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Abstract: This paper introduces an innovative approach integrating global best 

(gbest) and local best (lbest) PSO communication topologies. The algorithm initiates 

with lbest and seamlessly transitions to gbest, with the switching rate controlled by 

the parameter “a”. Rational values of “a” is determined through numerical 

experiments. A comparative methodology employing two estimation criteria is used 

to showcase the improved performance of the modified PSO-based algorithms. 

Furthermore, the efficacy of this approach is demonstrated in addressing two optimal 

control problems within dynamical systems. Results highlight the modified 

algorithms’ superiority in terms of the total number of successful runs and statistical 

indicators. Consequently, these advanced algorithms prove effective for applications 

such as artificial neural network training, controller gains determination, and 

similar problem domains. 

Keywords: Particle swarm optimization, Topology connections, Benchmarks, 

Optimal control problems. 

1. Introduction 

Optimization problems appear in many areas of human activity. From ancient 

ages to modern times this class of problems has experienced huge 

transformations. Problems became more complex and difficult to solve due to 

increased dimensionality, non-linearity, and constraints. Optimization 

methods have evolved as well. Now scholars focus on numerical approaches, 

as they can find appropriate solutions utilizing reasonable computational 

resources. One may hope for quantum computations, which can bring the 

methodology of solving optimization problems to a qualitatively new level. 

However, it is a far perspective, and researchers should improve the existing 

optimization paradigm. 

One of the most powerful and applicable optimization algorithms is 

known as Particle Swarm Optimization (PSO) [1]. Since its development in 

mailto:romasevichyuriy@ukr.net
mailto:lovvs@ukr.net
mailto:zivbr@sce.ac.il


 60 

1995, it experienced a plethora of modifications, and the flow of academic 

papers in this direction is increasing year by year. Indeed, one might check the 

number of PSO-related works indexed in Scopus and Web of Science 

databases about the total works there (Fig. 1). All data presented in Fig. 1 were 

collected on the 9th of June 2023. 
 

 
(a) 

 

(b) 

Fig. 1. Histograms of a fraction of PSO-related works indexed in Scopus and Web of Science 

databases corresponding to the total works there, which are collected by the requests:  

“PSO” (a); “PSO application” (b) 

 

Histograms, shown in Fig. 1 clearly evidence, that the interest of the scientific 

community in PSO-connected investigations is increasing. 

One of the features, that allows classifying PSO-related algorithms, is the level 

of connections between particles in a swarm: in gbest scheme, a particle “knows” 

about the best solution found by a whole swarm, in lbest, a particle obtains 

information only from a local neighborhood of particles [2, 3]. It, in turn, brings 

opposite search features. Gbest rapidly converges and may skip good solutions, lbest 

explores a cost function much more in detail but its convergence rate is low [3-5]. 

Other papers stress the similarity in the algorithms’ search outputs [6]. Cited work, 

and some others [7, 8] put “vs” between gbest and lbest. In our opinion, this operator 

must be replaced with “and” one. An explanation of this idea is presented further. 

The article is built in the following manner: the next section presents a brief 

review of the published works in the problem sphere; the third section describes the 

development of PSO modification where gbest and lbest are combined, in this section 

optimal value of additional algorithm parameter a is found; in the fourth section 

comparative analysis is shown on the set of well-known benchmarks; application of 
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developed algorithms to optimal control is discussed in the fifth section; the article 

ends with conclusions. 

2. Literature review 

Topology connections between particles in a swarm are an important feature that has 

a great impact on PSO Algorithm performance. In PSO-related reviews [3, 9-12] this 

factor is stressed. A huge number of studies reveal different aspects of topology 

connections swarm diversity and its changing during an algorithm execution [13, 14], 

probabilities features of particles’ interactions [15], algorithm performance [4, 5, 8, 

16, 17], etc. These works allowed understanding the features of gbest and lbest search 

patterns. The general point of the scholars’ community is – overall gbest and lbest 

performances differ from each other [3-5]. However, the results of the investigation 

[6, 18,  19] refute this thesis. E n g e l b r e c h t  [6] has performed a comparison of 

gbest and lbest PSO algorithms on 60 benchmarks constrained minimization 

problems of varying complexities have not been carried out. The statistical analysis 

shows that the two algorithms performed very similarly with respect to solution 

accuracy; gbest PSO performed slightly better with respect to success rate and 

efficiency; lbest PSO performed slightly better with respect to consistency. Thus, at 

least this contradiction must be properly studied. 

To improve algorithm performance, a few studies have been conducted to 

combine gbest and lbest. For instance, article [20] describes a Unified PSO scheme 

(UPSO) – the algorithm, that harnesses the local and global search patterns. Their 

combination is carried out in a stochastic manner. Based on the application results, 

which involve five benchmarks, authors conclude, that UPSO exploits positive 

properties of both variants. Paper [21] has developed a new hybridized version of 

PSO with variable neighborhood search (PSOLGENT). It combines local and global 

expanding neighborhood topology by adding in velocity adaptation expression a 

fourth term. It directs a particle towards the local best of its neighborhood. 

PSOLGENT exploitation for constrained shortest path problems approved the 

efficiency of such an approach. In the study [22] All-Dimension-Neighborhood-

based PSO with a randomly selected neighbors learning strategy (ADN-RSN-PSO) 

is developed. The idea of this algorithm is connected with a two-stage strategy: in the 

early iterations randomly selected neighbors learning strategy is adopted and it 

improves the swarm diversity, while in the later stage all-dimension neighborhood 

technique is used to accelerate the convergence rate. Experiments on CEC2013 

benchmarks have shown algorithm competitiveness. 

Different lbest topologies may be combined as well [23]. A good balance of 

exploitation and exploration activities, which is implemented in the so-called 

SMPSO-SW algorithm, is described in the work. The algorithm uses star topology 

during the first half of the iterations and the wheel topology during the second half. 

It has been applied to multi-objective optimization problems and revealed strong 

competitive features.  

It is worth noting, also that in general, the topology concept may be used not 

only in PSO, but also in other agent-based optimization algorithms [24]. 
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Summing everything up, we might conclude, that a combination of lbest and 

gbest features in one algorithm is an attractive direction of the investigation, which 

can bring promising results: good convergence rate, local minima avoiding, 

reasonable spending of computational budget, etc. 

3. lbest and gbest fusion 

3.1. Canonical PSO Algorithm, gbest and lbest 

The canonical PSO Algorithm [1] operates with the term “swarm”, it is a set of 

possible problem solutions (particles). A swarm may be imaged as a bunch of 

particles on a cost function surface. The number of particles – swarm population N, 

and a particle number denotes as n, n ∈ [1, N]. The position of a particle is described 

by a position vector T
1x [ ,..., ,..., ]n n n n

d Dx x x= , a particle’s direction of movement and 

velocity is described by a velocity vector 

(1)   T

1v [ ,..., ,..., ]n n n n

d Dv v v= , 

where D signifies the dimension of particle n. 

The PSO Algorithm starts with swarm design, which means random 

initialization of particles’ positions and velocities. The velocity vector may be set as 

zero-vector (there are other possible techniques of velocity-vector initialization, but 

we will not consider them in the current investigation). Every component of the 

position vector of any particle is just a random number in the search domain,  

xd ∈ [xmin.d, xmax.d]. 

On the further algorithm’s iterations velocity-vectors and position-vectors of 

particles are changed according to the equations: 

(2)   
1 1 1 1 1 2 2 1 1

1

v w v r (p x ) r (g x ),

x x v ,

j j j j j j

j j j

c c− − − − −

−

=  +  − +  −


= +

  

where: j is the number of the current iteration, j ∈ [1, J], and J is the total number of 

iterations; p is particle’s personal best – the best solution, which a particle has found 

so far; g is global best – the best solution, which the whole swarm has found;  

w  is vector of weight coefficients; c1 and c2 are the cognitive and social coefficients;  

r1 and r2 are the vectors of random numbers, which uniformly generated on the 

interval [0, 1]. 

If the application of update rules (2) leads to the search domain leaving, then the 

corresponding component of the position vector must be replaced by the boundary 

value, which is violated (хmin.d or хmax.d). 

To update vectors p and g, the following formulas should be used: 

(3)   
. . . .

. . . .

p x if (x ) (p ),

g p if (p ) (g ).

j n j n j n j n

j n j n j n j n

f f

f f

= 


= 

 

where f is a cost/objective function denotation. 

The algorithm runs until the stopping criterion is met, most often j=J. 

Social term in (2) severely influences particle movement. Indeed, every particle 

“knows” about vector g and is forced to go there. In many cases, it leads to premature 
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convergence, and problem solution remains unfound. Described topology 

connections between particles is known as gbest. 

In order to avoid premature convergence, information about vector g must 

disseminate through a swarm at a much slower rate. One of the possible ways to reach 

this feature is to consider not a whole swarm, but a local neighborhood. This approach 

means, that in the first line of the system (2) the following expression should be used: 

(4)   
1 1 1 1 1 2 2 1 1v w v r (p x ) r (gl x ),j j j j j jc c− − − − −=  +  − +  −   

where gl is the local best – the best solution, which a limited set (neighborhood) of 

particles has found. Application of expression (4) provides an exchange of 

information about found best solution only in the local group. On the next iterations, 

this information leaks to the next neighborhoods, since a particle belongs to different 

local groups. Described above scheme of information dissemination is called lbest. 

We will show two possible structures of lbest: Ring [25] (very common; denoted 

as Ring-PSO) and rotation-Ring topologies [26] (denoted as R-Ring-PSO). The first 

means, that n-th particle exchanges information only with its left, (n – 1)-th, and right 

(n+1)-th neighbors, i.e., vector gl may be determined as follows: 

(5)   

( )

( )

( )

. . . 1
arg

. . 1 . . 1
arg

. 1 . .1
arg

1, min (p ), (p ), (p ) ,

gl 2 1, min (p ), (p ), (p ) ,

, min (p ), (p ), (p ) .

j N j n j n

j n j n j n j n

j n j n j

n f f f

n N f f f

n N f f f

+

− +

−

 =



=   −

 =


 

In the R-Ring-PSO neighborhood topology at each iteration, a particle changes 

its neighbors in a manner, that may be described by the idea of a rotation ring, i.e., 

the subscripts (sequence number) of left-side and right-side particles at each iteration 

are increased by one. After N iterations these subscripts return to values, they were 

on the first iteration. Thus, Ring-PSO exploits static topology, while R-Ring-PSO – 

dynamic one. 

Both algorithms provide a detailed exploration of a cost function but suffer from 

a slow convergence [25, 26]. It, in turn, means a bigger amount of computational 

resources, which are necessary for finding a problem solution. The next subsection 

describes the approach to improve the situation. 

3.2. Combination of lbest and gbest 

Comparing both approaches gbest and lbest we may conclude, that lbest is good for 

the exploration phase, gbest – for exploitation. To combine their desired features, we 

propose to take into consideration a vector ggl, which must replace vector gl in the 

expression (4). To meet the search scheme “exploration-exploitation” vector ggl must 

be close to vector gl in the early phases of algorithm execution (lbest pattern), and 

close to vector g at the final phase of the search (gbest pattern). We propose to design 

a vector ggl component d with the following expression: 

(6)   
.

.

.

, g ,

ggl

, gl ,

a

j d

j d a

j d

j
r

J

j
r

J

 
 

 
= 

 
 

 
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where a is an algorithm new parameter, which controls the speed of patterns 

switching (from lbest to gbest); r is the random number, that is uniformly generated 

in the range [0, 1] with mathematical expectation E(r)=0.5. Its influence on developed 

algorithms performance will be given in further. 

The manner of vector ggl design is similar to that, applied in the Differential 

Evolution (DE) Algorithm [27] for construction of the candidate solution (crossover). 

In order to illustrate the influence of parameter a on the threshold value (j/J)a, 

which switches components of vectors g and gl, plots (Fig. 2) are given. 
 

 
Fig. 2. Plots of influence of parameter a on the threshold value (j/J)a 

 

Mentioned above transition is carried out smoothly (Fig. 2), in a probable 

manner. From Fig. 2 one may observe, that for the case a>1 lbest pattern is prevailing, 

for a<1 gbest pattern has a bigger influence. Considering the fact, that E(r)=0.5, we 

may state an approximate estimation of the percentage of iterations, then the influence 

of the gbest pattern overpowers the lbest one (Table 1). 

Table 1. Percentage of iterations, then the influence of the gbest pattern overpowers the lbest one 

a value 0.2 0.5 1 2 4 10 20 100 

Percentage of executed iterations 3 25 50 71 84 93 97 99 

 

As one may conclude from the data given in Table 1, when a≈0, then the gbest 

pattern prevails, when a>>1, then the lbest pattern plays a principal role. In the 

boundary cases: 

(7)   

0

limggl gl,

limggl g.

a

a

→

→

=


=

 

Thus, gbest and lbest patterns are partial cases of the developed one. 

For further investigations, we select static and dynamic ring topology of 

particles’ connections. However, it may be applied to any algorithm in the lbest set. 

Developed algorithms is denoted as LG-Ring-PSO (parent algorithm is Ring-PSO) 

and LG-R-Ring-PSO (parent algorithm is R-Ring-PSO). 

3.3. Set of benchmarks 

To study the influence of a parameter on developed PSO modification and compare 

its performance with other PSO-based algorithms twenty benchmark functions are 

used [28-32]. 
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3.4. Algorithms’ optimal parameter determination 

Many papers [9-11] argue the strong influence of parameters numerical values on 

PSO-based algorithms performance. Since parameter a governs switching between 

gbest and lbest, we should determine its reasonable value. In order to obtain it, a set 

of numerical experiments were carried out. In these experiments parameter a is just 

an independent argument of some function. The latter may be chosen as some 

statistical indicator of multiple LG-Ring-PSO and LG-R-Ring-PSO runs. We focus 

on the median value. For this purpose, it is very convenient to present Numerical 

Experiments Output (NEO) as a Box-Whisker diagrams in a logarithmic scale. All 

the data are collected on fifty independent algorithms runs. Benchmark’s f1, f4, f7, 

and f8 were chosen for the estimation of parameter a influence. These functions were 

chosen since they have different features in terms of unimodality and separability. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Box-Whisker diagrams, which correspond to NEO of the algorithm LG-Ring-PSO referred to 

the benchmarks: f1 (a); f4 (b); f7 (c); f8 (d) 
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We set two cases: D=N=30 and D=N=50 (it is reasonable to apply developed 

algorithms to problems, where number of arguments do not exceed a hundred). 

Swarm population N should be increased for more complicated problems (in terms 

of value D). That is why for all of the considered cases D=N. In addition, two cases 

will bring more reliable data. 

All the built diagrams are given in Fig. 3 where left column of diagrams refers 

to the case D=N=30, right one – to the case D=N=50. Analysis of plots (Fig. 3) allows 

us to determine a reasonable range of a values, which is associated with a median 

minimum (horizontal white lines on Fig. 3). For benchmarks f1, f4, and f7 it is located 

in domain [1, 2]. For benchmark f8 the domain of reasonable a values locates in  

[0.5, 1]. We recommend setting a=1 and will use it in further investigations. 

Similar results were obtained for LG-Ring-R-PSO (Fig. 4). Here optimal a value 

for cases f1, f7, and f8 equals 4, for f4 one should set a=0.5. However, in further 

calculations, we set a=4. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Box-Whisker diagrams, which correspond to NEO of the algorithm LG-Ring-PSO referred to 

the benchmarks: f1 (a); f4 (b); f7 (c); f8 (d) 
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4. Comparative analysis 

4.1. Estimation criteria 

To estimate the algorithm’s performance a set of criteria should be involved. “Raw” 

statistical values (minimax, maximal, average, median, standard deviation) are only 

source material for further estimations. They may be carried out on the base of the 

selected criteria. 

One of the most common criteria of comparison is the sum of algorithms’ ranks 

(noted as C1 in the paper). Algorithms ranking involves median value on fifty 

independent runs. This criterion allows in a quite simple manner to compare 

algorithms’ performances (in a ranking sense) without concerning benchmarks 

minimization difficulties. To consider this, we propose to use a modification of a 

criterion, developed in [33]. The first step in criterion (noted as C2) calculation is 

Performance Matrix (PM) design. Every element of the matrix is calculated according 

to the following formula: 

(8)   . . 1

. 10

. .

( )
Cr log , (1,..., ); (1,..., ) ,

( )

j

j J

S f
B A

S f

 

 

 

 
=

=

 
=   

 
 

 

where α and β are the compared algorithms and benchmarks counters respectively;  

A and B are the total numbers of compared algorithms and benchmarks respectively; 

S is the notation of some statistical value (for instance, median S=Me). Value (8) 

indicates by how many orders of magnitude algorithm α minimizes benchmark β 

during J iterations. PM contains this information through all algorithms and all 

benchmarks.  

The only exclusion may trap, when during minimization a cost function changes 

its sign, i.e., logarithm function (8) is unidentified. 

Since benchmarks differ from each other by the difficulty of minimum 

localization, the algorithms’ performance must be weighted. For that purpose, we put 

into consideration a weight vector: 

(9)   
T

1

1

.

Q ( ,..., ,..., ) ,

Q Cr , const; (1,..., ),

B

L

Q Q Q

A A



    −

=

= = 
 

where .Cr
L   is a norm of a vector, which corresponds to the β-th row of the PM. 

The next step is a calculation of the Weighted Performance Matrix (WPM). Each 

element of the WPM is obtained as follows: 

(10)   1
. .Cr Cr Q .    

−=   

Value (10) reflects algorithm α performance with relation to the difficulty of 

benchmark β minimization. The last step is a calculation of the overall weighted 

algorithm performance. For that, all the elements (10) in the WPM columns must be 

added, 
.

1

C2 Cr

B

 

 =

= . 

In the case L=∞, we obtain a known criterion [33], which is very strong. In the 

paper, we will exploit L=2 variant (Euclidian norm). It is not so strict, as that applied 



 68 

in the work [33], and allows to estimate algorithms’ performances on a more 

reasonable basis. 

4.2. Brief analysis 

In this subsection, we present the data of eight optimization algorithms’ 

performances. Algorithms belong to three sets: gbest, lbest, and gbest+lbest. They 

are LWD-PSO [34], VCT-PSO [35], ME-D-PSO [33], Ring-PSO [25], R-Ring-PSO 

[26], UPSO [20], LG-Ring-PSO, and LG-R-Ring-PSO. For all cases the number of 

iterations J=1000, swarm population N=50, and dimensionality of the benchmarks 

D=50. All the obtained “raw” data are given in [36. Table 1]. 

The smallest values of statistical indicators in Table B.1 are given in bold. Based 

on median values (most uninfluenced by the stochastic factor of the algorithms 

search) we provided a ranking of the algorithms’ performances (criterion C1). The 

corresponding data are given in [36, Table 2]. 

Another indicator – is C2, which is calculated on the median base as well. To 

calculate C2 values, WPM was found (exception cases are f3, f17, and f19; for these, 

it is impossible to calculate Crβ.α). WPM is presented in [36, Table 3]. 

Both tables (Table 2 and Table 3 in [36]) evidence, that the proposed approach 

of gbest and lbest combination beneficially influences their search performance. 

Indeed, found with LG-Ring-PSO and LG-R-Ring-PSO solutions are greatly better, 

than, those, determined with parent algorithms (Ring-PSO and R-Ring-PSO). For 

LG-R-Ring-PSO Algorithm modification (6) allowed improvement of search 

performance for all benchmarks, except f16 and f20. Overall C1 increasing equals 30 

points (approximately 33% of initial performance). Similar numbers for LG-Ring-

PSO are 11 points of C1 increase (10% of initial performance). Relative increasing 

of C2 indicator for LG-R-Ring-PSO is 15%, for LG-Ring-PSO – 6%. Thus, 

modification (6) influences better on more advanced PSO-based algorithms.  

Among compared algorithms the best search abilities (estimated by criteria C1 

and C2) shows LG-R-Ring-PSO. It outperforms the nearest algorithm (UPSO). 

However, we cannot recommend LG-R-Ring-PSO for wide application so far. The 

reason is connected with the fact, that solved optimization problems (f1-f20) are 

synthetic. They reflect features of real-world optimization problems only to some 

extent. That is why estimation and comparison of algorithms’ performances is 

mandatory for further LG-R-Ring-PSO and LG-Ring-PSO competitive ability 

justification. 

5. Application to Optimal Control Problems (OCP) 

5.1. Solution of OCP-1 

In this subsection we state and solve an optimal control problem [34]. The plant to 

control – is an underactuated non-linear pendular system – Furuta pendulum [37, 38] 

(Fig. 5). 

This dynamical system is described by the following system of non-linear 

differential equations: 
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(11)   

2 2

0 21 2 1 2 2 1 2 21

2

2 1 2 21 21 2 2

( sin ( )) cos( ) sin( ) sin(2 ) M,

1
cos( ) sin(2 ) sin( ) 0.

2

J J m L l m L l J

m L l J J gm l

       

     

 + + − + =



+ − + =


 

Here  and α are the generalized coordinates of the system; M is the drive torque; L1 

and L2 are the lengths of Arm 1 which rotates in the horizontal plane and Arm 2 which 

is free to rotate in the vertical plane; the arms possess masses denoted as m1 and m2, 

with corresponding distances from the pivot point to their respective centers of mass 

referred to as l1 and l2; J0 denotes the total moment of inertia experienced by the motor 

rotor when the pendulum (Arm 2) is in its stable equilibrium position, hanging 

vertically downward, 2
12

2
1110 LmlmJJ ++= ; J1 is the moment of inertia of Arm 1 

about the pivot point; J21 is the total moment of inertia of Arm 2 about its pivot point, 
2
22221 lmJJ += ; J2 is the moment of inertia of Arm 2 about the free point; g is 

gravitational acceleration. Numerical parameters of the system are listed below: 

L1=2.78×10–1 m, L2=3.0×10–1 m, l1=1.5×10–1 m, l2=1.48×10–1 m, m1=3.0×10–1 kg, 

m2=7.5×10–2 kg,  J1=2.48×10–2 kg.m2, J2=3.86×10–3 kg.m2. 

 
Fig. 5. Dynamical model of Furuta pendulum 

 

Boundary conditions of the controlled movement are as follows: 

(12)   
s a s a s a s a

(0) ; (0) (0) (0) 0,

( ) ; ( ) ; ( ) ; ( ) ,t t t t

    

       

 = = = =


   

 

where ts is settling time (to determine its value the simulation of the dynamical system 

movement must be ceased when all the final conditions (10) are met and ts is set as 

the moment of simulation termination); a and αa are the acceptable value of final 

generalized coordinates (a=αa=10–2 rad); a  and a  are the acceptable value of final 

generalized angular velocities ( a = a =10–2 rad/s). Because of the limitation of a 

torque M, caused by technical features of a drive, the following constraints must be 

taken into consideration: 

(13)   
min maxM M M ,   

where Mmin and Mmax – minimal and maximal torques, which can be applied to the 

column (Мmax=1 N.m, Мmin= –1 N.m). In order to satisfy conditions (13) output signal 

of the control operator, which will be described further, is passed through the 

saturation element. It cuts the values of torque M, that violate constrain (13). 

A Criterion Cr to be minimized includes four components: 

m1

m2

L2

l2

l1

L1

M

α

φ

Arm 1

Arm 2

Motor

Column
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(14)   1 1 2 1 1 2 1 1 2

s max s s s

0 0 0

Cr 2 ,
s s st t t

t M t M dt t dt t dt    − − − − − −=  + + +    

where Ω is the frequency of natural system oscillations, 

22

1

mgl

J
= . The first term 

in (14) corresponds to the system’s movement duration, the second term – to the 

control resources, spent on the system movement (also this term can be presented as 

energy losses in the motor), the third and fourth components relate to the 

minimization of generalized coordinates deviation from final conditions (12). All the 

terms of criterion (14) are dimensionless and they reflect the undesirable features of 

the system controlled movement. That is why Cr must be minimized. 

Since optimal control problem (11)-(14) is nonlinear, it is reasonable to use a 

nonlinear control operator to find its solution [37]. In the investigation, we apply a 

feedforward Artificial Neural Network (ANN) with one hidden layer. Indeed, ANN 

may form a nonlinear mapping of the input vector (state variables) to the output 

function (control). We may expect this mapping to meet all the problem conditions 

(11)-(14).  

Optimization algorithms, studied in this work, will be used to find the 

parameters of ANN, since the problem (11)-(14) solving directly is impossible: 

algorithms find optimal values of arguments, but in the stated problem we need to 

find optimal mapping “state variables – optimal control”. That is why we exploit the 

ANN, it includes parameters to find (PSO algorithms will find them) and builds the 

needed mapping. 

ANN has four inputs (generalized coordinates and velocities) and one output – 

torque M. The hidden layer includes five artificial neurons. Arctg – is an artificial 

neuron’s activation function. Thus, the problem (11)-(14) is reduced to the finding of 

thirty-one parameters of ANN (twenty-five weights and six biases). Such parameters 

must define the ANN behavior (control), that allows to satisfy boundary conditions 

(11) and minimize criterion (14) (reinforcement training paradigm). The search 

domain of each ANN parameter is limited by the range [–2, 2]. 

In the ANN training, we consider two stages. The first one is associated with 

conditions (12) satisfaction, i.e., following terminal criterion must be minimized: 

(15)   

( )1 1 1 1

T s a s a s a s a

s a s a s a s a

s a s a s a s a

( ) ( ) ( ) ( ) if

Ter ( ) ( ) ( ) ( ) ,

0 if ( ) ( ) ( ) ( ) .

t t t t

t t t t

t t t t

        

       

       

− − − − + + +



=       


      


 

where δT – Terminal weight coefficient (δT=105), it allows to separate the stage of Ter 

minimization from the stage of Cr minimization. 

The second stage is pure minimization of criterion (14), without Ter (15). At the 

beginning of the second stage, gbest includes ANN parameters, which allow ANN to 

act in a manner, that satisfies final conditions (12). 

For all cases, the number of iterations J=200, swarm population N=30, and there 

were fifty of each (compared) algorithm runs. The result of criterion minimization in 

ANN reinforcement training for the best found solution are given in Fig. 6. 
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One can observe both described stages in Fig. 6, a (a sharp decrease of Cr+Ter 

value). Phase trajectories of Furuta pendulum links support the fact of final conditions 

(12) satisfaction. However, fast torque M changing in some periods is an undesirable 

feature of the found control, and that is why there is room for further system dynamics 

improvement. 
 

 
(a)     (b) 

 
(c)    (d) 

Fig. 6. Results of optimal control problem solution: decreasing of Cr (a); torque M (b); phase 

trajectory of the boom (c); phase trajectory of the pendulum link (d) 

 

Summing everything up, we may state, that LG-Ring-PSO and LG-R-Ring-PSO 

are perspective algorithms for ANN training, particularly in the reinforcement 

paradigm [40]. 

5.2. Solution of OCP-2 

The cantilever beam is a widely recognized and prominent case study, spanning 

diverse research fields from aerospace to land-based and maritime applications. This 

case study has become a crucial testbed within the control systems domain, 

showcasing innovative advancements in vibration suppression through closed-loop 

control systems. Researchers have addressed various control aspects, exploring 

algorithmic developments, optimization methodologies for sensor and actuator 

placement, and the meticulous selection of sensor and actuator types [41-43]. In a 

notable study by H u a n g  et al. [41], they successfully integrated a global canonical 

Particle Swarm Optimization (PSO) algorithm to optimize an LQR cost function for 

vibration mitigation in a cantilever beam. Utilizing an actuator and a piezoelectric 

sensor, this approach demonstrated remarkable efficacy in suppressing vibrations, as 

evidenced by simulation results. 

The following section presents comparative results of various PSO approaches, 

including those proposed in this paper, for mitigating vibrations in a cantilever beam. 
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The analysis focuses on a cantilever beam featuring a bending Moment actuator (M) 

and an external Force (F) applied near the clamping and at the end of the beam, as 

illustrated in Fig. 7. 

 
Fig. 7. Smart cantilever beam with piezoelectric patches 

 

The cantilever beam model is a continuous system described by a partial 

differential equation based on the Euler-Bernoulli beam theory. The model is as 

follows: 

(16)   
4 2

4 4

( , ) ( , )
( ) ( ).

EI y x t y x t
w t u t

w x t

 
+ = +

 
 

This model can be represented in finite dimensions using equations of motion 

in modal space as follows: 

(17)   M g( ) C g( ) K g( ) F( ).t t t t +  +  =  

In that equation, M ∈ ℝm×m, C ∈ ℝm×m and K ∈ ℝm×m represent the modal mass matrix, 

damping matrix, and stiffness matrix of the beam, respectively; F corresponds to the 

modal load matrix, generated by the bending moment actuator (u) and the disturbance 

force (w); g ∈ ℝm represents the modal coordinate, where m is the number of modes. 

The piezoelectric actuator forms the control action, causing the suppression of 

beam vibrations, while the piezoelectric sensor provides actual information about the 

current system state. In this case, the equations of motion (17) can be rewritten in a 

state-space model as 

(18)   

0

x( ) A x( ) B u( ) E w( ),

y( ) C x( ),

x(0) x ,

t t t t

t t
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where: x is the state vector; x0 is the initial state vector (zero-vector); y is the output 

vector, and C is the output matrix, defined by the sensor’s type, sensitivity, and 

location. 

For the PSO investigation, a model with two first modes (m=2) were chosen. 

The relationship can be expressed as follows: 

(19)   
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The disturbance input, denoted as w, is designed to consist of two impacts of 

opposite signs. 
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(20)   
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We define the class of admissible control laws, denoted as u, to be of the form: 

(21)   
1 1 2 2 3 1 4 2 ,u G x G x G x G x= + + +  

where G1, …, G4 are the controller gains to be defined to satisfy final conditions, 

(22)   
s a s( ) ( ) ,x t x t  

and complex criterion minimization, 

(23)   

s

1 2 2

s 1 2 1 2

0

1 2 1 2

( ) ( )

max( ) 0.5(max( ) max( ) max( ) max( )).

t

Cr t x x x x dt

u x x x x
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+ + + + +

  

Finally, the admissible state vector is set as follows: xa(ts) = (5×10–7, 5×10–7,  

5×10–7, 5×10–7)T. To satisfy all the conditions (22) and (23) we applied a similar 

technique – splitting the solution into two stages. In the first, an algorithm finds a 

solution, which meets final conditions (22), while in the second one, criterion (23) is 

minimized. In OCP-2 we set δT=1010 since the values of state-vector components are 

quite small. The search domain of controller gains G1, G2, G3, G4 is limited by the 

range [–0.5, 0.5]. Since the total number of the controller gains is four, we set J=50, 

and N=10. Each algorithm was run fifty times. The result of criterion minimization 

for the best found solution is given in Fig. 8a. 

 
 

 
(a)     (b) 

 

 
(c)     (d) 

Fig. 8. Results of optimal control problem solution: decreasing of Cr+Ter (a); disturbance function (b); 

control function (c); systems response (gray curve – without control; black curve – with optimal 

control) (d) 
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OCP-2 problem is much simpler than OCP-1, and the optimization algorithm 

needs only eighteen iterations (Fig. 8a) to find a solution, which satisfies conditions 

(22). Vibration of the beam, caused by disturbance (Fig. 8b) is suppressed (Fig. 8d). 

Thus, we may recommend LG-Ring-PSO and LG-R-Ring-PSO algorithms for 

application in similar problems. 

Overall optimization algorithms performance on OCP-1 and OCP-2 is given in 

Table 4 in [36]. Analysis of the data in this table shows that LG-Ring-PSO and  

LG-R-Ring-PSO outperform compared algorithms. The initial modification, R-Ring-

PSO, is very close, but almost all statistical values related to LG-R-Ring-PSO are 

better. Thus, we strongly recommend using the LG-R-Ring-PSO Algorithm, 

especially for applications to OCPs. 

6. Conclusions 

The article proposes an approach to enhance the search capabilities of PSO-based 

algorithms, combining lbest and gbest topologies for particle connections. This 

fusion is tailored to address the “exploration-exploitation” balance in algorithm 

activity: lbest prevails in the early stages of the search, while gbest dominates towards 

the end. The transition between them is controlled by an additional algorithm 

parameter, denoted as 𝑎, whose optimal value is determined in this paper. However, 

certain exceptions noted in the study suggest a more general case: a should be 

individually selected for each function to be minimized before the algorithm starts or 

adaptively during its execution. This presents an area for further investigation. 

Numerical experiments involving twenty benchmarks were conducted to 

validate the enhancements introduced in the modified algorithms (Ring-PSO and  

R-Ring-PSO). The results were analyzed, and two evaluation criteria were calculated 

for each of the eight compared optimization algorithms, confirming the superiority 

of LG-Ring-PSO and LG-R-Ring-PSO. Furthermore, the eight compared 

optimization algorithms were applied to two nonlinear OCPs, intentionally chosen 

for their differences in control operator, constraints, criterion for minimization, and 

time constants. The results of the OCP solutions demonstrated the high efficiency of 

LG-Ring-PSO and LG-R-Ring-PSO algorithms. 

Future directions in this research branch, in addition to those already mentioned, 

involve exploring other lbest topology algorithms, studying their convergence 

behaviour, testing algorithms on a broader set of benchmarks, and applying them to 

more complex optimization problems. 
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