt Tuner algorithm optimized Q-learning based deep 

Convolutional neural Network (AHT-QCN) is developed for efficient PT. 

Specifically, the Q-learning employed in this model improves its efficiency by 

enabling optimal policy learning for decision-making. In addition, the Adaptive Hunt 

Tuner (AHT) algorithm enhances the model’s performance by tuning its parameters 

with reduced computational time. The experimental outcomes demonstrate that the 

developed model attains 95.25% accuracy, 97.66% precision, and 93.81% F1 score.  

Keywords: Deep learning, Penetration testing, Q-learning, Adaptive hunt tuner 

algorithm, Deep convolutional neural network. 

1. Introduction 

The process of conducting approved attacks on networks and computer systems to 

find whichever security flaws can be exploited is known as Penetration Testing (PT) 

[6]. Network systems, including database systems [8], network equipment systems 

[9], host operating systems [7], and so on, have utilized numerous PT methodologies 

for identifying vulnerability and assessing overall security. Based on the many testing 

procedures, PT methods can be broadly classified as manual, automatic, or intelligent 

[5]. The majority of PT procedures were initially carried out manually, and the 

efficacy of manual PT was based on studies being conducted against a small number 

of hosts. Subsequently, as computer networks grew in number, PT tools had to 

become more automated to cover ground faster [10, 1]. Automated PT seeks to 

accommodate the intricacies of contemporary networks while easing the time and 

financial constraints connected with manual, traditional approaches [11, 3]. However, 
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in certain highly sophisticated enterprises with hundreds or even thousands of IP 

addresses, increasingly intricate applications, and virtualization, automation was 

inadequate; PT professionals struggled to evaluate each component’s security 

promptly [1] and there are other significant obstacles to this move toward automation, 

particularly in complex PT scenarios [3].  

PT is considered one of the significant cyber security exercises [2], therefore in 

recent years, various data-driven learning techniques have evolved for cyber security 

management. Artificial Intelligence (AI) techniques with the machine and deep 

learning approaches ensemble various hybrid approaches for solving various cyber 

security issues [26]. Recent developments in AI also have given researchers studying 

automated and intelligent PT a fresh perspective. Among these, Reinforcement 

Learning (RL) techniques are shown to be a versatile and successful strategy [2]. In 

RL, the Deep Q-Network (DQN) method has been frequently employed in recent 

years to enhance PT efficiency [12]. Numerous trials have shown that the DQN 

algorithm performs better than the prior technique [13]. Further, utilizing the 

traditional Q-learning algorithm and a dueling network mechanism to train the 

conventional Q-function, enhanced the DQN algorithm and thus there was an 

improvement in training efficiency [4]. The study analyzes computer networks’ 

responses to attacks by examining susceptibility, exposure, infection, and 

recoverability using nonhomogeneous differential equations [28]. To categorize PT 

problems based on situations [15], RL and imitation learning techniques are utilized. 

In addition, these techniques give the agent presumptive knowledge about a particular 

network structure and help the agent to come up with a better solution by exploring 

their problem area in a better way. However, its specialist knowledge is less 

interpretable and generalizable due to the created penetration test scenarios [2]. 

Though various approaches have been Put forth to address Partially Observed 

Markov Decision Process (POMDP), like combining model-free reinforcement 

learning with recurrent models [15] or approximate approaches using neural networks 

and conventional POMDP models, the successful application of these approaches to 

address the complex environments in PT requires additional research [3]. To solve 

those above challenges, a deep learning-based technique is developed in this research 

for PT. 

The research aims to create an AHT-QCN model for efficient PT, where the 

implementation of Q-learning with deep CNN leads to adaptive and intelligent 

decision-making with effective PT results. The AHT algorithm improves the model’s 

performance and reduces the need for more computational resources. The main 

contributions of the research are, 

Adaptive Hunt Tuner (AHT) algorithm: The AHT is created by combining the 

hunting traits of the coati and swarm behavior of the particle swarm, where the issue 

of falling in local optima and slow convergence of coati is resolved by utilizing the 

high velocity of particle swarms with improved search ability and fast convergence.  

AHT Q-learning based deep CNN (AHT-QCN): The incorporation of the  

Q-learning with the deep CNN for PT improves its accuracy in identifying the 

vulnerabilities and the q values from Q-learning help to develop an efficient model. 

The AHT optimization tunes the deep CNN classifier to improve performance.  
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2. Literature review 

G h a n e m, C h e n  and N e p o m u c e n o  [1] introduced an Intelligent Automated 

PT network (IAPTF) with RL, where the framework served as an efficient approach 

for PT with high generalization ability and the approach resolved the PODP issues. 

However, complex attack vectors were missed in the framework because of the 

decrease in covered attack vectors.  

W a n g  et al. [2] employed a DQfD-AIPT, a PT intelligent framework in which 

deep Q learning was utilized to plan the PT path, which reduced the overfitting issue. 

The algorithm showed improved efficiency in PT and attained a high cumulative 

reward. Nevertheless, the covered expert knowledge was very low, which led to 

limited performance.  

L i, Z h a n g  and Y a n g  [3] utilized an efficient POMDP-driven PT agent 

named EPPTA. The employed framework provided reduced convergence time and 

high performance with improved scalability to enhance network security. However, 

the approach achieved limited performance in dynamic network environments.  

Y i  and L i u  [4] introduced a deep double Q-network with a multistate 

vulnerability analysis language (MDDQN) for PT to improve network security. The 

findings of the experiments demonstrated that as the complexity of the experimental 

scenarios increased, so did the advantages of the MDDQN Algorithm. Other 

drawbacks of the MDDQN Algorithm include a certain amount of overestimation and 

its incapacity to independently scan the structures and get network data. 

C h e n  et al. [5] presented a generative adversarial imitation learning method 

for PT testing named GAIL-PT, which provides efficient penetration performance 

with less time and cost. The approach also obtains maximum cumulative rewards. 

However, the complexity of the GAIL-PT approach was high, which impacted the 

PT performance.  

2.1. Challenges 

• Most expert knowledge now gathered is acquired through training in networks 

within a specific size range [1]. 

• The minor decline in the covered attack vectors, which would lead to the 

omission of some complex attack routes that human hackers would use, is detectable 

by IAPTF. Because of this, the representational structure of the transition data limits 

the coverage of expert knowledge [2].  

• In dynamic cyber security settings, the assumption of a largely fixed 

environment may not always apply, which could restrict EPPTA’s adaptability [3]. 

• The MDDQN approach has several drawbacks, including a certain amount 

of overestimation and the inability to autonomously scan the constructions and get 

network information [4]. 

• Although the network simulator NASim appears to offer accurate 

vulnerability assessments and targeted penetration operations in network scenarios, 

there are still differences between NASim and the real network, and the GAIL 

approach hasn’t been verified in real complex networks. The GAIL-based PT 

procedure is also extremely complex [5].  
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2.2. Problem statement 

The goal of Penetration Testing (PT) is to simulate cyberattacks on a computer 

system to find security flaws and evaluate overall protection. Emerging technologies 

in AI provide various approaches to PT to improve network security. However, there 

are still some limitations seen in those approaches, like the requirement of more 

computational time and cost, the inability to handle complex environments, and 

scalability issues. The PT also involves choosing an action, where some approaches 

struggle with large spaces because of their need to explore the space efficiently.  To 

resolve these issues, the research introduced an optimized deep CNN-based model 

with a deep Q learning approach for PT. 

3. Adaptive Hunt tuner algorithm – Q-learning-based deep CNN model 

for Penetration testing 

The research aims to design a PT framework to improve the security infrastructure of 

the environment by learning the different attacks on the network using a deep learning 

approach named AHT-QCN. At first, a PT environment is simulated using the 

Shodan search engine and generates the expert knowledge base. The Metasploit and 

Nmap script engines are employed in this environment. The NSE scripts check the 

vulnerabilities and associate data with common vulnerabilities and exposures.  

Similarly, Metasploit analyzes the target network vulnerabilities before hackers can 

exploit them. For PT, a CVE dataset [16] is used for training the model, where the 

CVE dataset contains both numerical and text data. Dimensionality reduction 

techniques, such as Feature Selection (FS), are essential for handling the increasing 

volume and complexity of data in the digital era [27]. The data are then preprocessed 

using Text cleaning, stop word removal, and Lemmatization after stimulating the PT 

environment. Here, the text cleaning removes unwanted characters in the text; the 

stop word removal process removes the words that occur frequently in the text and 

the lemmatization process breaks down the words into their root form. Tokenizer is 

also applied to the data, which breaks down the text into smaller units called tokens. 

After preprocessing, the data are fed as input to the AHT-QCN model for learning 

the attacks. In addition, the Q-learning approach is employed in the deep CNN model 

for training, which aids an agent in determining the optimal action in a given state by 

improving the cumulative rewards or Q-values over time and leads to successful 

penetration. The utilization of CNN extracts relevant features and helps to improve 

the security of the PT environment with optimal decisions. Here, an AHT 

optimization algorithm is created with the hunting and swarming characteristics of 

particle swarms and coati respectively, which tunes the classifier’s parameters and 

aids in the model’s performance improvement. In this research, the model is tested 

using the randomly simulated IPs from the PT environment and the developed trained 

model classifies the attack’s defect as normal, partial, and complete. The illustration 

of the developed PT framework is presented in Fig. 1. 
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Fig. 1. Illustration of the developed Penetration testing framework using AHT-QCN 

3.1. Simulation of Penetration testing environment 

A PT environment is a network setup or a controlled system, which is created for 

simulating cyber attacks. Servers, firewalls, switches, and subnetworks make up the 

network configuration. Shodan is a search engine that helps penetration testers find 

devices connected to the internet. It shows information like open ports, operating 

systems, and services running on each device. This makes it easier to find weak spots 

in a network and identify security risks. It’s a valuable tool for spotting potential 

problems in online devices. Nmap Script Engine (NSE) and Metasploit framework 

are the two components employed in the PT environment for efficient PT testing.  

• Nmap Script Engine (NSE). The NSE enables the users of Nmap to create 

scripts, carry out network operations, and explore the network. Nmap scripts are used 

to automate tasks, gather more detailed information about a target, and perform 

specific actions during a penetration test, such as brute-forcing passwords and 

exploiting vulnerabilities.  It finds all the information about the operating system and 

software, the IP addresses of distant hosts, the open ports, and vulnerabilities on local 

and remote computers. 

• Metasploit. With one of the top penetration test tools, Metasploit is as easy 

to use as a directory containing a list of vulnerabilities. An open-source program 

called the Metasploit Framework gives users the tools and infrastructure they need to 

conduct security audits and penetration tests. The Metasploit framework facilitates 

the process of discovering and creating new exploits for previously unidentified or 

undiscovered vulnerabilities in operating systems, applications, and networks. 

3.2. Input  

The CVE database [20] is utilized in this research for training the developed model 

and is represented as  

(1)    1 2 3, , ,..., nP P P P P= , 

where P represents the input CVE database,  1 2 3, , ,..., nP P P P  are the data in the 

data, and n is the total number of data in the dataset.  
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For testing, random IPs are simulated from the PT simulation environment and 

the IPs are represented as  

(2)    1 2 3, , ,...,p p p pnI I I I I= , 

where I  contains  1 2 3, , ,...,p p p pnI I I I  that are simulated IPs from the PT 

environment. 

3.3. Pre-processing 

The input data P is preprocessed using various techniques such as Text cleaning, 

stop word removal, Lemmatization, and Tokenizer. 

• Text cleaning. The text cleaning removes irrelevant characters, misspellings, 

and inconsistent formatting. This reduces the noise in the text data and improves the 

performance.  

•  Stop word removal. This process removes frequently occurring words from 

the text to improve the accuracy and efficiency of the approach. Stop words, also 

known as noise words, are typically articles and pronouns that don’t add much value 

to understanding the text. 

• Lemmatization. Lemmatization is the process of breaking down words into 

their most basic form, or lemma. Normalizing various inflected versions of a word is 

intended to facilitate easier analysis and comparison. 

• Tokenizer. Tokenizer divides a text into smaller parts, known as tokens 

which can be engrams, words, integers, or symbols. This procedure helps to extract 

individual words from the raw text, making it easier to read, which makes it a crucial 

component of text data analysis. 

3.4. Adaptive Hunt Tuner Algorithm – Q-learning based deep CNN 

The Q-learning-based deep CNN model is employed for efficient PT, where the  

Q-learning utilizes the RL concept. It begins by defining the Q-values. Further, the 

model makes use of this Q-value to maximize rewards and enhance the learning 

agent’s performance.  Unlike standard RL, Q-learning emphasizes the quality of an 

action instead of solely relying on the reward of the subsequent state [17]. Q-values 

are provided in the form of a set of states and actions ( ),q   , which shows how to 

choose an action   that is optimal for a particular state  . The following equation 

is utilized to calculate ( ),q   ,  

(3)   ( ) ( ) ( ) ( ) ( )( )'1 1, , , max , ,q q r q q  
           − −

 = + + − , 

with   representing the agent’s current state,   current action taken following a 

specific policy,    representing the next state the agent must transit to, 
representing the best course of action based on the current estimation of Q-value, 

( ),r    representing the current reward calculated from the provided environment 

in response to the current action,   representing the discount factor, and 

controlling the updating of ( ),q   . Every time step, the Q-value is updated using 
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the equation above. Throughout its existence, the agent begins at a location known as 

the start state. It then transitions between states. The first is the selected action. The 

other one is the specific setting in which the agent works. Every time it moves, the 

agent acts based on a state, determines its reward from the surroundings, and then 

shifts to a new state. There will not be any further movements possible if the agent 

ever enters one of the ending states.   

The Q-learning stores the state-action pair in a Q-table during the training 

process. Here Q-learning finds the best sequence of action to improve the deep 

CNN’s performance, where the hyperparameters of the CNN like default optimizers, 

losses, batch size, and activation functions are selected based on the actions from the 

Q-learning algorithm, where the best state is selected. The Q-learning is applied on 

the first layer of the deep CNN’s convolutional layer, and the developed AHT-QCN 

method consists of a convolutional layer, max pooling, flattened, and dense layer. 

Here the convolutional layer extracts the efficient features and the pooling layers 

reduce the dimensions of the data with the size    356 1 16N    . A dropout is 

employed to process the max pooling output that prevents overfitting and the output 

of the max-pooling layer is then flattened with a size of    22,784N   and connected 

to the dense layer and classifies the attacks efficiently as none, partial, and complete. 

The training of the model is performed by Q-learning, which then improves the 

model’s performance by determining the optimal state for the deep CNN model.  The 

developed AHT optimization algorithm is employed in the first layer of the deep 

CNN through which the classifier’s parameters are tuned for enhanced performance 

with less computational time.  The systematic representation of the AHT-QCN model 

is presented in Fig. 2. 

 
Fig. 2. The systematic representation of the AHT-QCN model 

3.4.1. Adaptive Hunt Tuner Algorithm (AHT Algorithm) 

The AHT algorithm is designed from the hunting traits of the coati [18] and bird’s 

swarm [19] characteristics to tune the developed model for PT with improved 
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performance. The AHT algorithms reduce the risk of local optima and slow 

convergence speed of the coati algorithm by adapting the high velocity of the birds 

with the coati’s hunting traits, where the high velocity aids in the exploration of the 

search space and improves the global search capabilities.   

Inspiration. The hunting and attacking traits are inspired by the coatis, which 

belong to the Procyonidae family. In addition, the coatis exhibit cunning behavior 

when hunting and avoiding predators as well as when hunting and killing their prey. 

The simulation of those coati’s real behaviors served as a major creative inspiration 

for the coati optimization approach. The coati’s distinct adaptability, which is based 

on cognitive concepts and makes it perfect for dynamic optimization problems, is 

what motivates the decision to use it. The particle swarm optimization is made up of 

particles that are propelled by natural swarms and communicate through evolutionary 

algorithms. PSO incorporates social and self-experiences and its potential solution is 

shown as a particle. It reaches a global optimum by moving toward a promising area 

and gathering flying particles (varying solutions) in a search area (current and 

potential solutions). The phases involved in determining the best solution using the 

AHT algorithm are detailed below,  

Initialization. The solutions of the AHT initialized as C, where the weight and 

bias are the tunable parameters of the deep CNN and are represented as  

(4)    ,C w  , 

(5)    1 2, ,..., ,...,j mC C C C C= , 

where m are the total solutions in the search space and jC  is the j-th solution. 

Fitness evaluation. The fitness of the algorithm is determined based on the 

accuracy and the solution with high accuracy is determined as the best solution. The 

fitness is expressed as,  

(6)   ( ) ( )fit max accuracyf C = . 

Solution update. The solutions of the algorithm are updated with iterations 

based on the following phases. 

Case 1: 1A , Exploration phase. If the search probability (A) is less than or 

equal to one, some of the solutions scare and attack the prey for hunting, and the 

remaining solutions wait for the prey to fall. Here the best solution is updated based 

on the position of the prey and the leading solutions using the following equation,  

(7)   ( )1

bestC C C KC  + = + − , 

where 1C + is the solution’s new position, bestC denotes the prey’s best position, the 

C is the solution’s current position, K is the integer and is randomly selection from 

the interval [0, 2], and   is the random number in the interval [1, 2]. 

Case 2: 1A , Exploitation Phase. If the search probability is greater than one, 

the solution’s position is updated based on equation (6). Here, when a solution attacks 

the prey, the prey escapes from the location and then the solution moves to the new 

position closer to the current position and hunts the prey. When the solution moves 
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towards the new position, the solution may fall into local optima and suffer from slow 

convergence. Therefore, a high velocity is applied to the solution  

(8)   ( ) ( ) ( ) ( )1
1 p 2 g p 3 p 4 g

1
2 1 2 2 2

2
C C C C C v v C v C            +   = + − + − + + − + −

   
, 

where pC
 and pv  are the personal best solution and the velocity of that solution at 

the time  . Likewise, gC
 and gv  are the global best position and its velocity at the 

time  .  

Here,  

(9)   1

i




−
= , 

where  and i are the upper bound and lower bound at the time  . 

(10)   2

max

1





= − , 

(11)   
( ) ( )

( )
best

3

best

F C F C

F C




−
= , 

(12)   
1 2 3

4
3

  


+ +
= , 

where, 1 2 3, , , ,    and 4 are the random parameters.  

Re-evaluation of the fitness measure. To declare the best solution, the fitness 

values are re-evaluated after updating the solutions.  

Termination. When the condition max  is met, the iterations end, and the 

best solution is declared. The flowchart of the AHT Algorithm is presented in Fig. 3 

and the pseudo code of the algorithm is depicted in Algorithm 1.  

 

 
Fig. 3. The flowchart of the AHT Algorithm 
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Algorithm 1. Pseudo code of AHT Algorithm 

Step 1. Begin 

Step 2. Initialization 

Step 3. Evaluate the fitness 

Step 4. While max   

Step 5. do 

Step 6.        if 1A  

Step 7.                       ( )1

bestC C C KC  + = + −        

Step 8.        else 

Step 9. 
( ) ( )

( ) ( )

1 p 2 g p
1

3 p 4 g

2 1 21

2 2 2 .

C C C C
C

v v C v C

   



    

 

 

+

  + − + − +
  =

 + + − + −
 

  

Step 10. Return to fitness evaluation    

Step 11. Declare the best solution 

Step 12. Terminate the process 

Step 13. End 

4. Result and discussion 

In this section, the experimental results of the proposed AHT-QCN model in PT are 

detailed and discussed. 

4.1. Experimental setup  

The AHT-QCN model is developed in this research for PT and the experiment is 

implemented on Python in Windows 10 with 16 GB RAM.  

4.2. Dataset description  

CVE dataset [16]: The proposed research makes use of a common vulnerabilities and 

exposure dataset and is obtained from the National Institute of Standard Technology 

(NIST). The CVE dataset is a useful resource for PT since it provides details on cyber 

security threats, vulnerabilities, and exposures. The CVE dataset contains 89,660 

unique values.  

4.3. Confusion matrix 

The confusion matrix of the proposed AHT-QCN model is presented in Fig. 4, where 

the actual values of the dataset are compared with the prediction values to determine 

the performance of the model. It identifies if a model is confusing two classes. Here 

0 represents the normal, 1 denotes the partially affected, and 2 represents the 

completely affected. 
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Fig. 4. Confusion matrix of the AHT-QCN model 

4.4. Analysis of success rate and rewards 

Fig. 5 depicts the success rate and reward rate analysis of the AHT-QCN model based 

on the number of episodes on various epochs. The AHT-QCN model shows a success 

rate of 0.87 at epoch 100 and 0.89 for 100 episodes at epoch 500. Similarly, the 

accumulated rewards of the AHT-QCN model are 4193 at epoch 100 and 4293 at 

epoch 500 for 100 episodes. These results indicate that the success rate and the 

accumulated rewards increase with the increase in epochs and no of episodes.  
 

 

Fig. 5. Analysis of success rate (a), and reward rate based on number of episodes (b) 

4.5. Convergence analysis 

Fig. 6 depicts the convergence analysis of the developed model based on the no of 

episodes and epochs, where the accuracy of the developed model is 0.89, 0.85, 0.84, 

0.83, and 0.90 for epochs 100, 200, 300, 400, and 500 respectively for 100 episodes.  

 
Fig. 6. Convergence of the AHT-QCN model 
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4.6. Performance analysis 

The performance of the developed AHT-QCN model is analyzed based on Training 

Percentage (TP) and in terms of accuracy, precision, and F1-score. The AHT-QCN 

model’s performance evaluation is presented in Fig. 7 based on TP for epochs 100, 

200, 300, 400, and 500. The accuracy of the AHT-QCN is 87.66%, 90.76%, 91.945, 

91.97%, and 95.24% at TP 90 for the above-mentioned epochs respectively, 

indicating that the accuracy improves with an increase in epochs. The AHT-QCN 

model’s precision is 97.65% at TP 90 for 500 epochs.  Similarly for the F1-score, the 

AHT-QCN achieves 93.80% for TP 90 with epoch 500.  

 

 
Fig. 7. Performance evaluation of AHT-QCN model 

4.7. Comparative analysis 

KNN [20], CatBoost [21], Xgboost [22], Neural Network (NN) [23], LSTM [24], 

deep CNN [25], Q-learning ensemble deep CNN, Particle Swarm Optimization-QCN 

(PSO-QCN), and Coati Optimization Algorithm-QCN (COA-QCN) are compared 

with the developed AHT-QCN based on TP. The comparative evaluation of the 

developed model is depicted in Fig. 8. The AHT-QCN model achieved an accuracy 

of 95.24% for TP 90, which shows an improvement of 1.66% over deep CNN, 239% 

over LSTM, 2.73% over NN, 11.43% over Xgboost, 21.83% over CatBoost, 28.74% 

over KNN. Similarly, the AHT-QCN model shows a precision of 97.65%, which is 

improved by 0.30% over Q-learning ensemble deep CNN, and 0.104% over COA-

QCN. Similarly for F1-score, the developed approach attains 93.80%, which is 

improved by 1.25% over PSO-QCN. The results indicate that the developed AHT-

QCN shows superior performance than other methods in PT.  
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Fig. 8. Comparative evaluation of AHT-QCN model 

4.8. Comparative discussion 

Table 1 presents the results of the developed AHT-QCN model compared with the 

existing methods. Even though, though the existing approaches show considerable 

performance, the approaches suffer from various limitations, where the CatBoost is 

sensitive to hyper parameters and the Neural networks are computationally 

expensive. The LSTM suffers from over fitting issues and the deep CNN requires 

large labeled datasets. To resolve these issues, the AHT-QCN is developed in this 

research, where the incorporation of AHT improves the performance of the model by 

tuning its parameters and the Q-learning shows efficient decision-making 

performance even in complex environments.  
 

Table 1. Comparative discussion 

No Methods 
Accuracy 

(%) 

Precision 

(%) 

F1-score 

%) 

1 KNN 67.87 69.75 65.19 

2 CatBoost 74.45 74.45 72.39 

3 xgboost 84.36 87.32 83.18 

4 Neural Network 92.64 94.51 89.87 

5 LSTM 92.96 95.45 91.42 

6 DeepCNN 93.66 96.09 92.22 

7 Q-learning Ensemble deep CNN 94.54 97.36 93.05 

8 PSO-QCN 94.10 96.72 92.63 

9 COA-QCN 95.16 97.55 93.69 

10 Proposed AHT-QCN 95.25 97.66 93.81 

5. Conclusion 

One essential way to assess a network system’s level of security is through PT. 

Further, PT attack route planning is crucial because it mimics the actions of an 

attacker to find vulnerabilities, lower possible losses, and continuously enhance 
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security measures. In this research, an AHT-QCN model is developed for PT with 

improved performance, with the utilization of deep CNN and Q-learning. The AHT 

algorithm fine-tunes the deep CNN’s parameters and improves its performance in PT. 

AHT-QCN model’s efficiency is increased by the Q-learning that it uses to provide 

optimal policy learning for decision-making. The AHT algorithm also reduces the 

computational time of the model due to its fast convergence. The developed model 

shows superior results compared to other existing approaches, attaining accuracy of 

95.25%, 97.66% precision, and 93.81% F1-score. In the future, the large dataset can 

be used in the model with additional network topologies to enhance the model’s 

stability, and efficient optimization techniques with ensemble techniques can also be 

implemented in the future for more accurate results. 
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