
 39

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 24, No 3

Sofia • 2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0024

ANFIS-AMAL: Android Malware Threat Assessment Using

Ensemble of ANFIS and GWO

Nedal Nwasra1, Mohammad Daoud2, Zahid Hussain Qaisar3
1University of Petra, Jorden
2American University of Madaba, Jorden
3Emerson University, Multan, Pakistan

E-mails: nedal.nwasra@uop.edu.jo m.daoud@aum.edu.jo zahidhussainqaisar@gmail.com

Abstract: The Android malware has various features and capabilities. Various

malware has distinctive characteristics. Ransomware threatens financial loss and

system lockdown. This paper proposes a threat-assessing approach using the Grey

Wolf Optimizer (GWO) to train and tune the Adaptive Neuro-Fuzzy Inference System

(ANFIS) to categorize Android malware accurately. GWO improves efficiency and

efficacy in ANFIS training and learning for Android malware feature selection and

classification. Our approach categorizes Android malware as a high, moderate, or

low hazard. The proposed approach qualitatively assesses risk based on critical

features and threats. Our threat-assessing mechanism’s scale categorizes Android

malware. The proposed approach resolves the issue of overlapping features in

different types of malware. Comparative results with other classifiers show that the

ensemble of GWO is effective in the training and learning process of ANFIS and thus

achieves 95% F-score, 94% specificity, and 94% accuracy. The ensemble makes fast

learning possible and improves classification accuracy.

Keywords: Malware, Ransomware, ANFIS, GWO, Android.

1. Introduction

Various Android malware contains varying attack capabilities and has different

features. The ransomware can lock systems and demand the user to pay ransom to

get proper functionality or restore the system’s previous state under ransom attack

[1]. The botnets in the Android environment exploit resources to spread

advertisements and other agendas. On the other hand, Adware uses the platform to

throw advertisements and for marketing purposes [2, 3]. In some scenarios, the

malware can have dual functionality as it may simultaneously contain adware and

Ransomware capabilities [4, 5]. Therefore, the Android malware assessment is

important for classification based on the capabilities.

Risk assessment and threat classification are effective in this measure regarding

quality. Qualitative analysis is more suited to human-attributed analysis or natural

language than analysis based on quantity. Android malware of different types

 40

contains overlapping features and attributes [6, 7]. Due to overlapping properties, it

is a daunting job to classify the Android malware quantitatively. Therefore,

qualitative analysis with fuzzy sets is more suited to the scenario of Android malware

classification. Unlike crisp sets, fuzzy sets can handle overlapping features. However,

fuzzy inference systems are slow and suffer from low accuracy and precision in real-

life applications [8, 9].

Fig. 1. Generic fuzzy inference system modelling

The fuzzy inference system is generally applied to problems containing

overlapping properties and required output in qualitative value. Figure 1 shows the

overall working of the fuzzy inference model. Generically, it represents input as crisp

input passed to the fuzzifier module [10, 11]. The crisp input is converted into the

fuzzy input and passed to the fuzzy inference system that provides output in fuzzy set

output based on the knowledge base. The rule-based module of the knowledge base

capitalizes on generating the appropriate output values in the last de-fuzzification

inference unit [12, 13]. The figure above illustrates that the de-fuzzification inference

unit de-fuzzifies the fuzzy output. The resultant output is crisp output when it is

required. The proposed approach capitalizes the fuzzy inference system to categorize

the Android malware.

Learning for Android malware classification demands a lot of resources, and it

requires more time when more features are required for classification [14, 15].

Malware developers develop metamorphic and polymorphic approaches to evolve

the malware and for evasion purposes. It is important to find minimal subsets of

malware to identify malware effectively. Feature selection and optimization are

challenging tasks [22]. Traditional adaptive neural networks are ineffective and suffer

from low accuracy and precision. The minimal feature selection resolves the problem

of considering many malware features for classification. Consequently, minimal

feature selection for Android malware is applied first, and then classification is

performed in the proposed approach. The proposed approach uses grey wolf

GWO Based

Andriod Malware
Optimized Features

Fuzzy

Input

Output

Mapping of Input & Output

Input

Output

Enhancement
Layer

Training Testing Validation

De-Fuzzification

of Fuzzified results

of ANFIS-AMAL

 41

optimization for feature selection and optimization. The results demonstrate that

ANFIS using grey wolf optimization has higher accuracy and precision.

GW optimizer is an evolutionary algorithm inspired by the social behavior of

grey wolves. Grey wolves for hunting constitute groups and show discipline and

cooperation [16]. Wolves are grouped into alpha, beta, delta, and omega. In the social

community of wolves, they follow hierarchies like alpha (α) top in order, beta (β)

second in line, delta (δ) third hierarchy in the community, and omega (ω) are the last

group [16, 17]. Our proposed work has exploited the GWO to optimize Android

malware features. Parallel exploration is capitalized to search for the best-suited

subset of features for Android malware classification.

The remaining paper is organized as follows: Section 2 presents the Gray Wolf

Optimizer (GWO) for ANFIS-AMAL and Android application features. Section 3

presents the Design and experimental setup of the ANFIS-AMAL, and Section 4

presents the experimental results and discussion of the study. The conclusion and

future work are discussed in Section 5 of this paper.

2. Grey wolf optimizer for ANFIS-AMAL

The proposed GWO for ANFIS-AMAL is explained in this section. Firstly, a brief

overview of the GWO is presented, and Android application features are discussed.

2.1. Grey wolf optimizer

GWO Algorithm solves optimization problems. It is inspired by nature, as wolves

live and hunt in groups. They hunt in hierarchy by showing social behaviors of

cooperation and living together. Healthy, active, and brave wolves are categorized as

alpha in the group. Alpha wolves live the hunt and encircle the prey. The second

category of wolves is beta wolves, which make the second circle around the prey.

Similarly, the third circle of wolves is categorized as delta, and the fourth is omega.

We have capitalized on the same hierarchy of grouping for selecting features for

Android malware detection. The main features and effective features to categorize

the Android malware classification are categorized as alpha(𝛼). Similarly, relatively

fewer groups of features are categorized as beta (𝛽), delta (δ), and omega,

respectively. This phenomenon helps to choose the most effective features. The

presented work is an ensemble of this optimizer and the ANFIS approach.

Adaptive neuro-fuzzy inference uses the proposed technique’s GWO Algorithm.

In the currently proposed methodology context, groups of wolves are categorized into

alpha, beta, delta, and omega. The proposed approach utilized GWO to explore the

best features of Ransomware, Spyware, Botnet, and adware for Android. Exploration

and exploitation of prey are different stages in the hunting process of grey wolves.

A > 1 is for exploration of prey, i.e., searching the prey. A < 1 is for exploitation, i.e.,

attacking the prey.

The following are illustrations of the alpha (𝛼), beta (𝛽), delta (δ), and omega

(ω) wolf represented candidates. The mathematical positioning of these groups of

wolves is given in the equations below,

 42

(1) �⃗� 𝛼 = |�⃗� 1 ⋅ 𝑋 𝛼 − 𝑋 |, �⃗� 𝛽 = |�⃗� 2 ⋅ 𝑋 𝛽 − 𝑋 |, �⃗� 𝛿 = |�⃗� 3 ⋅ 𝑋 𝛿 − 𝑋 |,

(2) 𝑋 1 = 𝑋 𝛼 − A⃗⃗ 1 ⋅ (�⃗� 𝛼), 𝑋 2 = 𝑋 𝛽 − A⃗⃗ 2 ⋅ (�⃗� 𝛽), 𝑋 3 = 𝑋 𝛿 − A⃗⃗ 3 ⋅ (�⃗� 𝛿),

(3) 𝑋 (𝑖 + 1) =
�⃗� 1+�⃗� 2+�⃗� 3

3
,

where: 𝑋 is the position vector of the wolf; i is the current iteration; 𝑋 𝛽 is the position

vector of the beta wolf; 𝐴 1, 𝐴 2 and 𝐴 3 are the coefficient matrix; 𝑋 𝛼 denotes the

position vector of the alpha wolf; pi, i = 1, 2, 3, is the positioning of these groups of

wolves is computed as illustrated in the above equations. The equations show

mathematical computational formulas for positioning the wolves in different groups.

Other wolves in the population change positions according to these alpha, beta

and delta groups.

In Android malware detection, the best candidate for Ransomware is alpha (α).

Alpha candidate has the more prominent feature for the classification of malware.

The proposed system explores features for Android malware in parallel. Multiple

agents, i.e., candidate solutions, explore the best-suited attributes of malware. Once

a better discriminatory feature is found, all other candidates converge to exploit it and

find more features to distinguish the Android malware [18, 19].

GWO algorithm for ANFIS-AMAL uses entropy to compute the GWO

algorithm’s fitness function. As the equation below mentions, entropy is the fitness

function computing formula. The first step is to compute feature information gain to

calculate entropy. Entropy is important for classification to determine whether the

purity of a feature, i.e., the feature, is important or not for the classification process,

as shown in the next equation,

(4) E (S) = ∑[−𝑝𝑖log2(𝑝𝑖)],
where i = 1, …, n, and E represents entropy, and i is the total number of features, i.e.,

i represents iterations for the malware classes; e pi denotes the number of elements in

one class of malware.

Information gain calculation is based on equation,

(5) IG (S, A) = E(S) − ∑ [P(S/A). E(S/A)].
IG – Information Gain;

E(S) – Entropy of Set S;

E(A) – Entropy of subset A;

P(S) – the Proportion of set S;

P(A) – the Proportion of set A.

The values of IG are used to split the set S, and a high value achieved for a

feature of Android malware is selected for the optimal set of features.

2.2. Features of Android application used in ANFIS-MAL

The proposed work utilizes static and dynamic features and the Metadata of APK

files. Permissions, intent, manifest information, and API calls are used along with the

features in Table 1.

 43

Table 1. Features of Android application used

Android application features Description

WRITE_APN_SETTINGS

It allows the app to change APN settings. Useful

Information like user name and password in the existing

APN setting can be read

READ_PHONE_STATE It permits read-only access to the state of the phone

MODIFY_PHONE_STATE It allows changing the state of the phone

READ_SMS This feature permits to read SMS messages

RESTART_PACKAGES Allows to kill background process of other apps

RECIVE_BOOT_COMPLETED Allows the app to receive the intent

WRITE_SMS Allows to write SMS messages

MNT_UNMT_FILESYSTEMS Allows the app to mount and un-mount file systems

INSTALLL_PACKAGES Allows the app to install packages

BRDCAST_PCKGE_REMOVED
Permits the app to broadcast a notice that an app package

is removed

INTERNET Allows internet access

CHANGE_WIFII_STATE Permits app to change Wi-Fi connectivity state

RECORDER_TASKS Allows to record the task

SIG_STR Allows to monitor phone signals

CALL_PHONE Allows the app to start the call without dialer UI

KILL _BCKGRND_RESOURCES Allows killing the background resources

BLUETOOTH Allows Access to Bluetooth

CAMERA Allows Access to camera

READ_CONTACTS Allows the app to read the contacts

USER_CREDENTIALS Allows access to the credentials of the user

Along with the features mentioned in Table 1 above, the proposed approach

effectively uses some Ransomware features like crypto locker features and other

type-specific features of botnets and spyware. Ransomware has features that

goodware does not often have, like NtProtectVirtualMemory, NtResumeThread, and

NtTerminateProcess. Consequently, these features lead the GWO to rank the malware

as high risk because it is highly likely to be classified as Ransomware [20, 21]. The

features are the most appropriate malware features used for Android malware

classification. These features are used for the classification and identification process

of Android malware.

The main set of features for classifying Android malware is selected and

grouped based on the GWO algorithm and exploited for categorizing the risk level

by the ANFIS algorithm. The proposed approach is an ensemble of two approaches:

the first approach, GWO, is for exploring groups of Android malware features, while

the second approach takes these groups of features and predicts the threat level of

malware by exploiting ANFIS. Therefore, GWO is for exploration, and ANFIS is

capitalized for exploitation in our proposed approach. An ensemble of these two

approaches enables our presented work to classify Android malware more efficiently

and effectively.

We evaluated several approaches for Android-based malware detection and

classification. In our selection and evaluation criteria, we selected those approaches

that utilize either machine learning or deep learning-based methodologies. We

filtered both static and dynamic analysis-based approaches. Out of more than 200

approaches, we selected eight main approaches that have more relevance to our

 44

selection criteria. We selected approaches that are more effective and efficient. Listed

below are the main approaches in Table 2. The method, along with a brief description

and main characteristics, are mentioned in the table below.

Table 2. Characteristics comparison of approaches in the literature

Authors Method Description of method Main characteristics

Z h u, H., et al.

[22]
DroidDet

Static analysis along with

dynamic API analysis

The approach provides extraction

of permissions and sensitive API

monitoring system

Ç o b a n, O., S.

A y s e [23]

Text

categorization for

manifest based

Adaptation for text

analysis and categorization

for Android malware

utilizes static analysis

The technique provides Manifest-

based text classification, it is

efficient and utilizes low

resources but provides high

accuracy

S r e e j i t h, B. P.,

M. R. B a b u [14]

Ensemble-ANFIS

Algorithm

The approach exploits

PCA and PCC (Pearson

Correlation Coefficient)

beside ensemble ANFIS

The approach achieves

comparatively high accuracy and

efficiency, but it is complex and

difficult to implement

A r i f, M., et al.

[24]
Fuzzy AHP

Uses static features like

permission-based analysis

Threat level assessment In four

classes. This approach uses Multi-

Criteria Decision-Making based

(MCDM)

G a n d o t r a, E.,

D. B a n s a l, S.

S o f a t [4]

Fuzzy logic

paradigm for

malware threat

Malware binaries analysis,

potential threat capabilities

analysis

Assessment of threat capability,

malware binaries analysis using

the fuzzy paradigm

L i n, Z., et al. [25]

Secure encryption-

based malware

detection

PP-NBC, API calls

fragments analysis using

Naive Bayes classifier

Anti-evasion technique, naïve

Bayes classification, Encryption

based malware analysis. It

achieves high accuracy

R a z a, A., et al.

[26]
Transfer learning

Dynamic analysis using

transfer learning

A transfer learning-based

approach to detect Android

malware and classify different

types of malware

Q a i s a r, Z. H., et

al. [27]

Multi-agent based

for mobile

protection

Cloud protection for multi-

agent based systems with

encryption

Mobile cloud protection using an

agent-based detection system.

This approach is effective for

detecting android malware in

cloud environment

Ensemble-ANFIS and fuzzy AHP are more related to our criteria as both of these

approaches use fuzzy logic. Ensemble ANFIS uses static analysis and exploits

permission-based analysis for feature extraction. The fuzzy logic paradigm for

malware threats uses binary analysis for malware analysis. Threat capability analysis

is performed using the above-cited approach. All approaches were evaluated using

our evaluation metrics and compared.

3. Design and working of ANFIS-AMAL

The ANFIS-AMAL is the ensemble of GWO and ANFIS. GWO is used for the

selection of features for Android malware classification. Fig. 2 shows the overview of

the proposed approach.

 45

Fig. 2. Overview of ANFIS-AMAL

Risk assessment is categorized as very low, low, medium, and high. The

proposed approach takes benign and malware Android apps. The minimal features

are selected based on the Information Gain (IG) function. Information gain is based

on entropy. The features are extracted and analyzed for evaluation. The extraction of

features is performed by decompiling the APK. Then, data is analyzed using the rule

inference system to classify input data [28]. Feature extraction and selection are

important for learning.

3.1. Algorithm 1. GWO Algorithm for ANFIS-AMAL

The proposed work uses GWO to select features for Android malware classification

explains the grey wolf optimizer. The algorithm takes features of Android malware

as input. This algorithm effectively returns the optimal number of Android malware

features for malware classification. Line 1 in Algorithm 1 represents the initialization

of iterations i shows iterations, and I represents the total number of iterations. Line 2

indicates the randomly selected initialization population of wolves. The population

of wolves is the Android malware feature in our work. Variables a, A, and N are

tuning parameters adjusted to train the algorithm. Wα represents the best candidate

based on the information gain function. The best candidates in our work are the most

suitable Android malware features. Wβ denotes the second-best malware features,

and Wδ represents the third-best features.

The loop block in Algorithm 1, starting from line 8 and ending at line 16,

represents the iterative process of candidate selection and adjusting the parameters to

select suitable candidates for malware classification. The fitness value is computed

in each iteration to select the best candidate from the current iteration. In the end, the

algorithm returns the most suitable malware features. Algorithm 1 GWO for ANFIS-

AMAL is shown below.

Algorithm 1. GWO for ANFIS-AMAL
Input: Features of Android malware in vector format

Output: Wα, Wβ, and Wδ groups for malware features

Data collection & analysis

Decompile .apk file &
features extraction

APK
Andriod

Bengin &
malware

Data cleansing & labeling

Database

Data evaluation

Feature Selection

Machine learning classifier

Benign

Malware detection

Malware

Fuzzy

Risk assessment

High

Medium

Low

Very
Low

 46

Step 1. Wp: initialize the population of grey wolves randomly in the search

space;

Step 2. initialize the tuning parameters a, A, and N
Step 3. ti: initialize the t=1, the iteration number
Step 4. IG: Compute the fitness of each grey wolf
Step 5. Select Wα, Wβ, and Wδ from Wp (p =1, 2,..., N);
Step 6. Tuning parameters a, A, and N;
Step 7. calculate the objective function Info Gain (IG) value of each grey wolf;
Step 8. Wα = the best candidate based on Info Gain (IG);
Step 9. Wβ = the second-best candidate;
Step 10. Wδ = the third best candidate;
Step 11. while (ti < I)
Step 12. for each candidate wolf

X(𝑡𝑖 + 1) =
X1 + X2 + X3

3

Step 13. update the position of the candidate wolves based on fitness;
Step 14. end for;
Step 16. compute the Fitness values of all grey wolves based on IG;
Step 17. update Wα, Wβ, and Wδ;
Step 18. ti = ti + 1;
Step 19. end while;
The algorithm is used for the selection of appropriate features. As explained

previously, the algorithm aims to extract the minimal set of features for Android

malware, effective enough to classify and distinguish malware. The selection of

features is based on fitness features [29]. High IG (Information Gain) helped in the

selection of features as α (alpha), and similarly, low IG will classify features as β

(beta) or δ (delta).

The first three lines of Algorithm 1 represent the initialization process of the

algorithm. The selection of alpha, beta, and delta groups for wolves from the

population of wolves is explained in the remaining statements of the algorithm. Line

12 of the Algorithm 1 explains the computation of the positioning of the wolves. The

positions are updated based on the formula concerning time. The output of the

algorithm is groups of wolves based on fitness functions.

The enriched and diversified data sets are used for training and validation, as

mentioned in Table 3. The enriched and diversified datasets are effective for the

learning and classifying of Android malware, as mentioned in datasets utilized for

training and validation.

Table 3. Datasets utilized for training and validation

Data set Malicious samples Normal samples Total

Malgenome [30] 1258 37,627 38,885

Drebin [31] 5555 37,627 43,182

MalDozer [32] 20,089 37,627 57,716

 47

Fig. 3. General steps for proposed ANFIS-AMAL

Three main different kinds of Android malware are listed in Table 3.

Malgenome, Drebin and MaldDozer. Datasets contain benign and malware samples.

These datasets are for training and validation. The steps of ANFIS-AMAL for

Android risk assessment or threat ranking are mentioned in Fig. 3.

In the proposed work, hybrid malware analysis is used. As mentioned above, the

proposed technique uses benign and malware data sets for training and validation.

Both static and dynamic malware features and some metadata information of APK

files are used.

3.2. Layers of proposed ANFIS-AMAL

The five layers of the adaptive neuro-fuzzy inference system are shown in Fig. 4

below. The computational formula for each layer is also represented in the equations

given below. Layers are adjustable and number of neurons in each layers are also

based on heuristic approach. The proposed ANFIS takes the output of the GWO and

performs analysis to determine the impact of malware. Threat assessment and risk

assessment is determined using the ANFIS approach.

Fig. 4. Structure of layers of ANFIS-AMAL

The computational model applied at each layer of ANFIS-AMAL is proposed

here. The mathematical model for layer one is illustrated in the next equation,

(6) 𝑂𝑚𝑛
(1)

= 𝜇𝐴𝑚𝑛
(𝑚).

A computational model for layer two is illustrated in the next equation:

Input
Crisp

Output
Crisp

Knowledge Base

Database Rules

Decision Making Unit

Fuzzification

Interference
Unit

De-Fuzzification

Interference
Unit

Fuzzy Fuzzy

 48

(7) 𝑂𝑘
(2)

= 𝑤𝑘 = ∏ 𝜇Α𝑖𝑗
(Ι𝑖)

7 inputs
𝑖=1 .

The mathematical model for layer three is depicted in the equation

(8) 𝑂𝑘
(3)

= 𝑤𝑘̅̅ ̅̅ =
𝑤𝑘

∑ 𝑤𝑘
NumRules
𝑘=1

.

The mathematical model for layer four is shown in the equation

(9) 𝑂𝑘
(4)

= 𝑤𝑘̅̅ ̅̅ 𝑓𝑘 = 𝑤𝑘(∑ 𝑝𝑖𝑘Ι𝑖
7
𝑖=1 + 𝑞𝑘).

The mathematical model for layer five is given in the equation

(10) 𝑂(5) = ∑ 𝑤𝑘𝑓𝑘
NumRules
𝑘=1 =

∑ 𝑤𝑘𝑓𝑘
NumRules
𝑘=1

∑ 𝑤𝑘
NumRules
𝑘=1

.

As mentioned in the equation below, the hybrid-learning algorithm is depicted

mathematically in the next equation. The calculated value is forwarded to output

nodes to the 4th layer of the ANFIS-AMAL model [33, 34]. ANFIS-AMAL exploits

cited a hybrid-learning algorithm for learning the features of threat assessment of

Android malware:

(11) 𝐿 = ∑ 𝑊𝑥 (∑ 𝑀Ι𝑗 + 𝑁𝑥
Input
𝑗=1)𝑁

𝑥=1 .

The least-square method is used for the parameters. Gradient descent is for

adjustment of parameters, and back-propagation of error is applied [35].

3.2.1. De-fuzzification layer

The De-fuzzification layer in the proposed approach has all nodes as adaptive layer

nodes. The p represents the nodes in the layer. The output layer is followed by a

normalized product with an overall accumulative effect and a first-order polynomial

defined in the equation [36][37]. Layer output can be illustrated in the given equation

(12) Out𝑝
(4)

= 𝑤𝑅̅̅ ̅̅ 𝑓𝑅 = 𝑤𝑅(∑ 𝑀𝑖𝑅Ι𝑖
rules
𝑖=1 + 𝑁𝑅),

where, 𝑅 = 1, 2, … , 1247 onwards rules ,
𝑤𝑅 = Activation value normalized from the previous layer,

𝑀𝑖𝑅 and 𝑁𝑅 are output parameters of the system and tuned parameters of the

algorithm, respectively.

The following are rules Rule 1 and Rule 2, which show the incident and

consequent part and inference of rules. These rules are used for inference systems in

the proposed model.

Rule 1: IF 𝑥 is 𝐴1 AND 𝑦 is 𝐵1, THEN

𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1

Rule 2: IF 𝑥 is 𝐴2 AND 𝑦 is 𝐵2, THEN

𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2

3.2.2. Android malware threat scaling

Android malware threat scaling is adopted in the proposed approach. The ranking

system is based on ten (10) points. The ten-point score is normalized from 0 up to 1.

Point scoring is used for malware ranking. The malware with a high score is ranked

in the high-threat category. In Fig. 5, risk level and risk value are illustrated. The four

main categories are considered based on risk value: very low, low, medium, and high

risk, as shown in the diagram with different colors based on risk value [38, 39].

 49

Fig. 5. Threat scaling for Android malware

3.3. Tuning details of ANFIS-AMAL

Fuzzy inference systems are applied to problems with vagueness and blurred

domain boundaries. The threat assessment problem has a similar vagueness issue,

so it is a candidate for FIS [40, 41]. The proposed framework is implemented in

MATLAB2022b. The implemented system used Intel Core i7-6500U with a CPU

of 2.60 GHz and 8 GB RAM. Fig. 6 illustrates the implementation of membership

functions for input and out of the proposed system. As fuzzy set membership differs

from crisp sets, different modeling approaches are used for implementation

[40, 42]. The proposed approach uses a triangular membership function for the

output variable and various appropriate membership functions for input [43, 44].

The output of the proposed ANFIS-AMAL uses a de-fuzzified using

de-fuzzification process [45, 46]. A rule-based inference system is used to infer the

threat category of the Android malware. Input and output are plotted using

membership functions for inputs and outputs in the proposed model. The input is

fuzzified, while the output is de-fuzzified to extract the results. Each layer in the

ANFIS model has a defined role.

Fig. 6. ANFIS-AMAL generated model

The tuning parameters and architecture of ANFIS-AMAL are mentioned in

Table 4. The table shows the parameters for tuning and structure of the proposed

ANFIS-AMAL. Model type, input and training, and the testing mechanism are listed

in the same table.

Table 4. ANFIS-AMAL model description

No Custom ANFIS Details

1 Number of Training data 92,000 records

2 Number of Testing data 21,000 records

3 Generate FIS Grid partition

4 Inputs GWO-based features, static and dynamic APK features

5 Membership function type Triangular-shaped membership function

6 Learning algorithm Hybrid learning algorithm

7 Number of epochs Ten (10) then increased to 40 and 100 epochs

8 Sugeno type-system First-order

9 Hybrid learning algorithm
Least-square method and Back-propagation

gradient descent method

Very Low Low Medium High

0 0.08 0.18 0.38 1

 50

Fig. 7. Membership functions of ANFIS-AMAL

The modeling of the membership function in MATLAB is depicted in

Fig. 7. Appropriate membership functions are used in modeling the adaptive

neuro-fuzzy inference system. The input value is plotted quantitatively on the

X-axis, and the membership degrees are shown along the Y-axis. The risk level

is represented in different colors to make it distinguishable. Unlike crisp sets

here, overlapping can be observed for the fuzzy sets. Different membership

functions are used for different inputs, depending on the problem. The degree of

membership varies from 0 up to 1. This variation in the degree of the membership,

which is quantitative, can be translated into the equivalent qualitative classes. Then,

these qualitative classes can be used to define the malware threat level in our work.

Different membership functions are used for different inputs, depending on the

problem. The degree of membership varies from 0 up to 1. This variation in the degree

of the membership, which is quantitative, can be translated into the equivalent

qualitative classes. Then, these qualitative classes can be used to define the malware

threat level in our work.

Fig. 8. Loaded Training dataset into ANFIS

ANFIS-AMAL is trained for classifying the threat of malware. Main Three

categories, i.e., low threat, moderate threat, and high threat for Android malware, are

applied. Fig. 8 shows the training of the proposed system. The oval structures in blue

represent training data, and asterisks in red show FIS output. Mapping of training

data and FIS output shows the training process is reliable. Training data and output

data are plotted in this figure to show the training mechanism. It shows the training

is effective with low training error for different indexes.

 51

4. Results and discussion

ANFIS-AMAL uses a ten-point Likert scale for the point-scoring system of Android

malware threats. The scale is normalized, and values are confined to 0 up to 1. Fig. 9

shows ANFIS-AMAL errors at the start and middle at 40 epochs, and Fig. 10 shows

ANFIS-AMAL errors at 100 epochs. Training required 105 epochs. The training

process at the start and 40 epochs is shown in the figures. The proposed ANFIS-

AMAL has taken less time and fewer epochs than traditional ANFIS because of the

ensemble of GW. The GW optimizer has enabled the proposed work to learn fast and

train in fewer epochs with better results. It can be observed that the error rate is high

at the start, and then it tends to decrease. In our proposed work, GWO has provided

the optimal number of Android malware features for classification. Therefore, fewer

features and effective features in the learning process result in low training error by

consuming fewer epochs for training.

Fig. 9. ANFIS-AMAL training error at start and middle

Fig. 10. ANFIS-AMAL training error at end

The testing process of ANFIS-AMAL is shown in Fig. 11. Testing data is

plotted in blue dots; however, the FIS output is represented in asterisks. The plotting

shows the validation process for our proposed model. At the start, the training error

is greater; in the middle, it decreases, and at the end of 100 epochs, it becomes

minimal. A relatively minimal number of epochs are consumed to get the required

modest training error rate and precise results. This is due to the reduced number of

features selected through the GWO algorithm. Despite GWO’s processing

complexity, the proposed work gains high accuracy and efficiency. So, there is

a trade-off between the processing cost of GWO and the better performance of

 52

ANFIS-AMAL. For training and testing, different data is used so that effective

training and testing can be performed without bias.

Fig. 11. ANFIS-AMAL Model testing with testing data

Experimental results show that our proposed ANFIS-AMAL is efficient and

effective in assessing the threat of Android malware. The demonstrated model has

attained an accuracy of 94%, a precision of 93%, and a sensitivity of approximately

95%. The results reveal that an excellent F-measure score of 95% is obtained. These

results show less false-negative rate and confirm that the overall model is effective

for Android malware assessment employed. The results show that the system is

reliable and comparable.

Fig. 12. Threat level of the malware plotted as output relation with input variables

Fig. 12 shows the threat level of the malware plotted concerning input variables.

The threat level is shown quantitatively concerning malware’s degree of

sophistication and behavioral impact. This figure shows the relationship between

input variables (behavioral impact and degree of sophistication) and an output

variable (malware threat level). The threat level ranges from 0 up to 1. The input

variables are fuzzified using different membership functions, as discussed earlier.

Table 5 below shows the error rate at various epochs in the RMSE proposed model’s

training, validation, and testing. The training error of 0.0009, validation error of 0.11,

and testing error of 0.0023 are acceptable for ANFIS for the currently proposed

system and are approximately similar in the resembling systems [47, 48].

Table 5. Error rate at various epochs

Number of training epochs Training error rate

10 0.0010370

40 0.00099596

100 0.00090881

 53

Error is assessed at the 10-th, 40-th and 100-th epoch, and the training error rate

in RMSE is assessed in the above table.

4.1. Evaluation metrics

ANFIS-AMAL is assessed on four metrics: accuracy, specificity, precision, and

F-score. The equations below mention the computing method for calculating

specificity, precision, and accuracy. The effectiveness and efficacy of the proposed

system are assessed by exploiting these metrics. Measurement of the threat is based

on points using a ten-point Likert scale. The degree of threat is then translated into

qualitative measures using the de-fuzzification mechanism to declare malware as a

high threat, moderate threat, or low threat based on numeric values.

The evaluation metrics have been applied to the proposed work. Accuracy is

approaching 95.46%, while sensitivity is above 94.23%. It has a precision of 94.41%

and a commendable F-score of 95.36%. Literature for modeling the adaptive neuro-

fuzzy system shows that these results are dependable [3, 15]. Metrics of evaluation

are defined in the following subsections.

Specificity represents the percentage of benign apps correctly classified by the

system. Specificity is defined in equation

(13) Specificity =
True Negative

True Negative + False Positive
× 100 %.

Evaluation metrics specificity mentioned in that equation and Accuracy,

precision, recall, F-measure, FPR, and TPR are used to assess the proposed approach.

4.2. Comparison of results

The comparison of the proposed ANFIS-AMAL with other state-of-the-art

approaches is illustrated below. The proposed approach, ANFIS-AMAL, is compared

with Fuzzy-AHP and ensemble-ANFIS [29, 28]. The risk-based fuzzy analytical

hierarchy process (AHP) is compared with the proposed ANFIS-AMAL approach.

Fig. 13 shows that Fuzzy-AHP has a specificity of 87.12%, a precision of 88.24%,

an accuracy of 89.10%, and an F-score of 88.42%. Similarly, the previous approach,

ensemble-ANFIS, has 87.53% accuracy, 86.52% precision, 84.14% specificity, and

88.16% F-score. The proposed approach has outperformed in these evaluation

metrics. Proposed ANFIS-AMAL has a better accuracy of 95.46%, a specificity of

94.23%, a precision of 94.41%, and an F-score of 95.36%. We applied an ablation

study to compare the proposed approach results with excluding GWO. The results of

the ablation study show that our approach is effective with the inclusion of GWO and

has better results than the approach without GWO.

The proposed work is compared with the Fuzzy-AHP and ensemble-ANFIS.

Inter-class and intra-class threat assessment using ANFIS-AMAL is performed.

Similar results are achieved for inter-class and intra-class threat assessment for

Android malware. Evaluation metrics-based results are better for inter-class malware

threat analysis, but for intra-class, the results are relatively low. The intra-class

feature distinguishing is challenging as within the same class, ranking features is

difficult. However, inter-class results are commendable as it is easy to distinguish

different classes of malware based on features. Inter-class threat assessment for

Android malware is better using the proposed work. Ransomware, botnets, spyware,

 54

and adware are detected and analyzed, and threat ranking is performed and

categorized in the proposed threat model.

Fig. 13. Comparison of proposed ANFIS-AMAL with other approaches

As listed in Table 3 Malgenome, Drebin, and Maldozer all three benchmark

datasets are skewed because benign apps are more than malware apps. To remove

skewness we selected an equal number of malware and benign apps so that there

should be fairness in experiments. In our experimental setup, we have employed an

ablation study. Purpose of ablation study is to help in evaluation of ensemble and

show effect of ensemble in results. Results show that evaluation metrics for with

ensemble show better results as compare to the results without ensemble.

Table 6. Ablation Study for Performance with and without Ensemble Learning

Model
Accuracy

(%)

Precision

(%)

Recall

(%)

F-Measure

(%)
AUC

Time

(ms)

ANFIS-without

Ensemble
97.85 97.95 97.42 97.53 0.98 5.04

ANFIS-with

Ensemble
98.07 99.00 98.00 98.32 0.99 12.19

Illustrated in Table 6 the impact of ensemble learning improves results for

Accuracy, precision, Recall, F-measure, and AUC. However, it takes more time for

ANFIS with the ensemble as compared to ANFIS without an ensemble but better

results overcome this deficiency. Results were evaluated using more than 10

evaluation metrics like accuracy, precision, recall, F-measure, time, True Positive

Rate (TPR), False Positive Rate (FPR), Area Under the Curve Receiver Operating

Characteristic (AUC-ROC), Area Under the Curve Precision-Recall (AUC-PR),

Matthews Correlation Coefficient (MCC), detection rate, and AUC. However, for

brevity, we have illustrated results for some evaluation metrics that are more worth

mentioning; other evaluation metrics were either utilized in computing these

illustrated metrics or had a nominal or negligible impact on the results.

4.3. Analysis of proposed work

The proposed work has some limitations as it is based on the scaling of threats and

results that are sensitive to the accuracy of the points-scoring process of the ANFIS-

60
80

100

Specificity Precision Accuracy F-Score

P
e

rc
e

n
ta

ge
(%

)

Evalutaion Metrics

Comparison of Results

ANFIS-Amal… fuzzy AHP ensemble-ANFIS

 55

AMAL. The scoring point is mapped on the scaling system. If the point scoring

system’s accuracy is compromised, it will affect the results of the proposed system.

The second limitation of the proposed work is that the GWO algorithm has its

complexity of implementation and resource consumption [35, 49]. However, overall,

ANFIS-Mal is efficient and more accurate because of the ensemble of the GW

optimization algorithm. However, extra processing and layers of GWO make the

system complex, so it’s a trade-off between complexity and efficiency.

5. Conclusions and future work

The ensemble of GWO and ANFIS is applied in Android malware threat

prioritization in the proposed work. The adaptive neuro-fuzzy inference is effective

in qualitative analysis, and this advantage of ANFIS is exploited in the proposed

work. The ensemble of Grey Wolf Optimizer is used in the proposed work to enhance

the efficiency and effectiveness of the ANFIS-AMAL in malware threat assessment.

Ensemble learning and ensemble approaches are more effective in learning and

classification problems. The proposed approach uses GWO to enhance learning

abilities and optimize the feature selection process to select a minimal number of

features for Android malware classification. The fitness function in GWO is essential

in selecting the most appropriate and ultimately minimal set of Android malware

features. ANFIS uses a minimal set of features to classify the threat. The threat is

categorized into three main categories: high, medium, and low, with a variant of very

low. Ransomware, botnets, spyware, and adware are categorized in the proposed

work. Proposed ANFIS-AMAL has attained a better accuracy of 95%, specificity of

94%, Precision of 94%, and F-score of 95%.

In the proposed work, the priority for Ransomware is high, with botnets medium

and spyware low. These priorities are used to evaluate the proposed work, but

Android malware priorities can be changed and adjusted. Results are evaluated based

on evaluation metrics. The results are compared with the previous approaches in the

literature. Results show that the proposed work is more effective and has high

efficacy. Threats of Android malware are assessed with acceptable results with fast

learning and optimized feature selection. Fewer epochs are consumed in training

through the ensemble of GWO for learning, and fewer resources are consumed in

ANFIS. Consequently, efficient learning and high accuracy, specificity, precision,

and F-score are salient contributions to the proposed ANFIS with the ensemble of

GWO.

The proposed work can be extended because Android malware can have

overlapping features and dual behavior. Ransomware can belong to Ransomware and

botnet as well. This duality can mislead the proposed work as Ransomware has high

priority and botnet has low, so in this case, the inter-class threat should be

implemented in detail. In this way, inter-class Android malware threat prioritization

can be improved.

 56

R e f e r e n c e s

1. N a d l e r, A., R. B i t t o n, O. B r o d t, A. S h a b t a i. On the Vulnerability of Anti-Malware

Solutions to DNS Attacks. – Computers & Security, Vol. 116, 2021, pp. 1-16.

2. S h a n m u g a n a t h a n, M., M a j d i A l-q d a h , M. M o h m m e d, C. N a r m a t h a,

R. V a r a t h a r a j a n. Intrusion Detection in Networks Using Crow Search Optimization

Algorithm with Adaptive Neuro-Fuzzy Inference System. – Microprocessors and

Microsystems, Vol. 79, 2020, No 8, pp. 1-7.

3. L i u, J., W. Y i n c h a i, T. C. S i o n g, X. L i, L. Z h a o, F. W e i. A Hybrid Interpretable Deep

Structure Based on Adaptive Neuro-Fuzzy Inference System, Decision Tree, and k-Means for

Intrusion Detection. – Scientific Reports, Vol. 12, 2022, No 1, 20770.

4. G a n d o t r a, E., D. B a n s a l, S. S o f a t. Malware Threat Assessment Using Fuzzy Logic

Paradigm. – Cybernetics and Systems, Vol. 48, 2017, No 1, pp. 29-48.

5. A y e n i, B. K., J. B. S a h a l u, K. R. A d e y a n j u. Detecting Cross-Site Scripting in Web

Applications Using Fuzzy Inference System. – Journal of Computer Networks and

Communications, Vol. 2018, 2018, pp. 1-11.

6. A b d u l l a, S., A. A l t a h e r. Intelligent Approach for Android Malware Detection. – KSII

Transactions on Internet and Information Systems, Vol. 9, 2015, No 8, pp. 2964-2983.

7. Q a i s a r, Z. H., R. L i. Multimodal Information Fusion for Android Malware Detection Using Lazy

Learning. – Multimedia Tools and Applications, 2022, pp. 1-15.

8. A l t a h e r, A., O. M o h a m m e d. Intelligent Hybrid Approach for Android Malware Detection

Based on Permissions and API Calls. – International Journal of Advanced Computer Science

and Applications, Vol. 8, 2017, No 6, pp. 60-67.

9. S a n t o s h J h a n s i, K., S. C h a k r a v a r t y, P. R a v i K i r a n V a r m a. A Two-Tier Fuzzy

Meta-Heuristic Hybrid Optimization for Dynamic Android Malware Detection. – SN

Computer Science, Vol. 4, 2022, No 2, pp. 117.

10. X u, Y., C. W u, K. Z h e n g, X. W a n g, X. N i u, T. L u. Computing Adaptive Feature Weights

with PSO to Improve Android Malware Detection. – Security and Communication Networks,

Vol. 2017, 2017, pp. 1-14.

11. S u n, H., G. X u, Z. W u, R. Q u a n. Android Malware Detection Based on Feature Selection and

Weight Measurement. – Intelligent Automation and Soft Computing, Vol. 33, 2022, No 1,

pp. 585-600.

12. L a k o v i c, V. C r i s i s. Management of Android Botnet Detection Using Adaptive Neuro-Fuzzy

Inference System. – Annals of Data Science, Vol. 7, 2020, No 2, pp. 347-355.

13. L i u, J., W. Y i n c h a i, T. C. S i o n g, X. L i, L. Z h a o, F. W e i. On the Combination of Adaptive

Neuro-Fuzzy Inference System and Deep Residual Network for Improving Detection Rates on

Intrusion Detection. – PLOS ONE, Vol. 17, 2022, No 12, pp. 1-21.

14. S r e e j i t h V i g n e s h, B. P., M. R a j e s h B a b u. Classifying the Malware Application in the

Android-Based Smartphones Using Ensemble-ANFIS Algorithm. – International Journal of

Networking and Virtual Organisations, Vol. 19, 2018, No 2-4, pp. 257-269.

15. A t a c a k, İ. An Ensemble Approach Based on Fuzzy Logic Using Machine Learning Classifiers

for Android Malware Detection. – Applied Sciences, Vol. 13, 2023, No 3.

16. R e z a e i, H., O. B o z o r g-H a d d a d, X. C h u. Grey Wolf Optimization (GWO) Algorithm. – In:

Studies in Computational Intelligence. Vol. 720. Springer, 2018, pp. 81-91.

17. T a h e r, F., O. A l F a n d i, M. A l-k f a i r y, H. A l H a m a d i, S. A l r a b a e e. DroidDetectMW:

A Hybrid Intelligent Model for Android Malware Detection. – Applied Sciences, Vol. 13,

No 13, 2023.

18. H u a n g, H., H. D e n g, Y. S h e n g, X. Y e. Accelerating Convolutional Neural Network-Based

Malware Traffic Detection through Ant Colony Clustering. – Journal of Intelligent and Fuzzy

Systems, Vol. 37, 2019, No 1, pp. 409-423.

19. D h a l a r i a, M., E. G a n d o t r a. Android Malware Risk Evaluation Using Fuzzy Logic. – In: Proc.

of 7th International Conference on Parallel, Distributed and Grid Computing (PDGC’22),

2022, pp. 341-345.

 57

20. X i a o, G., J. L i, Y. C h e n, K. L i. MalFCS: An Effective Malware Classification Framework with

Automated Feature Extraction Based on Deep Convolutional Neural Networks. – Journal of

Parallel and Distributed Computing, Vol. 141, 2020, pp. 49-58.

21. S h a r m a, A., N. K a p o o r. Approach for Predicting Mobile Malware. – In: Proc. of 4th

International Conference on Advances in Computing, Communication Control and

Networking (ICAC3N’22), 2022, pp. 1614-1618.

22. Z h u, H. J., Z. H. Y o u, Z. X. Z h u, W. L. S h i, X. C h e n, L. C h e n g. DroidDet: Effective and

Robust Detection of Android Malware Using Static Analysis Along with Rotation Forest

Model. – Neurocomputing, Vol. 272, 2018, pp. 638-646.

23. Ç o b a n, Ö., S. A. Ö z e l. Adapting Text Categorization for Manifest Based Android Malware

Detection. – Computer Science, Vol. 20, 2019, No 3, pp. 483-405.

24. M o h a m a d A r i f, J., M. F. A b R a z a k, S. R. T u a n M a t, S. A w a n g, N. S. N. I s m a i l,

A. F i r d a u s. Android Mobile Malware Detection Using Fuzzy AHP. – Journal of

Information Security and Applications, Vol. 61, 2021, No 1, pp. 1-11.

25. L i n, Z., F. X i a o, Y. S u n, Y. M a, C. C. X i n g, J. H u a n g. A Secure Encryption-Based Malware

Detection System. – KSII Transactions on Internet and Information Systems, Vol. 12, 2018,

No 4, pp. 1799-1818.

26. R a z a, A., M. F a h e e m, M. W. A s h r a f, M. N. C h a u d h r y. TL-GNN : Android Malware

Detection Using Transfer Learning. – Applied AI Letters, Vol. 1, 2024, pp. 1-16.

27. Q a i s a r, Z. H., S. H. A l m o t i r i, M. A. A l G h a m d i, A. A. N a g r a, G. A l i. A Scalable and

Efficient Multi-Agent Architecture for Malware Protection in Data Sharing over Mobile

Cloud. – IEEE Access, Vol. 9 , 2021, pp. 76248-76259.

28. J e r b i, M., Z. C h e l l y D a g d i a, S. B e c h i k h, L. B e n S a i d. Android Malware Detection

as a Bi-Level Problem. – Computers & Security, Vol. 121, 2022, 102825.

29. A d e b a y o, O. S., N. A. A z i z. Improved Malware Detection Model with Apriori Association

Rule and Particle Swarm Optimization. – Security and Communication Networks, Vol. 2019,

2019, pp. 1-14.

30. Z h o u, Y., X. J i a n g. Dissecting Android Malware: Characterization and Evolution. – In: Proc. of

IEEE Symposium on Security and Privacy, 2012, No 4, pp. 95-109.

31. A r p, D., M. S p r e i t z e n b a r t h, M. H ü b n e r, H. G a s c o n, K. R i e c k. Drebin: Effective and

Explainable Detection of Android Malware in Your Pocket. – In: Proc. of NDSS Symposium,

2014, pp. 23-26.

32. K a r b a b, E. B., M. D e b b a b i, A. D e r h a b, D. M o u h e b. MalDozer: Automatic Framework

for Android Malware Detection Using Deep Learning. – Digital Investigation, Vol. 24, 2018,

pp. S48-S59.

33. R e j e e s h, M. R. Interest Point Based Face Recognition Using Adaptive Neuro-Fuzzy Inference

System. – Multimedia Tools and Applications, Vol. 78, 2019, No 16, pp. 22691-22710.

34. V u, N. T. T., N. P. T r a n, N. H. N g u y e n. Adaptive Neuro-Fuzzy Inference System Based Path

Planning for Excavator’s Arm. – Journal of Robotics, Vol. 2018, 2018, pp. 1-7.

35. F a n g, L., S. D i n g, J. H. P a r k, L. M a. Adaptive Fuzzy Control for Stochastic High-Order

Nonlinear Systems with Output Constraints. – IEEE Transactions on Fuzzy Systems, Vol. 29,

2021, No 9, pp. 2635-2646.

36. C ó z a r, J., A. F e r n á n d e z, F. H e r r e r a, J. A. G á m e z. A Metahierarchical Rule Decision

System to Design Robust Fuzzy Classifiers Based on Data Complexity. – IEEE Transactions

on Fuzzy Systems, Vol. 27 , 2019, No 4, pp. 701-715.

37. M u z a f f a r, A., H. R a g a b H a s s e n, M. A. L o n e s, H. Z a n t o u t. An In-Depth Review of

Machine Learning Based Android Malware Detection. – Computers & Security, Vol. 121,

2022, 102833.

38. W u, Y., M. L i, Q. Z e n g, et al. DroidRL: Feature Selection for Android Malware Detection with

Reinforcement Learning. – Computers & Security, Vol. 128, 2023, 103126.

39. A l-A n d o l i, M. N., S. C. T a n, K. S. S i m, C. P. L i m, P. Y. G o h. Parallel Deep Learning with

a Hybrid BP-PSO Framework for Feature Extraction and Malware Classification. – Applied

Soft Computing, Vol. 131, 2022, 109756.

40. G a s c o n, H., F. Y a m a g u c h i, D. A r p, K. R i e c k. Structural Detection of Android Malware

Using Embedded Call Graphs. – In: Proc. of ACM Conference on Computer and

Communications Security, 2013, pp. 45-54.

 58

41. A r s l a n, R. S., M. T a s y u r e k. AMD-CNN: Android Malware Detection via Feature Graph and

Convolutional Neural Networks. – Concurrency and Computation: Practice and Experience,

Vol. 34, 2022, No 23, e7180.

42. A n d e r s o n, H. S., P. R o t h. EMBER: An Open Dataset for Training Static PE Malware Machine

Learning Models. – ArXiv, 2018, pp. 1-8.

http://arxiv.org/abs/1804.04637

43. P a t r o, S. G. K., B. K. M i s h r a, S. K. P a n d a, R. K u m a r, H. V. L o n g, T. M. T u a n.

Knowledge-Based Preference Learning Model for Recommender System Using Adaptive

Neuro-Fuzzy Inference System. – Journal of Intelligent & Fuzzy Systems, Vol. 39, 2020,

No 3, pp. 4651-4665.

44. D h a b a l, G., G. G u p t a.Towards Design of a Novel Android Malware Detection Framework

Using Hybrid Deep Learning Techniques. – In: Soft Computing for Security Applications.

Singapore, Springer Nature, 2023, pp. 181-193.

45. K a r a h o c a, A., D. K a r a h o c a. GSM Churn Management by Using Fuzzy c-Means Clustering

and Adaptive Neuro-Fuzzy Inference System. – Expert Systems with Applications, Vol. 38,

2011, No 3, pp. 1814-1822.

46. G e z e r , A., G. W a r n e r, C. W i l s o n, P. S h r e s t h a. A Flow-Based Approach for Trickbot

Banking Trojan Detection. – Computers and Security, Vol. 84, 2019, pp. 179-192.

47. W a n g, Y.-M., T. M. S. E l h a g. An Adaptive Neuro-Fuzzy Inference System for Bridge Risk

Assessment. – Expert Systems with Applications, Vol. 34, 2008, No 4, pp. 3099-3106.

48. A l a m r o, H., W. M t o u a a, S. A l j a m e e l, A. S. S a l a m a, M. A. H a m z a, A. Y. O t h m a n.

Automated Android Malware Detection Using Optimal Ensemble Learning Approach for

Cybersecurity. – IEEE Access, Vol. 11, 2023, pp. 72509-72517.

49. M e l a n d, P. H., Y. F. F. B a y o u m y, G. S i n d r e. The Ransomware-as-a-Service Economy

Within the Darknet. – Computers and Security, Vol. 92, 2020, No 7034, pp. 1-9.

Received: 13.12.2023; Second Version: 27.04.2024; Third Version: 24.07.2024;

Accepted: 08.08.2024

