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Abstract: Real-time Hand Gesture Recognition (HGR) has emerged as a vital 

technology in human-computer interaction, offering intuitive and natural ways for 

users to interact with computer-vision systems. This comprehensive review explores 

the advancements, challenges, and future directions in real-time HGR. Various HGR-

related technologies have also been investigated, including sensors and vision 

technologies, which are utilized as a preliminary step in acquiring data in HGR 

systems. This paper discusses different recognition approaches, from traditional 

handcrafted feature methods to state-of-the-art deep learning techniques. Learning 

paradigms have been analyzed such as supervised, unsupervised, transfer, and 

adaptive learning in the context of HGR. A wide range of applications has been 

covered, from sign language recognition to healthcare and security systems. Despite 

significant developments in the computer vision domain, challenges remain in areas 

such as environmental robustness, gesture complexity, computational efficiency, and 

user adaptability. Lastly, this paper concludes by highlighting potential solutions and 

future research directions trying to develop more robust, efficient, and user-friendly 

real-time HGR systems.  

Keywords: Computer vision, Hand gesture recognition, Real-time systems, Deep 

learning, Transformers. 

1. Introduction  

As a natural form of human communication, hand gestures can convey information 

and express emotions without words [1]. In the past few years, a novel technology 

has been explored and developed rapidly in the field of Human-Computer Interaction 

(HCI), known as Hand Gesture Recognition (HGR). HGR systems allow machines 

to comprehend gestures made by hand and interpret them, providing a more intuitive 

interface for humans to communicate with computers and other devices [2]. HGR 

technology is more than just a modern tool in computer vision; it represents a large 

opportunity to improve accessibility and inclusivity. HGR would eliminate 

communication barriers in the world of sign language translation for the deaf-hearing 

community.  
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Recent advancements in deep learning and techniques such as computer vision 

have resulted in far more accurate and robust systems that can take complex hand 

gestures, and translate them into either a spoken or written form of language in real-

time [3]. HGR empowers natural interaction with virtual environments in the domain 

of Virtual and Augmented Reality. HGR technology has been integrated into gaming 

and virtual training programs which places the user right in the action for a more life-

like experience [4]. This expanding use case of HGR in the medical field positively 

impacts patient care and rehabilitation [5].  

The integration of HGR with AI is one of the important innovations in the 

industry sector. HGR systems are being leveraged in manufacturing and automation 

to control robotic arms and machinery. This would lead to increased accuracy, 

efficiency, and safety at the workplace and decrease human error [6]. These systems 

have to deal with dynamic environments and complex tasks, which represents the 

reason Reinforcement Learning (RL) being used together with real-time feedback 

mechanisms is critical for modern industrial operations. Real-time HGR is crucial 

because it requires identifying, recognizing gestures accurately, and continuously in 

actual time in the presence of changing lighting conditions or within complex 

backgrounds. The real-time performance of HGR demands access to effective 

algorithms and hardware platforms that can parse vast amounts of data accurately and 

rapidly [7].  

While recent significant advancements in AI and computer vision have taken 

place, the future of HGR technology depends on overcoming the current challenges 

and improving system reliability. for that, the continuous scientific research in 

machine learning, deep learning, sensor technology, and human-computer interaction 

would lead to addressing these challenges. By taking advantage of interdisciplinary 

approaches and encouraging collaboration between academic and industry sectors, 

the capabilities of HGR can be fully realized, leading the way for more intuitive and 

efficient interactions between humans and machines. 

This paper organized to covers various technologies used for real-time hand 

gesture recognition, categorizing them based on various technologies such as sensor-

based HGR, Vision-based HGR, Gesture modes-based HGR, Recognition 

approaches, and Learning paradigms. In addition to the working principles, key 

features, advantages and disadvantages, performance limitations, and recent 

advancements of each technology and approach will be discussed in the following 

sections: 

2. Hand gesture recognition technologies 

HGR technologies can be categorized based on the types of sensors and methods used 

to capture and analyze hand movement data, as follows: 

2.1. Sensor-based HGR 

HGR systems can utilize various sensors to capture hand movement data. These types 

of sensors can be classified as contact sensors and non-contact sensors. 
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2.1.1. Contact sensors 

These sensors are worn on the hand or arm and directly measure various aspects of 

hand movement. Common types of contact sensors used for HGR are a data gloves 

sensors and ElectroMyoGraphy sensor. 

• Data gloves sensors. They represent an advanced approach to gesture 

recognition, utilizing multiple sensors to capture three-dimensional spatial 

information of hand postures. These sensors incorporate multiple types of sensors, 

including flex sensors and inertial sensors such as accelerometers and gyroscopes to 

provide detailed hand pose data, e.g. Inertial Measurement Units (IMUs) that consist 

of these sensors can be used to increase the accuracy of gesture detection due to its 

capability for tracking hand movement as well as orientation. Research [8] has 

demonstrated that a 3-layer Convolutional Neural Network (CNN) applied to raw 

IMU data achieved a high success rate of 97.5% in detecting dual-handed gestures. 

Another research [9] has proposed an Attention-based CNN-BiLSTM Network (A-

CBLN) for dynamic gesture recognition using data gloves. In this study involving 32 

subjects and seven dynamic gestures, the A-CBLN achieved an impressive 95.05% 

accuracy and 95.43% precision on the test dataset.  

While data gloves offer high accuracy and environmental versatility, they 

present challenges in terms of user comfort, cost, and potential restriction of natural 

hand movements. These factors may impact their widespread adoption in certain 

applications. 

• ElectroMyoGraphy (EMG) sensor. It is used to monitor the electrical 

activity of muscles to perform hand gesture recognition. Research [10] has obtained 

95-100% accuracy for five gestures and only two EMG channels using the SVM 

classification. In [11], an RNN model with LSTM could be trained using just four 

EMG signals to identify five gestures. This model achieved 87±7 % accuracy in real-

time testing. Recent publications have focused on minimalistic approaches to 

improve practicality and efficiency, making EMG-based gesture recognition a 

promising step towards embedded systems or real applications. While limitations 

such as optimal placement of electrodes, noise immunity, and muscle fatigue remain 

challenges, these improvements hold promise to overcome some of them, opening a 

path to enhance human-machine interaction on different platforms. 

2.1.2. Non-contact sensors 

These sensors capture hand gestures from a distance without requiring direct contact 

with the hand. They are utilized in HGR systems in some cases where contact sensors 

are not feasible or desirable to apply in some applications. The common types of non-

contact sensors are radar and Wi-Fi sensors. 

•  Radar sensors. Where short-range radar systems like Soli demonstrate real-

time recognition of fine hand gestures. These systems offer advantages over optical 

cameras, functioning in low-light and occluded environments. Radar-based systems 

have achieved high accuracy in gesture recognition without requiring gloves. Using 

machine learning and signal processing techniques, these systems can generate range-

Doppler maps and efficiently extract hand gestures, with some studies reporting 

classification accuracies up to 99.10% for 10 different gestures [12]. 
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• Wi-Fi sensors. Wi-Fi signals have shown potential for gesture recognition, 

by analyzing changes in signal strength and phase caused by hand movements. This 

approach leverages existing Wi-Fi infrastructure, offering a non-intrusive and cost-

effective method for gesture recognition. In addition, it is applied to two-hand gesture 

recognition and reaches a recognition accuracy of 95% [13]. While promising, this 

method requires sophisticated algorithms to extract gesture information from noisy 

Wi-Fi signals. 

2.2. Vision-based HGR 

Vision-based methods for hand gesture recognition involve utilizing cameras to 

capture and analyze hand gestures in real-time video streams. The most well-known 

cameras that are used in vision-based HGR are RGB cameras and Depth cameras.  

RGB cameras are commonly used for capturing visual data, enabling systems to 

extract features, recognize gestures, and support navigation tasks, which computer 

vision algorithms can use to extract features and recognize gestures [14]. RGB 

cameras are widely available and relatively cost-acceptable, but their performance 

can be affected by lighting conditions and background clutter. For that, depth 

cameras, offer a complementary approach by providing 3D spatial information. The 

combination of RGB and depth information enables more sophisticated gesture 

recognition systems [15]. Depth cameras, such as Microsoft Kinect, ASUS Xtion, 

and Mesa SwissRanger utilize RGB cameras and specialist technologies such as Time 

of Flight (ToF) and stereoscopic imaging, leading to improved performance within 

low-light and complex environments compared to traditional video cameras. The 

depth data; which is extracted from depth cameras, can be fed to deep learning 

algorithms and present high accuracy of gesture segmentation and recognition [16].  

The analysis of captured images or video streams employs various techniques 

such as skin color detection, background subtraction for hand-palm identification, 

template-based tracking, and deformable contours for tracking hand regions across 

frames [14]. These techniques can be applied to a wide range of applications, 

including sign language recognition, digit recognition, and even healthcare systems 

enhancement through gesture recognition [17]. 

While combining computer vision frameworks with innovative strategies like 

iterative polygonal shape approximation and chain-coding schemes might achieve 

acceptable accuracy rates for recognizing hand gestures corresponding to different 

symbols and digits, more recent advancements in machine learning and deep learning 

have introduced new methods that may outperform these traditional computer vision 

techniques in wide scenarios [18].  

Researchers in a paper [19] proposed a face-authenticated hand gesture-based 

human-computer interaction system for desktops. Their approach uses the Viola-

Jones Algorithm for face recognition and authentication, followed by a CNN for 

HGR. The system achieved high accuracy in recognizing various hand gestures and 

was able to perform basic operations on a laptop. This demonstrates the potential of 

combining facial recognition for security with gesture control for intuitive device 

interaction. 
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3. Gesture modes in HGR 

The technologies described in Sections 2.1 and 2.2 are utilized for collecting data that 

is regarded as a first step toward building HGR systems. These systems can be 

designed depending on the types of gesture modes, which can be categorized into 

static, dynamic, and hybrid modes. 

3.1. Static gestures 

In hand gesture recognition, static gestures refer to analyzing still hand positions for 

classification. This method is computationally less expensive compared to dynamic 

gestures which need continuous image sequence processing. Artificial Neural 

Network (ANN) paired with image segmentation techniques can produce highly 

accurate results for static gestures [20]. Static hand gestures are important for several 

applications such as simple sign recognition the complex robotic surgery. This can 

improve the accuracy and robustness of the classification in static hand gestures using 

new data collection methods and innovative training techniques for CNNs [21]. The 

HGR systems based on static gesture mode have an important role in human-

computer interactions, robotics, and so on, indicating a high necessity to develop 

workable recognition algorithms. 

3.2. Dynamic gestures 

Dynamic gestures refer to analyzing continuous hand positions for classification. The 

deep learning approaches have propelled dynamic hand gesture recognition to a 

remarkable extent, though traditional methods such as Hidden Markov Models 

(HMA) and dynamic time warping are still applicable [22]. The domain has largely 

moved on to more sophisticated neural network architectures. Regarding capturing 

both spatial and temporal aspects of dynamic gestures, Convolutional Neural 

Networks (CNNs) paired with recurrent structures such as Long Short-Term Memory 

(LSTM) have achieved state-of-the-art results. CNN-LSTM hybrids have been 

proven to be effective at learning complex spatiotemporal features directly from raw 

input data [23]. 

3.3. Hybrid gestures 

Hybrid gestures mode-based HGR systems attempt to combine different types of 

gestures (static and dynamic), e.g.,: a sign language gesture will need the user to 

create a defined shape with her fingers static part and then exactly move their hands 

[24]. Hybrid gestures typically demand systems that effectively handle both spatial 

(tracking ability) and temporal information. It could also leverage multiple modalities 

for better discriminative and resilient recognition [25].  

The choice of gesture type depends on the specific application and its 

requirements for expressiveness and complexity. Static gestures are suitable for 

simple commands and interactions, while dynamic gestures can be used for more 

complex and nuanced communication. 
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4. Recognition approaches and learning paradigms 

Hand Gesture Recognition (HGR) systems employ various approaches and learning 

paradigms to effectively interpret and classify gestures. This section explores the 

interconnection between recognition methods and the learning paradigms used to 

train and optimize these systems. 

4.1. Handcrafted feature-based methods and supervised learning 

Handcrafted feature-based methods in hand gesture recognition involve extracting 

features manually to represent gestures effectively [26]. These methods encompass 

global features and local features. 

4.1.1. Global features 

Global features describing overall hand morphology and movement of the hand over 

time, such as hand trajectory, velocity, and acceleration. These features are essential 

for recognizing dynamic gestures. Global features include techniques like color 

histograms, grayscale histograms, and Gabor filters. 

4.1.2. Local features 

Local features focus on specific hand areas such as fingertip positions, palm center 

location, hand orientation, and finger angles. These features are relatively easy to 

extract and can be effective for recognizing simple gestures. Examples of local 

features are Histogram Oriented Gradients (HOG), Local Binary Patterns (LBP), and 

Scale-Invariant Feature Transform (SIFT).  

In general, Human Activity Recognition (HAR) applications have been using 

handcrafted feature-based methods to provide an informative set of features for best 

model performance. Nonetheless, choosing and verifying features by hand is both 

time-consuming and ineffective when compared to automatic methods of feature 

extraction. Recent work in image processing has shown promising results in color-

based feature extraction that could be adapted for hand gesture recognition. 

Researchers in the paper [27] demonstrated the effectiveness of color histograms in 

extracting and differentiating color distributions in images. They applied various 

clustering techniques, including Fuzzy c-Means and a hybrid approach combining 

agglomerative hierarchies and k-Means, before using color histograms to identify 

color features. Moreover, similar approaches could be used for extracting color-based 

features of hands, which might lead to improving gesture detection and classification, 

especially in scenarios with varying skin tones or lighting conditions. This method 

could complement existing handcrafted feature extraction techniques like HOG or 

SIFT, especially for vision-based HGR systems.  

The extracted features via handcrafted feature-based methods are typically 

utilized by supervised learning techniques, where algorithms are trained on labeled 

data to classify gestures accurately [28]. These algorithms such as Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), k-Nearest Neighbors (kNN), 

and Hidden Markov Models (HMM) are essential for interpreting the semantics 

conveyed by hand gestures, whether they are static postures or dynamic movements 
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[29]. That is why supervised learning serves as the cornerstone for training models to 

accurately detect and classify hand gestures in real-life settings. 

4.2. Deep learning-based methods and transfer learning 

Deep learning techniques, especially Convolutional Neural Networks and Recurrent 

Neural Networks (CNNs & RNNs) have been extensively used in HGR research due 

to their ability to feature generation from the raw data [30]. Deep learning models are 

typically trained on large datasets of labeled hand gestures, allowing them to learn 

features that best discriminate between different gestures. These models can be 

computationally intensive and often require significant amounts of training data. For 

this issue, deep transfer learning provides a solution for this issue where autonomous 

feature extraction and better performance can be achieved. Transfer learning can be 

used for hand gesture recognition applications to provide higher accuracy and 

efficiency. It can be applied to learn various features from gesture images which 

significantly increase recognition rates [31]. This way operates without manual 

feature extraction which may result in more accurate and robust recognition systems. 

In research [32], adaptive deep transfer learning is developed for gesture recognition 

with soft e-skin patches, reducing training data requirements and time while 

maintaining high accuracy levels. Moreover, these models show the effectiveness of 

transfer learning in enhancing hand gesture recognition systems and also demonstrate 

that transfer learning has enabled models to generalize better with limited training 

data. 

The common deep learning algorithms used in HGR can be classified as 

Convolutional Neural Networks (CNNs), lightweight convolutional neural networks, 

and RNNs and sequence learning. 

4.2.1. Convolutional Neural Networks (CNNs) 

CNNs have shown excellent results for image data because of their ability to capture 

spatial information present in hand gesture images [33]. This proves that the power 

of CNN has also been in other domains like face detection, which has achieved an 

accuracy of 99.5% [34]. 

Furthermore, researchers in paper [35] proposed a 3D-CNN model designed for 

recognizing drivers’ hand gestures in complex depth and intensity data. later 

enhancing it with a recurrent mechanism for dynamic gesture detection and 

classification. The 3D-CNN is used for the extraction of spectral and spatial features 

[36]. Another research [37], proposed three types of very deep 3D CNNs for gesture 

recognition, which can directly model the spatiotemporal information with their 

inherent hierarchical structure. The proposed method is evaluated on three 

challenging datasets, Ego Gesture, Jester, and Chalearn-IsoGD, and achieves state-

of-the-art performance on all of them. 

4.2.2. Lightweight convolutional neural networks  

Recent years have seen the development of lightweight CNNs, offering performance 

comparable to heavier models while being more hardware-friendly. Researchers in a 

paper [17] proposed a lightweight, robust, and fast CNN for manual gesture 

recognition by image classification. The proposed system achieved 99.96% accuracy. 
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A hybrid network structure combining a lightweight VGG16 model and a random 

forest was presented for visual input-based gesture recognition.  

Researchers in another paper [38] proposed an efficient DenseNet model that 

utilizes a fusion of channel and spatial attention for facial expression recognition. 

This approach combines densely connected convolutional layers with attention 

mechanisms to enhance feature extraction while reducing model complexity. The 

model achieved high accuracy (99.94-100%) on several lab-controlled datasets while 

maintaining a relatively low parameter count of 4.27 million. Such techniques show 

the capability for developing more efficient and accurate CNN models for real-time 

hand gesture recognition. 

4.2.3. RNNs and sequence learning 

RNNs are designed to process sequential data, demonstrating remarkable efficiency 

in capturing temporal dependencies within hand gesture sequences [39]. While 

traditional RNNs faced challenges with long-term dependencies, modern variants 

such as Long Short-Term Memory (LSTM) networks have largely overcome these 

limitations [40]. LSTM networks, excel at sequence learning, making them well-

suited for capturing temporal dependencies in dynamic hand gestures. LSTMs have 

shown remarkable performance in handling extended sequences, making them 

particularly valuable in gesture recognition tasks where gestures may span varying 

durations [41]. 

4.3. Vision transformer-based methods and self-supervised learning 

Vision Transformer (ViT) models are revolutionizing hand gesture recognition by 

leveraging self-attention mechanisms, allowing the model to capture complex 

relationships between image patches. This approach enhances accuracy in 

recognizing gestures despite variations in pose, lighting, and background. Originally 

designed for image classification tasks. ViT offers a novel approach compared to 

traditional CNNs [42]. Recent research has proposed specialized models like HGR-

ViT, demonstrating exceptional performance across various hand gesture datasets 

[42]. In some applications, ViT can be trained using self-supervised learning 

techniques, where the model learns useful representations from unlabeled data before 

fine-tuning on a specific task [43]. 
Researchers aim to enhance human-computer interaction by employing ViT in 

hand gesture recognition systems, particularly in educational settings and sign 

language recognition.  The combination of ViT with other models, such as CNNs, 

shows promise in improving the recognition of fine-grained details [44]. 

4.4. Unsupervised and adaptive learning in HGR 

The role of unsupervised learning is paramount in hand gesture recognition systems 

specifically when it comes to identifying and labeling the fingers as open without any 

additional manual annotation tags. It can use the depth data of RGB-D sensors for the 

identification of hand shapes, based on finger extension and makes phase-agnostic 

recognition in real-time. The unsupervised learning techniques utilize temporal 

feature extraction from motion profile sequences in hand gesture recognition, which 

helps to improve the performance of any real-time systems. With unsupervised 
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learning algorithms, these systems are well suited to process spatial and temporal data 

in an efficient way that allows reasonably accurate hand gesture classification without 

any human interaction or laborious supervised training steps [45]. 

In addition to the contributions of unsupervised learning, adaptive learning in 

HGR involves systems that can dynamically adjust and improve their recognition 

capabilities based on changing conditions. Various systems have been proposed to 

enhance gesture recognition accuracy [46]. Wearable biosensing system with in-

sensor adaptive learning for real-time gesture classification and model updates. The 

feature adaptive learning in part designed to accommodate the continuous changes of 

electrode configurations, offers sEMG-based gesture-recognition with high density 

and evolves accuracy over evolving environments [28]. 

Table 1 shows the most powerful techniques of HGR on well-known datasets 

and the accuracy achieved for each of them. 

Table 1. The most powerful techniques of HGR 

Reference Technique / Algorithm Accuracy Dataset Year 

[35] Recurrent 3D CNN 83.8 % 
Custom Dataset captured with depth, 
color, and stereo-IR sensors 

2016 

[56] 
3-D convolution and convolutional 
LSTM 

98.89 % 
Sheffield Kinect gesture (SKIG)  
data set 

2017 

[66] C3D+LSTM+RSTTM 92.2 % EgoGesture data (RGB-D) 2018 

[21] Lightweight CNN+ ResNeXt-101 94.04 % EgoGesture dataset 2019 

[37] Deep 3D CNNs 98.5 % EgoGesture dataset 2020 

[3] Lightweight CNN (MobileNetV2) 99.96 % Custom dataset 2021 

[18] 
Lightweight VGG16 + Random 
Forest 

99.98 % 
The American Sign Language (ASL) 
dataset 

2022 

[42] HGR-ViT 99.85 % 
National University of Singapore 
(NUS) hand gesture 

2023 

[67] 
GmTC (Graph and General Deep-
Learning Network) 

99.10 % LSA64 dataset 2024 

Tables 2 and 3 summarize the technologies and approaches which have been 

covered in the previous sections, as shown in the following context. 
 

Table 2. The recent technologies of HGR with pros and cons 

Technology Sensor type 
Gesture 

type 
Pros Cons 

Data Gloves and 
EMG 

Contact-
based 

Static, 
dynamic, 
hybrid 

High accuracy, Direct 
measurement of hand/muscle 
movements 

Inconvenient, Requires 
wearable hardware 

RGB Cameras 
Vision-
based 

Static, 
dynamic, 
hybrid 

Low-cost, Unobtrusive 
Sensitive to lighting 
conditions, Background 
clutter 

Depth Cameras: 
(ToF, Structured 
Light) 

Vision-
based 

Static, 
dynamic, 
hybrid 

Robust to lighting variations, 
3D information 

More expensive than 
RGB, Computational 
overhead 

Radar Contactless Dynamic 
Not affected by 
lighting/occlusions, Can detect 
through obstructions 

Limited gesture 
vocabulary, Signal 
processing complexity 

Wi-Fi Contactless Dynamic 
Leverages existing 
infrastructure, Low-cost 

Noisy signals, Limited 
gesture recognition 

 

 



 172 

Table 3. The recent approaches of HGR with advantages and limitations 

Approach 
Applicable 

to 
Key features Advantages Limitations 

Handcrafted 

features 

Various 

sensors 

Manual 

feature design 

Interpretable features, 

Computationally efficient 

Effort-intensive, May not 

generalize well 

Deep learning: 

(CNNs, RNNs) 

Vision-based 

sensors 

Automatic 

feature 

learning 

Automatic feature, High 

accuracy, Adaptable 

Requires large training 

data, Computationally 

intensive 

Vision 

transformers 

Vision-based 

sensors 

Self-attention 

mechanism 

Captures long-range 

dependencies, State-of-

the-art accuracy 

Higher computational 

cost, Requires large 

datasets 

5. Applications of real-time hand gesture recognition 

Real-time hand gesture recognition has become important and highly useful for many 

spheres of life, because it allows human-machine interaction to be more natural and 

easier. The following part covers the major application areas with their respective use 

cases, where it also provides context to requirements and critical scenarios imposed 

on real-time HGR.  

5.1. Human-Computer Interaction (HCI) and devices control 

HGR is a well-developed sub-field of Human-Computer Interaction (HCI), aiming to 

understand and interpret human hand movements to control computers and various 

devices such as robots, smartphones, tablets, laptops, and smart home appliances, 

without the need for physical contact. This can be particularly useful for situations 

where touch-based interaction is inconvenient or unhygienic [22]. HGR can be used 

also to control assistive devices for disabled people like wheelchairs, and prosthetic 

limbs. This technology has the capacity to provide more natural and grounded 

interactions between human systems, spawning new paradigms beyond traditional 

computer input metaphors (e.g., keyboards and mice) [47]. Some of the common 

interesting HCI applications are Virtual Reality (VR) and Augmented Reality (AR). 

VR and AR are two revolutionary technologies in computer vision that offer 

human-computer interaction through immersive experiences and intuitive interfaces. 

VR such as those incorporating hand gesture recognition and 3D stereoscopic 

projection, enhance user engagement in tasks like virtual manipulation and surgical 

operations [48]. AR and VR technologies benefit from object recognition technology, 

seamlessly integrating virtual content with the real world for interactive experiences. 

The integration of hand gesture recognition technology in Virtual Reality (VR) and 

Augmented Reality (AR) gaming applications, such as through devices like Knuckles 

controllers and MYO armbands, further exemplifies the significance of HCI in 

gaming [49]. These advancements in VR and AR technologies are reshaping 

entertainment, training simulations, and various other fields reliant on immersive 

virtual experiences. 

5.2. Sign language recognition and translation 

HGR is essential for developing sign language recognition and translation systems, 

which can bridge the communication gap between deaf and hearing individuals. 
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These systems capture and interpret sign language gestures, translating them into 

spoken or written language in real-time. HGR systems can improve the real-time 

performance and mutual understanding between sign language experts and 

spoken/written users by combining sensor-based with vision-based approaches [13].  

For other works, HGR is improved using different technologies including smart 

wristbands with gesture recognition [48], vision-based systems [50], and deep 

learning approaches for sign language applications. They use sensors, machine 

learning algorithms, and neural networks to identify/manipulate hand gestures 

matching with right letters or words. With CNN and transfer learning techniques, 

researchers have obtained high accuracy in the recognition of gestures helping to 

communicate efficiently for sign language proficient person [51]. 

5.3 Healthcare and medical applications 

Several health applications of HGR have been explored in research [15, 52], 

including medical image navigation and rehabilitation. Surgeons navigate and control 

the sterile environment during surgery using hand gestures with which they manage 

medical images. HGR interprets gestures in real time to manipulate objects within 

medical data visualization environments using vision-based systems with CNN 

models. Such systems provide a non-touch input method enabling more natural 

interactions with sensor-enabled devices that could used also to enable remote 

physical examination and robotic-assisted surgery as they achieve increased precision 

and control.  

Another health application of HGR enables users to track and monitor their 

rehabilitation activities which can be used for physiotherapy providing the patient a 

real-time feedback. Additionally, hand movements detected by HGR are being used 

to monitor therapeutic exercises for stroke patients or arm rehabilitation solutions for 

motor-impaired people during Rehab programs. HGR can be used to control assistive 

devices for disabled people like wheelchairs, and prosthetic limbs. 

5.4. Security and authentication  

HGR is a viable form of user authentication and identification, proving to be more 

secure as well as changing the way in which one thinks about HGR compared with 

traditional passwords or PINs [53]. Gesture-based user authentication is one of the 

major applications in gesture recognition and it refers to a scenario where users 

perform predefined hand gestures that are then analyzed against enrolled templates 

for their corresponding approvals [54]. Many researchers have worked on gesture 

modalities like static hand gestures, dynamic hand gestures or even 3D-depth sensor-

based three-Dimensional (3D) hand motion [55, 56].  

Apart from conventional authentication setups, HGR has also been explored for 

continuous authentication, i.e., whenever a user interacts with the device in a normal 

way coverage Task [57]. It can improve security by catching fake imposters or 

potential unauthorized accesses in real-time. Further, HGR can be complemented 

with other biometric factors, i.e., facial recognition or voice based on different 

modalities, to assure full security for multimodal authentications, which will enhance 

the overall accuracy and durability. 
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5.5. Other emerging applications  

HGR can also be explored in other emerging applications [48], such as smart home 

and office environments, where hand gestures can be used to operate appliances or 

peripherals. In the automotive industry, in-vehicle systems can be controlled through 

hand gestures, enhancing driver safety and convenience. The education and 

entertainment sectors are also leveraging HGR for interactive learning experiences 

and innovative entertainment applications. These diverse applications demonstrate 

how HGR is breaking down barriers in human-machine interaction across various 

domains, each with its unique requirements and challenges that need to be addressed 

for successful implementation. 

6. Future challenges and directions 

Real-time hand gesture recognition has come a long way over the past years. 

However, there are still many challenges in creating and deploying practical systems. 

This part will highlight these challenges and potential solutions as well as future 

research directions. 

6.1. Environmental factors 

Environmental factors such as illumination changes, complex backgrounds, and 

occlusions can significantly impact the performance of vision-based HGR systems. 

Changes in lighting can affect hand appearance and feature extraction [58]. Complex 

backgrounds make it difficult to segment the hand from its surroundings, potentially 

causing false positives and misclassifications [59]. Occlusions, whether by other 

objects or self-occlusion, can hinder gesture tracking and recognition [60]. 

Potential solutions are: 

• Feature invariance. Creating features that are immune to changes in 

lighting, background clutter, and occlusions. 

• Multi-sensor fusion. That is combining the information from several sensors 

(such as RGB and Depth cameras) would enable more robustly solving open 

problems. 

• Adaptive background modelling. This means the background model will 

dynamically adapt to changes in the environment. 

6.2. Gesture complexity and diversity 

The high Degrees Of Freedom (DOF) of the human hand allows for a wide range of 

possible gestures, making it challenging to build models that can recognize all 

conceivable representations [60]. Inter-user variability, where different people 

perform the same gesture differently, and intra-user variability, where a single user 

may perform the same gesture differently over time or in various contexts, can impair 

recognition accuracy [61]. 

Potential solutions are: 

• Size & heterogeneity of datasets. Training models on many varied 

examples that span the heterogeneity between one user to another (e.g., as well as 

variations within users over time). 
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• Adaptive Learning is when you create models that learn from individual 

users, and learning improves over time as the conditions or system changes. 

• Context-aware recognition. Incorporating context such as the user’s 

environment or recent activities can be useful to disambiguate gestures with one 

another and contribute towards better recognition accuracy. 

6.3. Computational constraints and real-time performance 

Deep learning models for HGR can be computationally expensive, posing challenges 

for deployment on resource-constrained devices such as wearable sensors and mobile 

phones [62]. Real-time HGR systems must process and recognize gestures quickly 

enough to avoid perceptible latency during user interaction, which is particularly 

challenging for complex gestures or resource-limited devices [63]. 

Potential solutions are: 

• Building of lightweight models. Frameworks for creating efficient and 

compact deep learning models that don’t require as many computational resources 

Hardware.  

• Acceleration. Utilizing specialized hardware available in modern computers 

such as GPUs, TPUs, or FPGAs to accelerate the process of using deep learning 

model implementations. 

• Edge computing. Some computation can be offloaded to edge devices like 

wearable sensors, which in turn reduces latency and improves real-time performance. 

6.4. Data scarcity and overfitting 

Deep learning models require large amounts of labeled data for training. The 

collecting process and labeling of hand gesture data can be time-consuming and 

expensive [11]. Also, when trained on limited data, models are prone to overfitting, 

leading to poor generalization for unseen gestures [58]. 

Potential solutions are:  

• Data augmentation. Utilizing techniques like image transformations and 

synthetic data generation to grow the training datasets both in size and diversity. 

• Transfer learning. Relying on pre-trained models to lower the data we need 

for training. 

• Regularization techniques. Regularisation techniques such as dropout and 

weight decay can also protect against overfitting. 

6.5. User independence and adaptability 

Developing HGR systems that can generalize to new users without requiring user-

specific training, In addition to creating models capable of adapting to changes in 

user behavior and the real world are significant challenges [61]. 

Potential solutions are: 

• User-independent feature extraction. Producing features that are invariant 

to the sizing, shape, and form of the hand motion. 

• Adaptive learning. Needing to develop models that can learn and adapt 

themselves continuously with emerging data points as well as changing conditions. 
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• Personalization techniques. This refers to providing options for users who 

wish to configure the system based on their gesture preferences in detail. 

For all mentioned above of challenges, the suggested solutions if implemented 

in professional approaches will help in building more robust, efficient, and user-

friendly real-time hand gesture recognition systems that can serve several 

applications. 

7. Experimental evaluation 

In this section, common evaluation metrics for gesture recognition and segmentation 

are explored.  

7.1. Accuracy  

Accuracy is the percentage of the total number of correctly classified samples out of 

the total number of samples available. Accuracy rate is a metric that can be used to 

measure the entire classifier’s performance in gesture recognition and segmentation. 

The calculation formula is 

(1)    Accuracy =  
TP + TN

TP + TN + FP + FN
, 

where TP refers to True-Positive instances, TN to True-Negatives, FP to False-

Positives, and FN indicating for False-Negatives. 

7.2. Precision   

It is the fraction of relevant instances among all mined positive instances A precision 

rate is a measure that can be used to characterize the accuracy of gesture 

identification/classification. The calculation formula is 

(2)    Precision =  
TP

TP + FP
.  

7.3. Recall  

The recall rate is what proportion of samples that are in positive classes that were 

detected by the classifier. In gesture recognition and segmentation, recall can be used 

to measure the comprehensiveness of the classifier. The formula is 

(3)    Recall = 
TP

TP + FN
.    

7.4. F1-score  

Using accuracy and recall in calculating values, the F1-score is a sum of them 

(average) so it evaluates both binary data classification systems where evaluating 

with only one criterion could provide no clue about completeness. In gesture tracking 

and segmentation, for instance, the F1-score can serve as an evaluation-pursuit metric 

to determine which classifier is best. The calculation formula, as in the next equation, 

(4)      F1 = 2 × 
Precision × Recall

Precision + Recall
. 
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7.5. Intersection over Union (IoU)  

The overlapping area of the predicted region and the real one to total size. IoU has 

been applied to measure the segmentation performance of a model for gesture 

segmentation. The calculation formula is 

(5)     IoU = 
Intersection 

Union  
,  

where the intersection of the predicted frame and true frame, is divided by the 

merging of said frames. The larger the intersection, the closer the applied result is to 

the expected outcome. 

Most of the mentioned papers in this comprehensive review have utilized these 

metrics to evaluate the adopted models in their research. For that, to illustrate how to 

use these metrics, consider the following example.  

Example. Suppose a hand gesture recognition system evaluated on a test set of 

1000 gestures across 10 classes, and suppose the system has correctly identified 920 

gestures, with the following breakdown: 

True positives TP = 920, false positives FP = 50, false negatives  

FN = 80, and true negatives TN = 7950. 

Then the results would be as follows: 

• Accuracy = (TP + TN)/(TP + TN + FP + FN) =  

= (920 + 7950)/(920 + 7950 + 50 + 80) = 0.987 = 98.7%. 

• Precision = TP/(TP + FP) = 920/(920 + 50) = 0.948 = 94.8%. 

• Recall = TP/(TP + FN) = 920/(920 + 80) = 0.920 = 92.0%. 

• F1-score = 2×(Precision×Recall)/(Precision + Recall) =  

=2×(0.948×0.920)/(0.948 + 0.920) = 0.934 = 93.4%. 

Moreover, when evaluating real-time hand gesture recognition systems, it is 

crucial to consider both accuracy and processing speed. As researchers in paper [64] 

showed in their study of real-time face detection algorithms, there is a trade-off 

between these factors. They found that while the Viola-Jones algorithm was faster, 

YOLO v3 achieved higher accuracy, especially in challenging conditions. For hand 

gesture recognition, similar considerations could apply. A system might need to make 

a trade-off between high accuracy among various gesture types and environmental 

conditions with the ability to process input quickly enough for real-time interaction.  

Therefore, when evaluating the HGR systems, it’s important to measure not only 

overall accuracy but also performance metrics such as processing time per 

frame/Frames Per Second (FPS). This comprehensive evaluation approach can 

provide a more complete picture of a system’s suitability for real-world applications, 

where both accuracy and responsiveness are important. 

8. Conclusion 

While various advancements have been made in sensing technologies, recognition 

algorithms and learning paradigms, including CNNs, RNNs, and the Vision 

Transformer, have proven to be state-of-the-art in real-time HGR. However, much of 

this progress still faces unsolved challenges, such as the issue due to environmental 

conditions like vision occlusions, wearables around the body, gesture complexity, 
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and computational constraints, especially in a multi-modal convolutional RNN 

scenario which requires heavy repeated processing for classification, or data scarcity 

when trying to use generative learning on an instance-level at recognition. This leads 

to the need of necessitated robust feature extraction, multi-sensor fusion, efficient 

model design, and adaptive learning approaches to address the challenges. 

Future research should focus on novel sensing modalities, reliable & efficient 

models, contextual information incorporation, and personalization techniques. 

Moreover, addressing these challenges and taking advantage of advancements in 

related fields as research develops, achieving more intuitive human-machine 

interactions might be anticipated, enhancing the quality of life and productivity. 
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