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Abstract: Next Generation Wireless Networks (NGWNs) have two main components: 

Network Slicing and Open Radio Access Networks (O-RAN). NS is needed to handle 

various Quality of Services (QoS). O-RAN adopts an open environment for network 

vendors and Mobile Network Operators (MNOs). In recent years, Deep 

Reinforcement Learning (DRL) approaches have been proposed to solve some key 

issues in NGWNs. The primary obstacles preventing the DRL deployment are being 

slowly converged and unstable. Additionally, these algorithms have enormous 

carbon emissions that negatively impact climate change. This paper tackles the 

dynamic allocation problem of O-RAN radio resources for better QoS, faster 

convergence, stability, lower energy and power consumption, and reduced carbon 

emissions. Firstly, we develop an agent with a newly designed latency-based reward 

function and a top-k filtration mechanism for actions. Then, we propose a policy 

Transfer Learning approach to accelerate agent convergence. We compared our 

model to another two models. 

Keywords: O-RAN, 6G, Radio resource management, Deep reinforcement learning, 

Transfer learning. 

1. Introduction 

The last few decades have witnessed a prominent development in the Next-

Generation Wireless Networks (NGWNs) architecture due to the significant rise in 

the number of connected wireless devices and applications that require different 

Quality of Service (QoS) [1-3]. NGWNs, like 5G and 6G, are replacing rigid network 

architectures with dynamic, flexible, and agile architectures to support multiple 

heterogeneous services and technologies [4]. The rapid growth of the Internet of 

Everything (IoE) by having millions of connected devices shifts the network services 

from not only having enhanced Mobile BroadBand (eMBB) services but also having 

Ultra-Reliable Low Latency (URLLC) services. Although 5G is considered the key 

enabler for IoE, it currently supports only basic IoE and URLLC services and there 

is a doubt if it can support the near future demand for IoE services [5]. 
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The primary element of cellular networks that links between the core network 

and user equipment is the Radio Access Network (RAN) [1, 6]. It has been developed 

over time to meet the needs of the rising number of connected users [6]. The RAN of 

the early generations of cellular networks, 2G and 3G, had controllers to manage and 

orchestrate the radio resources. Then, 4G networks came with an interface to support 

communication with the Base Station (BS) for controlling the radio resources [7]. 

The RAN of the current 5G networks is a Virtualized RAN (V-RAN) which divides 

the radio resources virtually to support diverse services. This V-RAN has monolithic 

components that specific vendors support and they are seen as black boxes to the 

Mobile Network Operators (MNOs) [7-9]. The O-RAN alliance has offered a new 

solution called Open RAN (O-RAN) for beyond 5G networks, due to the new 

concepts and intelligence added in 5G, to enable the MNO to have multiple services 

from multiple vendors [7,10]. With the introduction of the O-RAN concept, the RAN 

components of hardware and software were separated, and solutions from various 

vendors were integrated and interoperable [11]. The expectation for O-RAN is to 

achieve agility, flexibility, adaptability of operations, heterogeneity of services, and 

many more [11]. 

The possibility of O-RAN architecture being disaggregated came from the use 

of virtualized technologies, open standardized interfaces, and Artificial Intelligence 

(AI) [11]. The usage of these interfaces with AI, especially Deep Learning (DL) 

techniques, can provide the MNO with the capabilities to optimize the RAN 

performance and have intelligent Radio Resource Management (RRM) through RAN 

Intelligent Controllers (RICs) [6,12]. RRM includes admission control, link 

management, radio resource allocation, power allocation, scheduling, load balancing, 

handover, etc. [12]. Different types of RICs operate at different timescales according 

to the network operations [13]. The near Real-Time (near-RT) RIC hosts applications 

known as xApps while the non-Real-Time (non-RT) RIC hosts applications known 

as rApps. They interact with each other through interfaces. 

Recently, most of the O-RAN issues have been addressed to be solved using 

Deep Reinforcement Learning (DRL) as it doesn’t require training and testing data 

to be available [14]. The real-time inference of DRL makes it a preferable solution 

above the other optimization methods [14]. However, the DRL deployment in live 

networks is still in its early stages. The reasons for that are the instability of 

exploration during training and the slow convergence of algorithms [14]. Many 

research efforts today are seeking to solve the DRL slow convergence issue by using 

Transfer Learning (TL), equivalently named knowledge transfer [15]. TL came to 

reuse the knowledge of an existing agent, called an expert agent, as a starting point 

for another agent, called a learner agent, that has a similar task to that of the expert 

agent. This reduces the number of steps and samples needed to train the agent. TL is 

an emerging and complicated topic in DRL because the transferred knowledge can 

take different forms and ways [15]. Another important aspect that some researchers 

have recently addressed is that with the excessive usage of AI techniques, the amount 

of greenhouse gases, such as Carbon Dioxide (CO2) or similar gases, increases. And, 

as the emission of these gases increases, the problem of global climate change is 

becoming more severe. As a result, the carbon footprints of the used AI techniques 
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should be precisely measured and reported. Shortening the training time and 

optimizing the employed procedures to lower the carbon footprints are critical [16]. 

In this paper, we tackle the problem of dynamic allocation of radio resources in 

O-RAN slicing using DRL. We tend to achieve the optimal allocation with fast 

convergence, learning stability, less energy and power consumption, and reduced 

carbon emissions. We developed two applications, each is a DRL agent developed 

using a Proximal Policy Optimization (PPO) algorithm. The first is an expert agent 

rApp to be deployed in the non-RT RIC. This expert agent has three slices: URLLC, 

Video, and Voice over Long Term Evolution (VoLTE). The second is a learner agent 

xApp to be deployed in the near-RT RIC. In the first scenario, it has 2 VoLTE slices 

and 1 URLLC slice, while in the second scenario, it has 2 Video slices and 1 URLLC 

slice. Also, the traffic of the learner agent is slightly different from that of the expert 

agent. Our work’s primary contributions are summarized as follows: 

• We design a new reward function that depends on latency, for keeping the 

QoS at a level specified by the Service Level Agreements (SLAs). Then, we add 

penalties for actions violating the latency required by the SLAs. 

• A top-K filtration mechanism is used for filtering actions with high log 

probabilities for each state. The log probabilities are the logarithm of probabilities 

assigned to actions by the policy network of the PPO algorithm. We used this 

filtration during the exploration phase to force the agent to focus on a few numbers 

of actions and finally choose one action from them. This mechanism accelerates 

performance and improves learning efficiency. 

• A policy transfer learning approach is proposed which accelerates the learner 

agent convergence by 6000 learning steps faster than the expert agent. 

• A complete comparison is conducted with the model presented in [17] in 

terms of convergence time, number of learning steps, average packet delivery ratio 

(PDR), average Latency Violation Ratio (LVR), TL acceleration steps, achieved 

rewards, consumed energy, consumed power, and carbon footprint. Also, our TL 

model is compared with the hybrid TL model presented in [18]. This comparison 

shows that our model shows a great improvement in the number of learning steps, 

convergence time, consumed energy, consumed power, and carbon footprint. 

Additionally, our TL model achieves the maximum reward and converges faster than 

the TL models presented in [17, 18]. 

The rest of the paper is structured as follows: Section 2 reveals an overview of 

the O-RAN architecture. Section 3 outlines the related work. In Section 4, the 

suggested model is designed. Section 5 explains the implementation details. Our 

results and model evaluation are discussed in Section 6. Finally, the conclusion and 

future work are revealed in Section 7. 

2. The O-RAN architecture 

The architecture of O-RAN is composed of a collection of protocols and open 

interfaces that are used. It defines a disaggregated approach to split hardware from 

software and having different components that are connected by using some open 
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interfaces to support multiple services and vendors [11, 12]. Fig. 1 reveals the main 

components of O-RAN which are described below. 

1. Service Management and Orchestration (SMO): It is an essential element 

used to manage the domain of RAN through the usage of some open interfaces such 

as; O1, O2, and A1 [7, 19]. 

2. RAN Intelligent Controller (RIC): The O-RAN key component that helps 

make automated and intelligent decisions [7]. It is composed of two logical functions: 

• The non-RT RIC which resides in the SMO framework outside RAN to 

obtain external data useful in RAN optimization [20]. It comprises two sub-

components: non-RT RIC applications (called rApps) that benefit from the SMO 

services and offer new services to provide non-real-time (i.e., longer than one second) 

RAN resources optimization. The second sub-component is the non-RT RIC 

framework which supports the needed services to rApps [12]. 

• The near-RT RIC which controls both the O-RAN Distributed Unit (O-DU) 

and O-RAN Centralized Unit (O-CU) nodes in a near real-time scale (i.e., few 

milliseconds). It hosts applications, called xApps, which use both the E2 and A1 

interfaces to offer new services such as the management of spectrum, radio resources, 

power resources, mobility, etc. The xApps uses the E2 interface to gather the near-

RT data and the A1 interface to collect the non-RT RIC policies and data [12, 21]. 
 

 

Fig. 1. High-level O-RAN architecture 

 

3. O-RAN Centralized Unit (O-CU): It is a virtual component in the O-RAN 

that is divided into the User Plane (O-CU-UP) and Control Plane (O-CU-CP) [7]. The 

Service Data Adaptation Protocol (SDAP) and the user plane of the Packet Data 

Control Protocol (PDCP) are hosted by the O-CU-UP part. The Radio Resource 

Control (RRC) protocol and the control plane of PDCP are hosted by the O-CU-CP 

part. The E1 interface connects O-CU-UP and O-CU-CP [12]. 

4. O-RAN Distributed Unit (O-DU): It is a virtual component in the O-RAN 

that supports the functionalities of the High PHYsical (High-PHY) layer, Medium 

Access Control (MAC) layer, and Radio Link Control (RLC) layer [12]. The O-DU 

node is connected to the two O-CU planes via F1-c and F1-u interfaces to support 

some functions related to the High-PHY, MAC, and RLC layers [7]. 
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5. O-RAN Radio Unit (O-RU): It is a logical node in the O-RAN that hosts the 

Low PHYsical (Low-PHY) layer functions and the Radio Frequency (RF) operations. 

The O-RU node is connected to the O-DU node via the open fronthaul interface [12]. 

6. O-RAN Cloud (O-Cloud): It is a physical component in the O-RAN. It hosts 

the functions of O-CU, O-DU, and near-RT RIC as Virtual Network Functions 

(VNFs) [12, 22]. The O-Cloud is connected to the SMO framework via the O2 

interface. 

3. Related work 

Many researchers target the usage of DRL in solving the allocation problem of RAN 

resources as it can reach the optimal solution without prior knowledge about the 

traffic of the slices. The main problem of deploying DRL algorithms in live networks 

is the slow convergence. All the work done is trying to reach the optimal solution in 

fewer learning steps. To achieve this goal, they tend to design a good reward function, 

fine-tune the hyperparameters, and use different DRL algorithms. Also, some of the 

recent work suggested applying TL techniques. Some of these works are presented 

in this section. 

In [17], a sigmoid-based reward function and a hybrid TL-based approach are 

proposed for accelerating the DRL agent. The techniques applied are reward-shaping, 

policy distillation, policy reuse, and a hybrid approach of policy reuse and policy 

distillation. For intra-slice scheduling, a round-robin with a 0.5 msec slot is used. 

They employed PPO as the underlying algorithm for their proposed agent. They used 

the needed learning steps to evaluate their approach. Their results show that the expert 

agent converges after 18000 learning steps using the sigmoid function, while it 

converges after 11000 learning steps using reward shaping. The convergence of their 

learner agent using policy reuse, policy distillation, and the hybrid approach is 

compared and the hybrid approach reveals the best convergence after 10000 learning 

steps. The Tensorforce Python package is used to implement the DRL algorithms. 

The work in [23] presented the implementation of three DRL-based O-RAN 

xApps. The implementation of their architecture is done using the Colosseum 

network emulator. The training of DRL agents is performed offline on a gathered 

dataset using Colosseum. The first xApp is developed using one DRL agent for 

controlling the slicing and scheduling of a single BS. The second xApp has one DRL 

agent per slice for selecting the scheduling policy for each slice in parallel. The third 

xApp trains online DRL agents. The DRL agents are trained with the PPO algorithm 

and implemented using Tensor Flow 2.4 and the TF-Agents library. Autoencoder is 

used for reducing the number of observations fed as inputs to the DRL agent. The 

results show that the expert agent converges after 17460 learning steps and that the 

online learner agent converges after 12360 learning steps. 

Z h a n g, Z h o u and E r o l-K a n t a r c i [24] proposed a Federated DRL (FRL) 

algorithm for allocating power and radio resources in O-RAN and coordinating 

between independent xApps. They designed two xApps; both of them use the DQN 

algorithm. The first xApp is the power agent which decides the transmission power 

level for the BS then, this power is uniformly distributed among all the available 



 137 

PRBs. The second xApp is the radio agent that decides the number of PRBs to be 

assigned to each slice. The federated process in the proposed model is done in three 

steps. First, each agent calculates its local Q-table then, the two local Q-tables are 

submitted to the global model for calculating a joint global Q-table. Finally, two 

calibrated Q-tables for action selection are separated from this global Q-table. The 

implementation of the model is developed by MATLAB 5G toolbox. For intra-slice 

allocation, PPF is deployed. The proposed model is compared with Independent 

Reinforcement Learning (IRL) and Centralized Reinforcement Learning (CRL) 

algorithms. They reveal that the proposed FRL achieves lower delay for URLLC 

slices and better throughput for eMBB slices than the IRL algorithm. Although it 

achieves a lower reward than CRL, it converges faster. 

Two TL-based approaches are investigated in [25] for jointly allocating 

computation and radio RAN resources in multi-access edge computing for 5G 

networks. The scenario includes one expert agent that knows radio resources, one 

expert agent that knows computation resources, and one learner agent that takes its 

knowledge from the two expert agents to jointly allocate computation and radio 

resources. The expert agents are developed using a Q-learning Algorithm. They used 

two TL methods: Q-value Transfer-based DRL (QTDRL) and Action-selection 

Transfer-based DRL (ATDRL). In QTDRL, the learner agent uses the expert agent 

Q-values as extra incentives when updating its Q-values. In ATDRL, the learner 

agent reduces its action space by selecting only actions that achieve high rewards in 

the expert agents. They compared their proposed methods with Priority Proportional 

Fairness (PPF) and Deep Q-learning (DQN) algorithms. Their simulation shows a 

faster convergence, higher average rewards, and lower probability of delays for the 

proposed methods compared to the DQN and PPF algorithms. Moreover, they stated 

that the convergence of ATDRL is better than that of QTDRL because of the 

reduction in action space and better exploration efficiency. 

A TL Multi-agent DRL approach for the partitioning of resources between cells 

is presented in [26]. They examined the similarity between agents (cells) in terms of 

both domain and task based on the features extracted by the variational auto-encoder. 

Then, they designed a knowledge transfer approach to transfer both policy and 

instance from the selected expert agent to the target learner agent. The instance 

transfer strategy combines the instances (domain and action) from both expert and 

learner agents and saves them in the learner replay buffer. To capture intercell 

interference, each agent shares the network load in each slice with its neighboring 

agents. Each local agent is implemented using the TD3 Algorithm. The inter-agent 

distance is measured by the KL divergence. They stated that the proposed TL 

approach provides a higher start at the beginning of training and achieves about 12% 

failure to satisfy 0.95 of the SLA requirements. 

The same authors of [17] presented another hybrid TL-based approach in [18]. 

Their proposed method uses a combination of policy reuse and policy distillation. 

The training of DRL agents is done in the O-RAN non-RT RIC while the deployment 

is done in the O-RAN near-RT RIC. The PPO Algorithm is deployed and 

implemented using the Tensor force Python package. The proposed approach 

converges after 4000 to 6000 learning steps. 
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A bi-level model for joint allocation of power and sub-channels of radio 

resources in 5G networks is proposed in [27]. The Multi-Agent Twin Delayed deep 

deterministic policy gradient (MATD3) algorithm is used for the first level to allocate 

resources to the network slices. The Discrete and Continuous Twin Delayed deep 

deterministic policy gradient (DCTD3) algorithm is used for the second level to 

allocate each slice’s resources fairly to its users. The MATD3 algorithm has two 

agents for each base station: one agent for continuous power allocation and the other 

for discrete sub-channel allocation. The DCTD3 has one agent for each slice which 

is responsible for the allocation for both power and sub-channel. The simulation is 

developed in Python using PyTorch-GPU. The proposed model is compared with the 

nested bi-level evolutionary and multi-agent deep deterministic policy gradient 

algorithms. The model shows high reward in less than 1000 epochs but it converges 

after 2250 epochs and each epoch has 50 TTIs which means that it converges after 

112500 learning steps. 

The primary goal of this paper is to improve both expert agent rApp and learner 

agent xApp performance in terms of convergence time, consumed energy and power, 

carbon emissions, and achieved QoS. To achieve this objective, we first designed a 

reward function that guides the expert agent to the optimal allocation of radio 

resources among slices. Then, we accelerate the performance of the expert agent by 

filtering the actions. The MNO will train many expert agents with different slices and 

different traffic patterns therefore; convergence of these agents should be done in as 

few learning steps as possible, low carbon footprint, low energy, and low power. 

Finally, we propose a policy transfer learning approach for accelerating the 

performance of the learner agent xApp to be deployed in live networks. 

4. Model design 

Our model uses the PPO Algorithm to distribute O-RAN radio resources among 

slices. We choose to use the PPO for its implementation simplicity, reliability, and 

stability of its policy update, which is introduced by the clipped objective function. 

This is in addition to its efficiency as it can achieve great performance using fewer 

computational resources [28]. We focus on the downlink direction of three slices 

(Video, URLLC, and VoLTE). The PPO agent is responsible for the interslice 

allocation of available PRBs. Then, the round-robin algorithm is used by each slice 

for intra-slice allocation of resources among users. Requests from users are created 

according to the traffic pattern described in Table 1.  

The traffic in commercial networks is different from that of the offline 

simulation. Also, the MNO may change the type or the number of the slices, the state 

representation, the action space, the priorities of the slices, the SLAs, etc. Therefore, 

training the agent from scratch in the commercial network will result in degrading 

the QoS and subsequently violating the SLAs for a long time. That’s why transfer 

learning is highly recommended to be used with DRL agents. We propose a policy 

transfer learning model for accelerating the performance of the DRL agent when the 

traffic and type of slices are slightly changed. We developed an expert agent, a non-

RT RIC rApp, and a learner agent, a near-RT RIC xApp. The workflow between the 
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two agents is shown in Fig. 2. The expert agent rApp is trained by interacting with 

the simulated O-RAN environment through the O1 interface. Then, the expert agent 

transfers its policy to the learner agent xApp through the A1 interface. Finally, the 

learner agent xApp is guided by the expert agent policy until it trains its policy by 

interacting with the commercial O-RAN environment through the E2 interface. The 

interaction with the environment occurs at each Transmission Time Interval (TTI) in 

which the agent notices the state of the environment and it acts accordingly to 

maximize the reward for all slices. The agent is designed in the following sub-

sections.  

Table 1. Simulation parameters for traffic generation of the slices 

Parameter Video URLLC VoLTE 

Bandwidth 20 MHz 

Intra-slice scheduling 

Algorithm  

Round-Robin Algorithm (0.25 ms slot for URLLC, 0.5 ms slot for Video and 

VoLTE) 

Bandwidth allocation 

window size 
20 ms 

Connected Users 50 80 50 

Packet interarrival 

time distribution 

Truncated Pareto 

[max = 10 ms,  

mean = 5 ms] 

Exponential 

[mean = 100 ms] 
Constant [20 ms] 

Packet size 

distribution 

Truncated Pareto 

[max = 1500 Byte, 

mean = 1000 Byte] 

Truncated log-normal 

[max = 20 KB, standard 

deviation = 5 KB, mean = 10 

KB] 

Uniform 

[min = 60 Byte, 

max = 120 Byte] 

SLAs: Latency 7 ms 1 ms 10 ms 

 

 

Fig. 2. The workflow of policy transfer between agents 

4.1. State space 

The system’s current state S as defined below is the traffic demand of each slice in 

the previous TTI relative to the total demand of all slices, where, Dn is the demand of 

the slice n, and N is the number of slices: 

(1) 𝑆 =  (
𝐷Video

∑ 𝐷𝑛
𝑁
𝑛

,
𝐷URLLC

∑ 𝐷𝑛
𝑁
𝑛

,
𝐷VoLTE

∑ 𝐷𝑛
𝑁
𝑛

).  
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4.2. Action space 

The target task of the proposed DRL agent is to allocate PRBs to all slices. Therefore, 

the action of our agent is defined by the percentage of resources to be allocated to 

each slice. We use 15 allocation actions for the agent to choose from them. Those 

actions are shown in Table 2.  

Table 2. Agent allocation actions 

Actions 

[33.3, 33.3, 33.3], [50, 30, 20], [70, 20, 10], [80, 10, 10], [10, 80, 10], 

[10, 70, 20], [20, 70, 10], [10, 60, 30], [30, 60, 10], [30, 50, 20],  

[20, 50, 30], [30, 40, 30], [10, 50, 40], [40, 40, 20], [60, 30, 10] 

4.3. Reward function design 

Our agent’s goal is to find an optimal allocation of PRBs without violating the SLAs 

of the slices. Our reward function reflects the SLAs of the slices by latency. The 

latency is calculated using two terms: the first represents the ratio between the 

maximum latency required by the SLAs and the average latency of packets. The 

second term represents how many packets violate the required latency compared to 

the total number of packets. Each term is clipped to be between zero and one for 

stable learning, normalization, and better exploration. We choose to penalize actions 

with an average delay greater than the required delay by the SLAs. This penalization 

is done by using a power parameter θn for the first term which means that as the 

average delay increases, the penalization increases (i.e., the reward decreases). The 

reward R is calculated as  

(2) 𝑅 =  ∑ 𝑤𝑛 ×  min (
𝐷SLA𝑛

𝐷Avg𝑛

, 1)
𝜃𝑛

 ×  (1 −  
LVP𝑛

𝑃𝑛
)𝑁

𝑛  , 

where: 𝑤𝑛 is the weight of slice n; 𝐷SLA𝑛
is the maximum packet delay required by 

the SLAs of slice n; 𝐷Avg𝑛
 is the average delay of packets in slice n; 𝜃𝑛 is the penalty 

parameter of slice n; LVP𝑛 is the number of latency violation packets; 𝑃𝑛 is the total 

number of packets of slice n. 

5. Implementation details 

This section presents the used environment and simulation and the implementation 

of both agents is explained in detail.  

5.1. Environment and simulation 

The implementation of agents’ applications is performed using Python. The PPO 

algorithm is implemented using the Stable-Baselines3 package [29]. We use 

Py5cheSim [30], a 5G network simulator, for simulating the network slices, traffic 

generation, and resource allocation. The amount of consumed energy, power, and 

carbon emitted are calculated using the CodeCarbon package [31]. The agent 

environment is developed using OpenAI Gym [32]. All experiments are conducted 

on the Central Processing Unit (CPU) of a laptop with (11th Generation) Intel Core 

i7-11800H @ 2.30GHz processor, 16GB of RAM, and NVIDIA GeForce RTX 3060 

Graphics Processing Unit (GPU). 
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5.2. Expert agent (rApp) 

We use the PPO algorithm for allocating available PRBs to the slices. All the 

parameters used by our expert agent after doing many experiments are shown in 

Table 3. The expert agent rApp is explained in Algorithm 1. We use a top-k actions 

filtration technique to focus on a subset of actions to achieve faster convergence and 

improve learning efficiency.  

Table 3. Expert agent parameters 

No Parameter Value 

1 epsilon 1 

2 epsilon decay 0.95 

3 decay_every_xsteps 1000 

4 max_exploration_steps 9000 

5 total_steps 20,000 

6 filtration_step 7000 

7 learning_rate 0.01 

8 batch_size 32 

9 wvideo, wurllc, wvolte 0.333, 0.333, 0.333 

10 𝐷SLAvideo
, 𝐷SLAurllc

, 𝐷SLAvolte
 7, 1, 10 

11 𝜃video, 𝜃urllc, 𝜃volte 1.75, 2, 1.5 

12 K 5 

 

This technique considers the top ‘k’ actions with the highest log probabilities 

for each state. The drawback of this approach is that it might miss valuable actions 

with initially low probabilities. To overcome this shortage, we don’t apply the 

filtration from the beginning and start using it after 7000 learning steps. Then, we 

focus on training the agent with those filtered actions for another 2000 steps. Finally, 

the optimal solution is achieved after 9000 learning steps.  

Algorithm 1. Expert Agent rApp 

Initialize  

All the parameters described in Table 3 

Current state = (0, 0, 0) 

step = 0 

Step. 1. While step < total_steps do 

Step. 2. If step >= max_exploration_steps Then 

Step. 3. epsilon = 0 

Step. 4. End If 

Step. 5. If (step % decay_every_xsteps == 0) & (step > 0) Then 

Step. 6. epsilon = epsilon * epsilon_decay 

Step. 7. End If  

Step. 8. p = random number between 0 and 1 

Step. 9. If p < epsilon Then # Exploration 

Step. 10. If step >= filtration_step Then 

Step. 11. filter actions and choose the top-k actions 

Step. 12. choose random action from the top-k actions 

Step. 13. Else 
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Step. 14. choose a random action from all actions 

Step. 15. End If  

Step. 16. Else # Exploitation 

Step. 17. choose the best action with the highest log probability 

Step. 18. End If  

Step. 19. Allocate resources based on the selected action 

Step. 20. Calculate the reward using (2) 

Step. 21. Set the next state according to (1) 

Step. 22. Train the agent on every batch_size step 

Step. 23. End While  

5.3. Learner agent (xApp) 

We employ policy transfer learning in our model. Policy transfer is a TL technique 

where a teacher policy is transferred to a student agent having a task similar to that 

of the teacher agent. We first train an expert agent rApp at the non-RT RIC, then, the 

policy of this expert agent is transferred via the A1 O-RAN interface to a learner 

agent xApp at the near-RT RIC to accelerate its learning in a live network. We design 

the learner agent to explore all the actions for the first 2000 learning steps. Then by 

comparing the learner policy with that of the expert, we filter the actions to be 

explored by choosing only actions whose log probabilities increase or remain the 

same and ignore others. We explore those filtered actions, which are considered sub-

optimal solutions, for 1000 learning steps and finally, the action with the highest 

increased probability is chosen for another 1000 steps. Convergence is achieved after 

3000 learning steps. Our proposed learner agent is described in Algorithm 2 and it 

uses the parameters stated in Table 4. 

Algorithm 2. Learner Agent xApp 

Initialize  

All the parameters described in Table 4 

Current state = (0, 0, 0) 

step = 0 

Step. 1. While step < total_steps do: 

Step. 2. If step >= max_exploration_steps The 

Step. 3. epsilon = 0 

Step. 4. End If 

Step. 5. If (step % decay_every_xsteps == 0) & (step > 0) Then 

Step. 6. epsilon = epsilon * epsilon_decay 

Step. 7. End If 

Step. 8. p = random number between 0 and 1 

Step. 9. If p < epsilon Then # Exploration 

Step. 10. If step >= first_filtration_step Then 

Step. 11. compare the log probabilities of actions in the learner policy with that 

in the expert policy 

Step. 12. filter actions whose probability increases or remains the same in the 

learner policy 

Step. 13. If step <= second_filtration_step Then 
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Step. 14. choose a random action from the filtered actions 

Step. 15. Else 

Step. 16. choose the action with the highest increased probability 

Step. 17. End If  

Step. 18. Else 

Step. 19. choose a random action from all actions 

Step. 20. End If  

Step. 21. Else # Exploitation 

Step. 22. choose the best action with the highest log probability 

Step. 23. End If  

Step. 24. Allocate resources based on the selected action  

Step. 25. Calculate the reward using (2) 

Step. 26. Set the next state according to (1) 

Step. 27. Train the learner agent in every batch_size step 

Step. 28. End While  

Table 4. Learner agent parameters 

No Parameter Value 

1 epsilon 1 

2 epsilon_decay 0.95 

3 decay_every_xsteps 1000 

4 max_exploration_steps 4000 

5 total_steps 20000 

6 first_filtration_step 2000 

7 second_filtration_step 3000 

8 learning_rate 0.01 

9 batch_size 32 

10 wvideo, wurllc, wvolte 0.333, 0.333, 0.333 

11 𝐷SLAvideo
, 𝐷SLAurllc

, 𝐷SLAvolte
 7, 1, 10 

12 𝜃video, 𝜃urllc, 𝜃volte 1.75, 2, 1.5 

6. Results and discussion 

This section presents the results obtained from the proposed model and then, the 

performance is evaluated and comprehensively compared with the models presented 

by N a g i b, A b o u-z e i d  and H a s s a n e i n  [17, 18] using several metrics. We 

compared our results with [17, 18] because their methodology is very similar to our 

model and their implementations are available online with all the needed parameters. 

We also chose them because they are published in reputable journals (IEEE Network 

and IEEE Journal on Selected Areas in Communications). These reasons serve as a 

suitable baseline to assess how well our suggested model performs. 

6.1. Expert agent (rApp) 

We first test the expert agent using our proposed reward function without filtration 

of actions. Then, we apply the filtration mechanism and evaluate its effect on 

convergence. We use six metrics to evaluate our expert agent’s performance: the 

number of learning steps needed to converge, the convergence time, the average 
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PDR, the average Latency Violation Ratio (LVR), the consumed energy, the 

consumed power, and the carbon footprint. The PDR is calculated as the ratio of 

packets sent in a TTI to the total packets required to be sent in the same TTI. In 

training, the non-transmitted packets with latency violations are dropped at each 

TTI’s end. We integrate the model proposed in [17] with our simulation to have the 

same environment and traffic pattern. We also gave the slices in all the models equal 

weights, reflecting the equal priority of fulfilling the SLAs for all slices. The analysis 

of the results is explained in the following sub-sections.  

6.1.1. Learning steps 

The proposed reward function guides the expert agent to converge after 11000 

learning steps. At the same time, the reward function with the filtration mechanism 

results in convergence after 9000 learning steps. The authors in [17] proposed a 

model with a sigmoid reward function that converges after 18,000 learning steps. The 

main reasons for the delay in convergence of their model are as follows: 

• Their sigmoid reward function not only penalizes actions but, also gives a 

bonus to actions with an average delay below the required one. Our model doesn’t 

give any bonuses and only penalizes actions with a high average delay. 

• The difference between the rewards achieved by actions is small because it 

depends only on the average delay but our reward function depends on the average 

delay and the number of packets violating the required delay. 

The authors in [17] also proposed a model with reward shaping which results in 

converging after 11,000 learning steps. Fig. 3 shows the convergence of rewards for 

all models. The average reward is calculated for each 1000 learning steps. 

 

Fig. 3. Comparison of learning performance 

6.1.2. Convergence time 

Our model shows a great improvement in the convergence time compared to the one 

in [17] because of the following: 

• Our model converges in a smaller number of steps. 

• We use a batch size of 32 while the authors of [17] use a batch of size 8. 

The average convergence time of 50 runs is shown in Table 5.  
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Table 5. Comparison of convergence time 

Model Time, s 

Proposed model without filtration 2751.125 

Proposed model with filtration 2198.991 

Model in [17] without reward shaping 4866.046 

Model in [17] using reward shaping 3273.694 

6.1.3. Average packet delivery ratio and latency violation ratio 

The proposed model achieves a low average LVR for all slices, a high average PDR 

for video and URLLC slices, and an average PDR of 80% for VoLTE slice after 9000 

learning steps. The model proposed in [17] without reward shaping achieved the same 

average LVR and PDR as our model after 18000 learning steps. Moreover, the model 

in [17] using the reward shaping achieved a high average PDR for only the URLLC 

slice because the reward shaping gives priority to the URLLC slice and ignores other 

slices. Therefore, the URLLC slice will reserve many more PRBs than needed 

without any enhancement in its performance, subsequently, the remaining PRBs are 

not sufficient for the requests of the other two slices. The average PDR and LVR of 

all models are revealed in Fig. 4 and Fig. 5, respectively. The average values of PDR 

and LVR are calculated for each 1000 learning steps.  

 

  
(a) The proposed model without filtration (b) The proposed model with filtration 

 

  
(c) Model in [17] without reward shaping (d) Model in [17] with reward shaping 

Fig. 4. Comparison of average Packet Delivery Ratio (PDR) 
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(a) The proposed model without filtration (b) The proposed model with filtration 

 

  
(c) Model in [17] without reward shaping (d) Model in [17] with reward shaping 

Fig. 5. Comparison of average latency violation ratio 

6.1.4. Energy consumption, power consumption, and carbon footprint 

We compared the consumed energy, the consumed power, and the amount of carbon 

emitted by our proposed expert agent using filtration with those of the expert agent 

in [17] that used the reward function without shaping because it is the one used by 

authors when applying TL. The average consumed power, consumed energy, and 

carbon footprint of 5 runs are shown in Table 6. Our proposed expert agent saves 

approximately 72% of the GPU power, 57% of the energy, and 59% of the carbon 

emissions. 

Table 6. Comparison of energy and power consumption and carbon footprint 

Metric Proposed expert agent Expert agent in [17] 

CPU power consumption 22.5 W 22.5 W 

GPU power consumption 10.22 W 36.39 W 

Energy consumption 0.0237 kW.h 0.0552 kW.h 

Carbon footprint 0.011 kg.CO2eq 0.027 kg.CO2eq 

6.2. Learner agent (xApp)  

In the transfer learning scenario, the expert agent has three slices: one Video, one 

URLLC, and one VoLTE. Then, we use two learner agents with a slight difference 

in the traffic pattern from that of the expert agent and different types of services. The 

first learner agent has one URLLC, and two VoLTE slices while the second one has 

one URLLC and two Video slices. The authors in [17] proposed three models for TL: 

policy transfer, policy distillation, and a hybrid model between both of them. They 

stated that the hybrid model is the best, therefore, we compared our proposed TL 

model with this hybrid one. Our proposed model reaches above 95% of the maximum 

reward after 2000 learning steps. Then, it converges to the maximum reward after 
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3000 steps. The hybrid model presented in [17] converges after 10000 learning steps 

and doesn’t reach the maximum reward reached by the non-accelerated agent. The 

reason is that they used a too small exploration rate and their model exploits only an 

action between the best expert action and the best learner action, which is the same 

at the beginning. Therefore, the learner agent takes the expert actions and does not 

learn anything new and consequently, it could not reach an optimal solution. The 

comparison of the learning performance of the TL models with the non-TL models is 

shown in Fig. 6. Also, the same authors in [17] presented another hybrid TL model 

in [18] using the same sigmoid reward function. Their results reveal that the 

convergence is achieved after 4000 to 6000 learning steps which means that our TL 

model converges faster. 

 

  
(a) Our proposed TL model 

(Agents with 1 URLLC and 2 VoLTE slices) 

 

(b) Our proposed TL model 

(Agents with 1 URLLC and 2 Video slices) 

  
(c) The hybrid TL model in [17] 

(Agents with 1 URLLC and 2 VoLTE slices) 

(d) The hybrid TL model in [17] 

(Agents with 1 URLLC and 2 Video slices) 

Fig. 6. Comparison of learning performance of the TL models with the non-TL models 

7. Conclusion and future work 

In this paper, we addressed the issue of RRM in O-RAN slicing of the NGWNs to 

achieve optimal dynamic radio resource allocation with better QoS for all slices, less 

energy and power consumption, and reduced carbon emissions. The deployment of 

DRL agents to distribute radio resources among various slices needs thousands of 

steps to learn and converge to the optimal policy. Consequently, this results in SLA 

violation and having unsatisfied QoS for a long time. Moreover, they increase the 

amount of energy and power consumption and carbon emissions. Designing a good 

reward function and using TL help in guiding the agent in the exploration phase to 

converge to the optimal solution faster. Therefore, we proposed a model that uses a 

latency-based reward function with penalties, a top-k filtration mechanism for 

actions, and a policy transfer technique that helps the agent to converge in fewer 

learning steps. We compared our model with the one proposed in [17] and the results 

revealed that our expert agent saved 50% of the learning steps, 72% of the GPU 
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power, 57% of the energy, and 59% of the carbon emissions. Also, it shows that our 

learner agent can achieve the maximum reward in 3000 steps while other TL models 

cannot. In the future, we want to address the applicability of our model in a real 

network environment and apply other DRL algorithms and TL approaches. 
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