
 39 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 24, No 3 

Sofia • 2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2024-0024 

 

 

ANFIS-AMAL: Android Malware Threat Assessment Using 

Ensemble of ANFIS and GWO 

Nedal Nwasra1, Mohammad Daoud2, Zahid Hussain Qaisar3 
1University of Petra, Jorden 
2American University of Madaba, Jorden 
3Emerson University, Multan, Pakistan 

E-mails:     nedal.nwasra@uop.edu.jo         m.daoud@aum.edu.jo          zahidhussainqaisar@gmail.com  

Abstract: The Android malware has various features and capabilities. Various 

malware has distinctive characteristics. Ransomware threatens financial loss and 

system lockdown. This paper proposes a threat-assessing approach using the Grey 

Wolf Optimizer (GWO) to train and tune the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) to categorize Android malware accurately. GWO improves efficiency and 

efficacy in ANFIS training and learning for Android malware feature selection and 

classification. Our approach categorizes Android malware as a high, moderate, or 

low hazard. The proposed approach qualitatively assesses risk based on critical 

features and threats. Our threat-assessing mechanism’s scale categorizes Android 

malware. The proposed approach resolves the issue of overlapping features in 

different types of malware. Comparative results with other classifiers show that the 

ensemble of GWO is effective in the training and learning process of ANFIS and thus 

achieves 95% F-score, 94% specificity, and 94% accuracy. The ensemble makes fast 

learning possible and improves classification accuracy. 

Keywords: Malware, Ransomware, ANFIS, GWO, Android. 

1. Introduction 

Various Android malware contains varying attack capabilities and has different 

features. The ransomware can lock systems and demand the user to pay ransom to 

get proper functionality or restore the system’s previous state under ransom attack 

[1]. The botnets in the Android environment exploit resources to spread 

advertisements and other agendas. On the other hand, Adware uses the platform to 

throw advertisements and for marketing purposes [2, 3]. In some scenarios, the 

malware can have dual functionality as it may simultaneously contain adware and 

Ransomware capabilities [4, 5]. Therefore, the Android malware assessment is 

important for classification based on the capabilities.  

Risk assessment and threat classification are effective in this measure regarding 

quality. Qualitative analysis is more suited to human-attributed analysis or natural 

language than analysis based on quantity. Android malware of different types 
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contains overlapping features and attributes [6, 7]. Due to overlapping properties, it 

is a daunting job to classify the Android malware quantitatively. Therefore, 

qualitative analysis with fuzzy sets is more suited to the scenario of Android malware 

classification. Unlike crisp sets, fuzzy sets can handle overlapping features. However, 

fuzzy inference systems are slow and suffer from low accuracy and precision in real-

life applications [8, 9]. 
 

 

Fig. 1. Generic fuzzy inference system modelling 

The fuzzy inference system is generally applied to problems containing 

overlapping properties and required output in qualitative value. Figure 1 shows the 

overall working of the fuzzy inference model. Generically, it represents input as crisp 

input passed to the fuzzifier module [10, 11]. The crisp input is converted into the 

fuzzy input and passed to the fuzzy inference system that provides output in fuzzy set 

output based on the knowledge base. The rule-based module of the knowledge base 

capitalizes on generating the appropriate output values in the last de-fuzzification 

inference unit [12, 13]. The figure above illustrates that the de-fuzzification inference 

unit de-fuzzifies the fuzzy output. The resultant output is crisp output when it is 

required. The proposed approach capitalizes the fuzzy inference system to categorize 

the Android malware.  

Learning for Android malware classification demands a lot of resources, and it 

requires more time when more features are required for classification [14, 15]. 

Malware developers develop metamorphic and polymorphic approaches to evolve 

the malware and for evasion purposes. It is important to find minimal subsets of 

malware to identify malware effectively. Feature selection and optimization are 

challenging tasks [22]. Traditional adaptive neural networks are ineffective and suffer 

from low accuracy and precision. The minimal feature selection resolves the problem 

of considering many malware features for classification. Consequently, minimal 

feature selection for Android malware is applied first, and then classification is 

performed in the proposed approach. The proposed approach uses grey wolf 
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optimization for feature selection and optimization. The results demonstrate that 

ANFIS using grey wolf optimization has higher accuracy and precision.  

GW optimizer is an evolutionary algorithm inspired by the social behavior of 

grey wolves. Grey wolves for hunting constitute groups and show discipline and 

cooperation [16]. Wolves are grouped into alpha, beta, delta, and omega. In the social 

community of wolves, they follow hierarchies like alpha (α) top in order, beta (β) 

second in line, delta (δ) third hierarchy in the community, and omega (ω) are the last 

group [16, 17]. Our proposed work has exploited the GWO to optimize Android 

malware features. Parallel exploration is capitalized to search for the best-suited 

subset of features for Android malware classification.  

The remaining paper is organized as follows: Section 2 presents the Gray Wolf 

Optimizer (GWO) for ANFIS-AMAL and Android application features. Section 3 

presents the Design and experimental setup of the ANFIS-AMAL, and Section 4 

presents the experimental results and discussion of the study. The conclusion and 

future work are discussed in Section 5 of this paper.  

2. Grey wolf optimizer for ANFIS-AMAL 

The proposed GWO for ANFIS-AMAL is explained in this section. Firstly, a brief 

overview of the GWO is presented, and Android application features are discussed.  

2.1. Grey wolf optimizer  

GWO Algorithm solves optimization problems. It is inspired by nature, as wolves 

live and hunt in groups. They hunt in hierarchy by showing social behaviors of 

cooperation and living together. Healthy, active, and brave wolves are categorized as 

alpha in the group. Alpha wolves live the hunt and encircle the prey. The second 

category of wolves is beta wolves, which make the second circle around the prey. 

Similarly, the third circle of wolves is categorized as delta, and the fourth is omega. 

We have capitalized on the same hierarchy of grouping for selecting features for 

Android malware detection. The main features and effective features to categorize 

the Android malware classification are categorized as alpha(𝛼). Similarly, relatively 

fewer groups of features are categorized as beta (𝛽), delta (δ), and omega, 

respectively. This phenomenon helps to choose the most effective features. The 

presented work is an ensemble of this optimizer and the ANFIS approach. 

Adaptive neuro-fuzzy inference uses the proposed technique’s GWO Algorithm. 

In the currently proposed methodology context, groups of wolves are categorized into 

alpha, beta, delta, and omega. The proposed approach utilized GWO to explore the 

best features of Ransomware, Spyware, Botnet, and adware for Android. Exploration 

and exploitation of prey are different stages in the hunting process of grey wolves.  

A > 1 is for exploration of prey, i.e., searching the prey. A < 1 is for exploitation, i.e., 

attacking the prey. 

The following are illustrations of the alpha (𝛼), beta (𝛽), delta (δ), and omega 

(ω) wolf represented candidates. The mathematical positioning of these groups of 

wolves is given in the equations below,  
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(1)   �⃗� 𝛼 = |�⃗� 1 ⋅ 𝑋 𝛼 − 𝑋 |, �⃗� 𝛽 = |�⃗� 2 ⋅ 𝑋 𝛽 − 𝑋 |, �⃗� 𝛿 = |�⃗� 3 ⋅ 𝑋 𝛿 − 𝑋 |, 

(2)   𝑋 1 = 𝑋 𝛼 − A⃗⃗ 1 ⋅ (�⃗� 𝛼), 𝑋 2 = 𝑋 𝛽 − A⃗⃗ 2 ⋅ (�⃗� 𝛽), 𝑋 3 = 𝑋 𝛿 − A⃗⃗ 3 ⋅ (�⃗� 𝛿), 

(3)   𝑋 (𝑖 + 1) =
�⃗� 1+�⃗� 2+�⃗� 3

3
, 

where: 𝑋  is the position vector of the wolf; i is the current iteration; 𝑋 𝛽 is the position 

vector of the beta wolf; 𝐴 1, 𝐴 2 and 𝐴 3 are the coefficient matrix; 𝑋 𝛼 denotes the 

position vector of the alpha wolf; pi, i = 1, 2, 3, is the positioning of these groups of 

wolves is computed as illustrated in the above equations. The equations show 

mathematical computational formulas for positioning the wolves in different groups.  

Other wolves in the population change positions according to these alpha, beta 

and delta groups.  

In Android malware detection, the best candidate for Ransomware is alpha (α). 

Alpha candidate has the more prominent feature for the classification of malware. 

The proposed system explores features for Android malware in parallel. Multiple 

agents, i.e., candidate solutions, explore the best-suited attributes of malware. Once 

a better discriminatory feature is found, all other candidates converge to exploit it and 

find more features to distinguish the Android malware [18, 19]. 

GWO algorithm for ANFIS-AMAL uses entropy to compute the GWO 

algorithm’s fitness function. As the equation below mentions, entropy is the fitness 

function computing formula. The first step is to compute feature information gain to 

calculate entropy. Entropy is important for classification to determine whether the 

purity of a feature, i.e., the feature, is important or not for the classification process, 

as shown in the next equation, 

(4)   E (S) = ∑[−𝑝𝑖log2(𝑝𝑖)], 
where i = 1, …, n, and E represents entropy, and i is the total number of features, i.e., 

i represents iterations for the malware classes; e pi denotes the number of elements in 

one class of malware. 

Information gain calculation is based on equation,  

(5)   IG (S, A) = E(S) − ∑  [P(S/A). E(S/A)]. 
IG – Information Gain; 

E(S) – Entropy of Set S; 

E(A) – Entropy of subset A; 

P(S) – the Proportion of set S; 

P(A) – the Proportion of set A. 

The values of IG are used to split the set S, and a high value achieved for a 

feature of Android malware is selected for the optimal set of features.  

2.2. Features of Android application used in ANFIS-MAL 

The proposed work utilizes static and dynamic features and the Metadata of APK 

files. Permissions, intent, manifest information, and API calls are used along with the 

features in Table 1.  
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Table 1. Features of Android application used 

Android application features Description 

WRITE_APN_SETTINGS 

It allows the app to change APN settings. Useful 

Information like user name and password in the existing 

APN setting can be read  

READ_PHONE_STATE It permits read-only access to the state of the phone 

MODIFY_PHONE_STATE It allows changing the state of the phone 

READ_SMS This feature permits to read SMS messages 

RESTART_PACKAGES Allows to kill background process of other apps  

RECIVE_BOOT_COMPLETED Allows the app to receive the intent 

WRITE_SMS Allows to write SMS messages 

MNT_UNMT_FILESYSTEMS Allows the app to mount and un-mount file systems 

INSTALLL_PACKAGES Allows the app to install packages 

BRDCAST_PCKGE_REMOVED 
Permits the app to broadcast a notice that an app package 

is removed 

INTERNET Allows internet access 

CHANGE_WIFII_STATE Permits app to change Wi-Fi connectivity state 

RECORDER_TASKS Allows to record the task 

SIG_STR   Allows to monitor phone signals 

CALL_PHONE Allows the app to start the call without dialer UI 

KILL _BCKGRND_RESOURCES Allows killing the background resources 

BLUETOOTH Allows Access to Bluetooth 

CAMERA Allows Access to camera 

READ_CONTACTS Allows the app to read the contacts 

USER_CREDENTIALS Allows access to the credentials of the user 

 
Along with the features mentioned in Table 1 above, the proposed approach 

effectively uses some Ransomware features like crypto locker features and other 

type-specific features of botnets and spyware. Ransomware has features that 

goodware does not often have, like NtProtectVirtualMemory, NtResumeThread, and 

NtTerminateProcess. Consequently, these features lead the GWO to rank the malware 

as high risk because it is highly likely to be classified as Ransomware [20, 21]. The 

features are the most appropriate malware features used for Android malware 

classification. These features are used for the classification and identification process 

of Android malware. 

The main set of features for classifying Android malware is selected and 

grouped based on the GWO algorithm and exploited for categorizing the risk level 

by the ANFIS algorithm. The proposed approach is an ensemble of two approaches: 

the first approach, GWO, is for exploring groups of Android malware features, while 

the second approach takes these groups of features and predicts the threat level of 

malware by exploiting ANFIS. Therefore, GWO is for exploration, and ANFIS is 

capitalized for exploitation in our proposed approach. An ensemble of these two 

approaches enables our presented work to classify Android malware more efficiently 

and effectively. 

We evaluated several approaches for Android-based malware detection and 

classification. In our selection and evaluation criteria, we selected those approaches 

that utilize either machine learning or deep learning-based methodologies. We 

filtered both static and dynamic analysis-based approaches. Out of more than 200 

approaches, we selected eight main approaches that have more relevance to our 
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selection criteria. We selected approaches that are more effective and efficient. Listed 

below are the main approaches in Table 2. The method, along with a brief description 

and main characteristics, are mentioned in the table below.  
 

Table 2. Characteristics comparison of approaches in the literature 

Authors Method Description of method Main characteristics 

Z h u, H., et al. 

[22] 
DroidDet 

Static analysis along with 

dynamic API analysis  

The approach provides extraction 

of permissions and sensitive API 

monitoring system 

Ç o b a n, O., S. 

A y s e  [23] 

Text 

categorization for 

manifest based 

Adaptation for text 

analysis and categorization 

for Android malware 

utilizes static analysis 

The technique provides Manifest-

based text classification, it is 

efficient and utilizes low 

resources but provides high 

accuracy 

S r e e j i t h, B. P., 

M. R. B a b u  [14] 

Ensemble-ANFIS 

Algorithm 

The approach exploits 

PCA and PCC (Pearson 

Correlation Coefficient) 

beside  ensemble ANFIS 

The approach achieves 

comparatively high accuracy and 

efficiency, but it is complex and 

difficult to implement  

A r i f, M., et al. 

[24] 
Fuzzy AHP 

Uses static features like 

permission-based analysis 

Threat level assessment In four 

classes. This approach uses Multi-

Criteria Decision-Making based 

(MCDM) 

G a n d o t r a, E., 

D. B a n s a l, S. 

S o f a t  [4] 

Fuzzy logic 

paradigm for 

malware threat 

Malware binaries analysis, 

potential threat capabilities 

analysis 

Assessment of threat capability, 

malware binaries analysis using 

the fuzzy paradigm 

L i n, Z., et al. [25] 

Secure encryption-

based malware 

detection 

PP-NBC, API calls 

fragments analysis using 

Naive Bayes classifier 

Anti-evasion technique, naïve 

Bayes classification, Encryption 

based malware analysis. It 

achieves high accuracy 

R a z a, A., et al. 

[26] 
Transfer learning 

Dynamic analysis using 

transfer learning 

A transfer learning-based 

approach to detect Android 

malware and classify different 

types of malware  

Q a i s a r, Z. H., et 

al. [27] 

Multi-agent based 

for mobile 

protection 

Cloud protection for multi-

agent based systems with 

encryption 

Mobile cloud protection using an 

agent-based detection system. 

This approach is effective for 

detecting android malware in 

cloud environment   

 

Ensemble-ANFIS and fuzzy AHP are more related to our criteria as both of these 

approaches use fuzzy logic. Ensemble ANFIS uses static analysis and exploits 

permission-based analysis for feature extraction. The fuzzy logic paradigm for 

malware threats uses binary analysis for malware analysis. Threat capability analysis 

is performed using the above-cited approach. All approaches were evaluated using 

our evaluation metrics and compared.  

3. Design and working of ANFIS-AMAL 

The ANFIS-AMAL is the ensemble of GWO and ANFIS. GWO is used for the 

selection of features for Android malware classification. Fig. 2 shows the overview of 

the proposed approach.  
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Fig. 2. Overview of ANFIS-AMAL 

Risk assessment is categorized as very low, low, medium, and high. The 

proposed approach takes benign and malware Android apps. The minimal features 

are selected based on the Information Gain (IG) function. Information gain is based 

on entropy. The features are extracted and analyzed for evaluation. The extraction of 

features is performed by decompiling the APK. Then, data is analyzed using the rule 

inference system to classify input data [28]. Feature extraction and selection are 

important for learning. 

3.1. Algorithm 1. GWO Algorithm for ANFIS-AMAL 

The proposed work uses GWO to select features for Android malware classification 

explains the grey wolf optimizer. The algorithm takes features of Android malware 

as input. This algorithm effectively returns the optimal number of Android malware 

features for malware classification. Line 1 in Algorithm 1 represents the initialization 

of iterations i shows iterations, and I represents the total number of iterations. Line 2 

indicates the randomly selected initialization population of wolves. The population 

of wolves is the Android malware feature in our work. Variables a, A, and N are 

tuning parameters adjusted to train the algorithm. Wα represents the best candidate 

based on the information gain function. The best candidates in our work are the most 

suitable Android malware features. Wβ denotes the second-best malware features, 

and Wδ represents the third-best features.  

The loop block in Algorithm 1, starting from line 8 and ending at line 16, 

represents the iterative process of candidate selection and adjusting the parameters to 

select suitable candidates for malware classification. The fitness value is computed 

in each iteration to select the best candidate from the current iteration. In the end, the 

algorithm returns the most suitable malware features. Algorithm 1 GWO for ANFIS-

AMAL is shown below. 

Algorithm 1. GWO for ANFIS-AMAL 
Input: Features of Android malware in vector format 

Output: Wα, Wβ, and Wδ  groups for malware features  

Data collection & analysis

Decompile .apk file & 
features extraction

_________
_________
_________
_________
_________

_____

APK
Andriod

Bengin & 
malware

_________
______________
______________
______________

Data cleansing & labeling

Database

Data evaluation

Feature Selection

Machine learning classifier

Benign

Malware detection

Malware

Fuzzy

Risk assessment

High

Medium

Low

Very
Low
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Step 1.  Wp: initialize the population of grey wolves randomly in the search 

space; 

Step 2.   initialize the tuning parameters a, A, and N 
Step 3.   ti: initialize the t=1, the iteration number 
Step 4.   IG: Compute the fitness of each grey wolf 
Step 5.   Select Wα, Wβ, and Wδ  from Wp (p =1, 2,..., N); 
Step 6.   Tuning parameters a, A, and N; 
Step 7.   calculate the objective function Info Gain (IG) value of each grey wolf; 
Step 8.    Wα = the best candidate based on Info Gain (IG); 
Step 9.    Wβ = the second-best candidate; 
Step 10.  Wδ = the third best candidate; 
Step 11.   while (ti < I) 
Step 12. for each candidate wolf  

X(𝑡𝑖 + 1) =
X1 + X2 + X3

3
 

Step 13. update the position of the candidate wolves based on fitness; 
Step 14.               end for; 
Step 16.  compute the Fitness values of all grey wolves based on IG; 
Step 17.  update Wα, Wβ, and Wδ; 
Step 18.  ti = ti + 1; 
Step 19.   end while; 
The algorithm is used for the selection of appropriate features. As explained 

previously, the algorithm aims to extract the minimal set of features for Android 

malware, effective enough to classify and distinguish malware. The selection of 

features is based on fitness features [29]. High IG (Information Gain) helped in the 

selection of features as α (alpha), and similarly, low IG will classify features as β 

(beta) or δ (delta).   

The first three lines of Algorithm 1 represent the initialization process of the 

algorithm. The selection of alpha, beta, and delta groups for wolves from the 

population of wolves is explained in the remaining statements of the algorithm. Line 

12 of the Algorithm 1 explains the computation of the positioning of the wolves. The 

positions are updated based on the formula concerning time. The output of the 

algorithm is groups of wolves based on fitness functions. 

The enriched and diversified data sets are used for training and validation, as 

mentioned in Table 3. The enriched and diversified datasets are effective for the 

learning and classifying of Android malware, as mentioned in datasets utilized for 

training and validation.  

Table 3. Datasets utilized for training and validation  

Data set Malicious samples Normal samples Total 

Malgenome [30] 1258 37,627 38,885 

Drebin [31] 5555 37,627 43,182 

MalDozer [32] 20,089 37,627 57,716 
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Fig. 3. General steps for proposed ANFIS-AMAL 

 

Three main different kinds of Android malware are listed in Table 3. 

Malgenome, Drebin and MaldDozer. Datasets contain benign and malware samples. 

These datasets are for training and validation. The steps of ANFIS-AMAL for 

Android risk assessment or threat ranking are mentioned in Fig. 3.  

In the proposed work, hybrid malware analysis is used. As mentioned above, the 

proposed technique uses benign and malware data sets for training and validation. 

Both static and dynamic malware features and some metadata information of APK 

files are used.  

3.2. Layers of proposed ANFIS-AMAL 

The five layers of the adaptive neuro-fuzzy inference system are shown in Fig. 4 

below. The computational formula for each layer is also represented in the equations 

given below. Layers are adjustable and number of neurons in each layers are also 

based on heuristic approach. The proposed ANFIS takes the output of the GWO and 

performs analysis to determine the impact of malware. Threat assessment and risk 

assessment is determined using the ANFIS approach.  

 

 

Fig. 4. Structure of layers of ANFIS-AMAL 

The computational model applied at each layer of ANFIS-AMAL is proposed 

here. The mathematical model for layer one is illustrated in the next equation,  

(6)   𝑂𝑚𝑛
(1)

= 𝜇𝐴𝑚𝑛
(𝑚). 

A computational model for layer two is illustrated in the next equation: 

Input
Crisp
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(7)   𝑂𝑘
(2)

= 𝑤𝑘 = ∏ 𝜇Α𝑖𝑗
(Ι𝑖)

7 inputs
𝑖=1 . 

The mathematical model for layer three is depicted in the equation  

(8)   𝑂𝑘
(3)

= 𝑤𝑘̅̅ ̅̅ =  
𝑤𝑘

∑ 𝑤𝑘
NumRules
𝑘=1

. 

The mathematical model for layer four is shown in the equation  

(9)   𝑂𝑘
(4)

= 𝑤𝑘̅̅ ̅̅ 𝑓𝑘 = 𝑤𝑘(∑ 𝑝𝑖𝑘Ι𝑖
7
𝑖=1 + 𝑞𝑘). 

The mathematical model for layer five is given in the equation  

(10)   𝑂(5) = ∑ 𝑤𝑘𝑓𝑘
NumRules
𝑘=1 =

∑ 𝑤𝑘𝑓𝑘
NumRules
𝑘=1

∑ 𝑤𝑘
NumRules
𝑘=1

. 

As mentioned in the equation below, the hybrid-learning algorithm is depicted 

mathematically in the next equation. The calculated value is forwarded to output 

nodes to the 4th layer of the ANFIS-AMAL model [33, 34]. ANFIS-AMAL exploits 

cited a hybrid-learning algorithm for learning the features of threat assessment of 

Android malware: 

(11)   𝐿 = ∑ 𝑊𝑥 (∑ 𝑀Ι𝑗 + 𝑁𝑥
Input
𝑗=1 )𝑁

𝑥=1 . 

The least-square method is used for the parameters. Gradient descent is for 

adjustment of parameters, and back-propagation of error is applied [35].  

3.2.1. De-fuzzification layer 

The De-fuzzification layer in the proposed approach has all nodes as adaptive layer 

nodes. The p represents the nodes in the layer. The output layer is followed by a 

normalized product with an overall accumulative effect and a first-order polynomial 

defined in the equation [36][37]. Layer output can be illustrated in the given equation  

(12)   Out𝑝
(4)

= 𝑤𝑅̅̅ ̅̅ 𝑓𝑅 = 𝑤𝑅(∑ 𝑀𝑖𝑅Ι𝑖
rules
𝑖=1 + 𝑁𝑅), 

where,  𝑅 = 1, 2, … , 1247 onwards rules , 
𝑤𝑅 = Activation value normalized from the previous layer, 

𝑀𝑖𝑅 and 𝑁𝑅 are output parameters of the system and tuned parameters of the 

algorithm, respectively. 

The following are rules Rule 1 and Rule 2, which show the incident and 

consequent part and inference of rules. These rules are used for inference systems in 

the proposed model. 

Rule 1: IF 𝑥 is 𝐴1 AND 𝑦 is 𝐵1, THEN 

𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: IF 𝑥 is 𝐴2 AND 𝑦 is 𝐵2, THEN 

𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

3.2.2. Android malware threat scaling  

Android malware threat scaling is adopted in the proposed approach. The ranking 

system is based on ten (10) points. The ten-point score is normalized from 0 up to 1. 

Point scoring is used for malware ranking. The malware with a high score is ranked 

in the high-threat category. In Fig. 5, risk level and risk value are illustrated. The four 

main categories are considered based on risk value: very low, low, medium, and high 

risk, as shown in the diagram with different colors based on risk value [38, 39]. 
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Fig. 5. Threat scaling for Android malware 

3.3. Tuning details of ANFIS-AMAL 

Fuzzy inference systems are applied to problems with vagueness and blurred 

domain boundaries. The threat assessment problem has a similar vagueness issue, 

so it is a candidate for FIS [40, 41]. The proposed framework is implemented in 

MATLAB2022b. The implemented system used Intel Core i7-6500U with a CPU 

of 2.60 GHz and 8 GB RAM. Fig. 6 illustrates the implementation of membership 

functions for input and out of the proposed system. As fuzzy set membership differs 

from crisp sets, different modeling approaches are used for implementation  

[40, 42]. The proposed approach uses a triangular membership function for the 

output variable and various appropriate membership functions for input [43, 44]. 

The output of the proposed ANFIS-AMAL uses a de-fuzzified using  

de-fuzzification process [45, 46]. A rule-based inference system is used to infer the 

threat category of the Android malware. Input and output are plotted using 

membership functions for inputs and outputs in the proposed model. The input is 

fuzzified, while the output is de-fuzzified to extract the results. Each layer in the 

ANFIS model has a defined role. 

 

 

Fig. 6. ANFIS-AMAL generated model 

The tuning parameters and architecture of ANFIS-AMAL are mentioned in 

Table 4. The table shows the parameters for tuning and structure of the proposed 

ANFIS-AMAL. Model type, input and training, and the testing mechanism are listed 

in the same table. 

Table 4. ANFIS-AMAL model description 

No Custom ANFIS Details 

1 Number of Training data 92,000 records 

2 Number of Testing data 21,000 records 

3 Generate FIS Grid partition 

4 Inputs GWO-based features, static and dynamic APK features 

5 Membership function type Triangular-shaped membership function 

6 Learning algorithm Hybrid learning algorithm 

7 Number of epochs Ten (10) then increased to 40 and 100 epochs 

8 Sugeno type-system First-order 

9 Hybrid learning algorithm 
Least-square method and Back-propagation  

gradient descent method 

Very Low Low Medium High

    

    

 

0 0.08 0.18 0.38 1
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Fig. 7. Membership functions of ANFIS-AMAL 

 

The modeling of the membership function in MATLAB is depicted in 

Fig. 7. Appropriate membership functions are used in modeling the adaptive 

neuro-fuzzy inference system. The input value is plotted quantitatively on the 

X-axis, and the membership degrees are shown along the Y-axis. The risk level 

is represented in different colors to make it distinguishable. Unlike crisp sets 

here, overlapping can be observed for the fuzzy sets. Different membership 

functions are used for different inputs, depending on the problem. The degree of 

membership varies from 0 up to 1. This variation in the degree of the membership, 

which is quantitative, can be translated into the equivalent qualitative classes. Then, 

these qualitative classes can be used to define the malware threat level in our work. 

Different membership functions are used for different inputs, depending on the 

problem. The degree of membership varies from 0 up to 1. This variation in the degree 

of the membership, which is quantitative, can be translated into the equivalent 

qualitative classes. Then, these qualitative classes can be used to define the malware 

threat level in our work. 

 

 
Fig. 8. Loaded Training dataset into ANFIS 

 

ANFIS-AMAL is trained for classifying the threat of malware. Main Three 

categories, i.e., low threat, moderate threat, and high threat for Android malware, are 

applied. Fig. 8 shows the training of the proposed system. The oval structures in blue 

represent training data, and asterisks in red show FIS output. Mapping of training 

data and FIS output shows the training process is reliable. Training data and output 

data are plotted in this figure to show the training mechanism. It shows the training 

is effective with low training error for different indexes.  
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4. Results and discussion  

ANFIS-AMAL uses a ten-point Likert scale for the point-scoring system of Android 

malware threats. The scale is normalized, and values are confined to 0 up to 1. Fig. 9 

shows ANFIS-AMAL errors at the start and middle at 40 epochs, and Fig. 10 shows 

ANFIS-AMAL errors at 100 epochs. Training required 105 epochs. The training 

process at the start and 40 epochs is shown in the figures. The proposed ANFIS-

AMAL has taken less time and fewer epochs than traditional ANFIS because of the 

ensemble of GW. The GW optimizer has enabled the proposed work to learn fast and 

train in fewer epochs with better results. It can be observed that the error rate is high 

at the start, and then it tends to decrease. In our proposed work, GWO has provided 

the optimal number of Android malware features for classification. Therefore, fewer 

features and effective features in the learning process result in low training error by 

consuming fewer epochs for training.  

 

 

Fig. 9. ANFIS-AMAL training error at start and middle  

 

Fig. 10. ANFIS-AMAL training error at end  

The testing process of ANFIS-AMAL is shown in Fig. 11. Testing data is 

plotted in blue dots; however, the FIS output is represented in asterisks. The plotting 

shows the validation process for our proposed model. At the start, the training error 

is greater; in the middle, it decreases, and at the end of 100 epochs, it becomes 

minimal. A relatively minimal number of epochs are consumed to get the required 

modest training error rate and precise results. This is due to the reduced number of 

features selected through the GWO algorithm. Despite GWO’s processing 

complexity, the proposed work gains high accuracy and efficiency. So, there is  

a trade-off between the processing cost of GWO and the better performance of 
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ANFIS-AMAL. For training and testing, different data is used so that effective 

training and testing can be performed without bias.  
 

 

Fig. 11. ANFIS-AMAL Model testing with testing data 

Experimental results show that our proposed ANFIS-AMAL is efficient and 

effective in assessing the threat of Android malware. The demonstrated model has 

attained an accuracy of 94%, a precision of 93%, and a sensitivity of approximately 

95%. The results reveal that an excellent F-measure score of 95% is obtained. These 

results show less false-negative rate and confirm that the overall model is effective 

for Android malware assessment employed. The results show that the system is 

reliable and comparable.  

 

 

Fig. 12. Threat level of the malware plotted as output relation with input variables 

Fig. 12 shows the threat level of the malware plotted concerning input variables. 

The threat level is shown quantitatively concerning malware’s degree of 

sophistication and behavioral impact. This figure shows the relationship between 

input variables (behavioral impact and degree of sophistication) and an output 

variable (malware threat level). The threat level ranges from 0 up to 1. The input 

variables are fuzzified using different membership functions, as discussed earlier. 

Table 5 below shows the error rate at various epochs in the RMSE proposed model’s 

training, validation, and testing. The training error of 0.0009, validation error of 0.11, 

and testing error of 0.0023 are acceptable for ANFIS for the currently proposed 

system and are approximately similar in the resembling systems [47, 48].  

Table 5. Error rate at various epochs 

Number of training epochs Training error rate 

10 0.0010370 

40 0.00099596 

100 0.00090881 
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Error is assessed at the 10-th, 40-th and 100-th epoch, and the training error rate 

in RMSE is assessed in the above table.  

4.1. Evaluation metrics 

ANFIS-AMAL is assessed on four metrics: accuracy, specificity, precision, and  

F-score. The equations below mention the computing method for calculating 

specificity, precision, and accuracy. The effectiveness and efficacy of the proposed 

system are assessed by exploiting these metrics. Measurement of the threat is based 

on points using a ten-point Likert scale. The degree of threat is then translated into 

qualitative measures using the de-fuzzification mechanism to declare malware as a 

high threat, moderate threat, or low threat based on numeric values.  

The evaluation metrics have been applied to the proposed work. Accuracy is 

approaching 95.46%, while sensitivity is above 94.23%. It has a precision of 94.41% 

and a commendable F-score of 95.36%. Literature for modeling the adaptive neuro-

fuzzy system shows that these results are dependable [3, 15]. Metrics of evaluation 

are defined in the following subsections. 

Specificity represents the percentage of benign apps correctly classified by the 

system. Specificity is defined in equation  

(13)   Specificity =
True Negative

True Negative + False Positive
× 100 %. 

Evaluation metrics specificity mentioned in that equation and Accuracy, 

precision, recall, F-measure, FPR, and TPR are used to assess the proposed approach.  

4.2. Comparison of results 

The comparison of the proposed ANFIS-AMAL with other state-of-the-art 

approaches is illustrated below. The proposed approach, ANFIS-AMAL, is compared 

with Fuzzy-AHP and ensemble-ANFIS [29, 28]. The risk-based fuzzy analytical 

hierarchy process (AHP) is compared with the proposed ANFIS-AMAL approach. 

Fig. 13 shows that Fuzzy-AHP has a specificity of 87.12%, a precision of 88.24%, 

an accuracy of 89.10%, and an F-score of 88.42%. Similarly, the previous approach, 

ensemble-ANFIS, has 87.53% accuracy, 86.52% precision, 84.14% specificity, and 

88.16% F-score. The proposed approach has outperformed in these evaluation 

metrics. Proposed ANFIS-AMAL has a better accuracy of 95.46%, a specificity of 

94.23%, a precision of 94.41%, and an F-score of 95.36%. We applied an ablation 

study to compare the proposed approach results with excluding GWO. The results of 

the ablation study show that our approach is effective with the inclusion of GWO and 

has better results than the approach without GWO.  

The proposed work is compared with the Fuzzy-AHP and ensemble-ANFIS. 

Inter-class and intra-class threat assessment using ANFIS-AMAL is performed. 

Similar results are achieved for inter-class and intra-class threat assessment for 

Android malware. Evaluation metrics-based results are better for inter-class malware 

threat analysis, but for intra-class, the results are relatively low. The intra-class 

feature distinguishing is challenging as within the same class, ranking features is 

difficult. However, inter-class results are commendable as it is easy to distinguish 

different classes of malware based on features. Inter-class threat assessment for 

Android malware is better using the proposed work. Ransomware, botnets, spyware, 
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and adware are detected and analyzed, and threat ranking is performed and 

categorized in the proposed threat model.   

 

 

Fig. 13. Comparison of proposed ANFIS-AMAL with other approaches 

As listed in Table 3 Malgenome, Drebin, and Maldozer all three benchmark 

datasets are skewed because benign apps are more than malware apps. To remove 

skewness we selected an equal number of malware and benign apps so that there 

should be fairness in experiments. In our experimental setup, we have employed an 

ablation study. Purpose of ablation study is to help in evaluation of ensemble and 

show effect of ensemble in results. Results show that evaluation metrics for with 

ensemble show better results as compare to the results without ensemble.  
 

Table 6. Ablation Study for Performance with and without Ensemble Learning 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 
AUC 

Time 

(ms) 

ANFIS-without 

Ensemble 
97.85 97.95 97.42 97.53 0.98 5.04 

ANFIS-with 

Ensemble 
98.07 99.00 98.00 98.32 0.99 12.19 

 

Illustrated in Table 6 the impact of ensemble learning improves results for 

Accuracy, precision, Recall, F-measure, and AUC. However, it takes more time for 

ANFIS with the ensemble as compared to ANFIS without an ensemble but better 

results overcome this deficiency. Results were evaluated using more than 10 

evaluation metrics like accuracy, precision, recall, F-measure, time, True Positive 

Rate (TPR), False Positive Rate (FPR), Area Under the Curve Receiver Operating 

Characteristic (AUC-ROC), Area Under the Curve Precision-Recall (AUC-PR), 

Matthews Correlation Coefficient (MCC), detection rate, and AUC. However, for 

brevity, we have illustrated results for some evaluation metrics that are more worth 

mentioning; other evaluation metrics were either utilized in computing these 

illustrated metrics or had a nominal or negligible impact on the results.  

4.3. Analysis of proposed work 

The proposed work has some limitations as it is based on the scaling of threats and 

results that are sensitive to the accuracy of the points-scoring process of the ANFIS-
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AMAL. The scoring point is mapped on the scaling system. If the point scoring 

system’s accuracy is compromised, it will affect the results of the proposed system. 

The second limitation of the proposed work is that the GWO algorithm has its 

complexity of implementation and resource consumption [35, 49]. However, overall, 

ANFIS-Mal is efficient and more accurate because of the ensemble of the GW 

optimization algorithm. However, extra processing and layers of GWO make the 

system complex, so it’s a trade-off between complexity and efficiency.  

5. Conclusions and future work 

The ensemble of GWO and ANFIS is applied in Android malware threat 

prioritization in the proposed work. The adaptive neuro-fuzzy inference is effective 

in qualitative analysis, and this advantage of ANFIS is exploited in the proposed 

work. The ensemble of Grey Wolf Optimizer is used in the proposed work to enhance 

the efficiency and effectiveness of the ANFIS-AMAL in malware threat assessment. 

Ensemble learning and ensemble approaches are more effective in learning and 

classification problems. The proposed approach uses GWO to enhance learning 

abilities and optimize the feature selection process to select a minimal number of 

features for Android malware classification. The fitness function in GWO is essential 

in selecting the most appropriate and ultimately minimal set of Android malware 

features. ANFIS uses a minimal set of features to classify the threat. The threat is 

categorized into three main categories: high, medium, and low, with a variant of very 

low. Ransomware, botnets, spyware, and adware are categorized in the proposed 

work. Proposed ANFIS-AMAL has attained a better accuracy of 95%, specificity of 

94%, Precision of 94%, and F-score of 95%. 

In the proposed work, the priority for Ransomware is high, with botnets medium 

and spyware low. These priorities are used to evaluate the proposed work, but 

Android malware priorities can be changed and adjusted. Results are evaluated based 

on evaluation metrics. The results are compared with the previous approaches in the 

literature. Results show that the proposed work is more effective and has high 

efficacy. Threats of Android malware are assessed with acceptable results with fast 

learning and optimized feature selection. Fewer epochs are consumed in training 

through the ensemble of GWO for learning, and fewer resources are consumed in 

ANFIS. Consequently, efficient learning and high accuracy, specificity, precision, 

and F-score are salient contributions to the proposed ANFIS with the ensemble of 

GWO.   

The proposed work can be extended because Android malware can have 

overlapping features and dual behavior. Ransomware can belong to Ransomware and 

botnet as well. This duality can mislead the proposed work as Ransomware has high 

priority and botnet has low, so in this case, the inter-class threat should be 

implemented in detail. In this way, inter-class Android malware threat prioritization 

can be improved. 
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