
 21

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 24, No 3

Sofia • 2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0023

Deep Learning-Driven Workload Prediction and Optimization

for Load Balancing in Cloud Computing Environment

Syed Karimunnisa1, Yellamma Pachipala2
1Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation

Vaddesvaram, AP, 522302, India
2Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation

Vaddesvaram, AP, 522302, India

E-mails: karimun1.syed@gmail.com pachipala.yamuna@gmail.com

Abstract: Cloud computing revolutionizes as a technology that succeeds in serving

large-scale user demands. Workload prediction and scheduling tend to be factors

dictating cloud performance. Forecasting the future workload in due to avoid unfair

resource allocation, emerges to be a crucial inspecting feature for enhanced

performance. The aforementioned issues of interest are addressed in our work by

soliciting a Deep Learning driven Max-out prediction model, which efficiently

forecasts the future workload by providing a balanced approach for enhanced

scheduling with the Tasmanian Devil-Bald Eagle Search (TDBES) optimization

algorithm. The results obtained proved that the TDBES scored efficacy in makespan

with 16.75%, migration cost with 14.78%, and a migration efficiency rate of 9.36%

over other existing techniques like DBOA, WACO, and MPSO, with additional error

analysis of prediction performance using RMSE, MAP, and MAE, among which our

contributed approach overrides traditional methods with least error.

Keywords: Cloud computing, Task scheduling, Workload prediction, Virtual

Machine, Migration.

1. Introduction

Recently, researchers have been majorly concentric around cloud platforms [1, 2]. It

is recognized as the best method for controlling data use, resource allocation, and the

provision of different computing IT services. Numerous web-based programs have

started to employ cloud computing due to its boundless computational services and

the Pay-as-you-go model. By utilizing virtualization strategies and by running several

virtual instances on physical computers in data centres, a cloud system [3, 4] can offer

more features. Utilizing this tactic, cloud computing providers can make better use

of their infrastructure while spending less on energy utilization.

The needs of cloud users to store their data and computational resource

requirements are considered as their workload [5]. A desktop workload, for instance,

accommodates several users registering into interactive desktop sessions. Several

mailto:karimun1.syed@gmail.com
mailto:pachipala.yamuna@gmail.com

 22

cloud apps have their unique properties and metrics. The service required by the cloud

user and the type of application dictates the type of cloud service needed. With proper

workload prediction [6, 7], the cloud can operate more effectively with cost. To

estimate the workloads in the cloud environment, several machine learning

algorithms, such as Long Short-Term Memory (LSTM) and Deep Belief Network

(DBN), are opted as common approaches in current times. Time series models are

predicted using a variety of prediction techniques, including the AutoRegressive

Integrated Moving Average (ARIMA) model, Support Vector Machine (SVM),

Neural Network, Bayesian model, and Moving Average (MA) model. There is yet

another category of prediction techniques for figuring out cloud workload trends [8]

[9]. Eventually, due to the variation in cloud services, it is difficult to elevate the

accuracy of prediction methods since the models are not flexible enough to encounter

each service.

The workload prediction model [10] to generate the scheduling algorithm is

indigent to handle the solid mapping between the tasks of the users and the resources

that are available. This is the major issue in this field, as [11, 12] balancing the

computation and scheduling in the finest way is difficult for ascertaining high

reliability and improved response time. Different optimization algorithms [13, 14]

are in progress to deal with the optimum scheduling by considering it as the NP-hard

problem. Meanwhile, the task of scheduling needs [15, 16] have to be automated and

improved in terms of several factors like speed, energy efficiency, and optimal

scheduling [17-19]. This paper proposes a system with workload prediction and

scheduling, where the deep learning algorithm is insisted to train with features like

Virtual Machine (VM) capacity as well as task capacity to make the scheduling

appropriate via an optimization procedure [20, 21]. The proposed work is carried out

in the following manner:

• Proposing an improved Deep learning strategy, with an enhanced Deep Max-

out model for predicting workloads, trained in terms of the capacity of respective

tasks and Virtual Machines.

• The prediction paves the way for the optimum scheduling of tasks via the

optimization strategy named Tasmanian Devil Bald Eagle Search (TDBES)

algorithm, which ensures the attainment of objectives like time, cost, and efficiency.

Structure of this suggested work: Section 1 presents an introduction followed by

Section 2, where an intense literature review of traditional methods is addressed.

Section 3 addresses the proposed cloud computing system model and workload

prediction model, and also describes optimal load balancing and task scheduling.

Section 4 handles the results and discussions of the contributed model. The

conclusion of the work is summarized in Section 5.

2. Related work

In 2021 M a t o u s s i and H a m r o u n i [22] developed a workload forecasting

strategy to enhance throughput planning, assure efficient management of resources,

and subsequently serve SLA consensus with cloud users. In this situation, the

author put up a novel method for anticipating the number of requests that would be

 23

flooding a SaaS service and setting aside virtual resources for fulfilling the requests

of users. The technology would be used to simultaneously acquire two benefits:

accurate forecast findings and response time optimization.

In 2021, M e y e r et al. [23] developed a Machine Learning-driven classification

method permitting optimized cloud resource allocation, majorly interference-aware.

The goal of the work is to validate how resource scheduling is impacted by

classification algorithms and the changes they impact in workload parameters. The

author started by looking at the way the hardware components respond to various

apps bearing different dynamic requests. The author investigated several interference

classification schemes and assessed their effectiveness while taking into

consideration the cloud workload dynamic nature.

In 2020, G r z e g o r o w s k i et al. [24] introduced a novel technique to construct

a robust clustering technique using cloud resources that were tailored to the specific

data processing need. The infrastructure-as-a-code framework was used in the given

architecture to enable the configuration of clusters and manage them dynamically. It

starts by determining the ideal cluster size for completing a task in the allotted amount

of time. Further optimization of execution time is carried out to take advantage of the

cloud spot market’s discounted rates by observing the price range patterns of spot

instances and utilizing ARIMA models.

In 2023, M i n C a o et al. [25] presented three new approaches for an energy-

aware EIS. To save energy, the author first chose the ideal schedule for each activity

to execute on respective resources. Secondly, the EIS allocates workflow stack based

on the optimal time for every task execution, thereby saving energy by lowering

frequency and voltage factors. Further, the EIS takes advantage of the lapsed time

created due to shortfalls of task precedence for minimizing dynamic energy usage

and satisfying the deadline constraints of workflows.

In 2021, J i n g B i et al. [26] used a logarithmic procedure to lower the SD

before applying resource sequences and workloads. An improved filter was used to

eliminate extreme spots and noise interference. The data was scaled using the Min-

Max method. For time series forecasting, a deep learning integrated technique was

developed that uses Machine Learning network models, including Grid-Long Short-

Term Memory and Bidirectional-LSTM networks, to generate good-quality

predictions of workload arriving and resource requirements at regular time Intervals.

In 2021, K u m a r, S i n g h and B u y y a [27] developed an SDWF approach

that divulges current predictions to compute the forecasting error trend and aid

in improving future prediction efficiency and accuracy. For training neurons,

the model makes use of an enhanced heuristic methodology depending on the

black hole phenomenon. Additionally, Friedman and Wilcoxon’s ranking tests

were used in the statistical analysis to confirm the accuracy of the

recommended forecasting model.
In 2021, K a i x u a n J i et al. [28] developed a Joint Energy Efficiency

Optimization Scheme that jointly considers and co-optimizes the energy used by the

cooling system and the servers. JEES includes the dynamic and optimal online task

scheduling approach depending on the assessment of the marginal cost measure; a

strategy called resource management integrates the workload forecasting model for

 24

managing the set of resources as well as the task-migration approach using the

evaluation of marginal cost. The overall energy usage of data centers can be lowered

by utilizing the suggested approaches.

In 2019, Z h e n g X i a o et al. [29] integrated the VM allocation as well as task

scheduling, depending on the workload features. The workload is stochastic and time-

varying in practice. The author showed that the dataset for the acquired workload has

a Markov property that can be represented by a Markov chain. Further, three major

operators that characterize the workload are extracted: recurrence, entropy, and

persistence. These operators assess the approximate burst times, predictability, and

stability of the user requests, accordingly. It is established that the relationship among

the VM amount and load characteristic operators is nonlinear to assess the

approximate burst times, predictability, and stability of the user requests,

accordingly. It is established that the relationship between the VM amount and load

characteristic operators is nonlinear.

C h a n d r a s e k a r et. al. [30], in 2023 contributed a hybrid weighted Ant colony

Optimization model that uses the solution function and pheromone update function

for optimal task scheduling. The authors’ heuristic approach projects the overall

improved performance over existing algorithms by evaluating parameters like

resource management and execution time.

S h a r m a, B e n i w a l and G a r g [31] 2020 proposed a QoS-driven

Scheduling algorithm based on Ant colony optimization that employed a neural

network approach to handle multi-objective scheduling efficiently. The results of the

proposed approach have overridden the existing algorithms in terms of metrics like

execution time and scheduling cost of user tasks.

C h a u d h a r y et al. [32], in 2023 came up with a modified particle swam

optimization to handle high scheduling time and computational expenses during the

scheduling process. The MPSO lowers the objective function of cost and make-span

that aid in avoiding premature convergence by enhancing the efficiency of local

search. The performance of the contributed model showcases the rise in the graph

when compared against traditional approaches.

H u s s e i n z a d e h et al. [33], in 2021 presented a discrete butterfly optimization

algorithm that is based on the levy fight approach to overcome resource wastage and

improve the consequence speed of the algorithm. The proposed approach also

succeeds in presenting local optima problems by prioritizing the tasks, followed by

DBOA that aids in intensive workflow scheduling with enhanced performance.

S. M a n g a l a m p a l l i, S. K. S w a i n and V. K. M a n g a l a m p a l l i [34], in 2023

contributed an enhanced task scheduling method based on cat swam optimization that

works by considering task priorities and words it for scheduling. The proposed

algorithm works based on the behavior of cats, which overtakes the existing baseline

algorithm concerning QOS parameters like spam and resource usage.

3. Methodology

Considering the cloud C having N sets of users Ui, i={1, 2, … , N}, as well as the M

set of tasks generated from users Ui, represented as Tskj, j={1, 2, … , M}, scheduling

 25

the set of tasks to the resources is the major objective, i.e., feasible virtual machines

vmi, where i={vm1, vm2, …, vmn} as well as physical machine pmi where

i={pm1, pm2, …, pmk}. Tasks are scheduled according to their priority as stated by

this paradigm. In prior, the workloads are predicted via deep learning strategy.

Workload prediction by Improved Deep Max-out model: An accurate and

precise workload forecast plays a crucial role in enhancing cloud performance. It is

also discovered that this may increase the effectiveness and lower operating costs.

Taking this feature into consideration, this paper adopts the usage of a deep learning

model for forecasting the workloads (subsequent tasks), for which, an improved Deep

Max-out model is introduced that trains with features like CPU, hours-of-day and

day-of-week, for predicting the task as the target label. The proposed prediction

model is described in Fig. 1.

Fig. 1. Workload-prediction scenario

The mathematical modeling of improved deep max out is from [35]:

(1) SoftMax(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑘

𝑗=1

,

(2) 𝐺 − SoftMax =
exp(𝑥𝑖+𝑔(𝑥))

∑ exp(𝑥𝑗+𝑔(𝑥))𝑗=1

,

𝑔(𝑥) =
1

2
erf (−

√2(𝜇𝑖−𝑥𝑖)

2𝜎𝑖
) +

1

2
,

erf =
1

√𝜋
∫ 𝑒−𝑡2𝑧

−𝑧
𝑑𝑡, 𝑡2 = 𝑥𝑖,

(3) 𝑄(𝑀) = Max
𝑧∈[1,𝜂]

𝑅𝑦𝑧.

In Equation (1), a traditional SoftMax activation function that can operate

multitudinous classes is provided. It is divided by the sum of the normalized outputs

for each class, which range from 0 to 1. The i/p layer, embedded layer, max pooling

layer, dropout layer, convolution network layer, and dense layers work using max-

out and activation functions to make up the network structure of the Deep Max-out

model.

Equation (2) gives an improved SoftMax activation function(𝐺 − SoftMax)

which enhances the model robustness, where 𝑥𝑖 is activation and 𝑔(𝑥) is Gaussian

distributed term, 𝜇, 𝜎 is mean and SD.

Equation (3) illustrates this network’s max out unit, where 𝑅𝑦𝑧 = 𝑀 ⋅ 𝜆𝑦𝑧 + 𝛾𝑦𝑧,

𝛾 is bias, 𝑀 is input features which include task and virtual machine capacity, 𝜂 is

feature map, and 𝜆 is weight.

 26

The feature 𝑀 is initially subjected to the input layer, and the output derived

from M is sent to the embedding layer, where the computation of output takes place.

After the operation of the convolution layer, the dropout layer is continued and from

the 3rd convolution layer, the outcome is received. After the convolution layer, the

result is produced with the help of a max-pooling layer. The dropout layer follows

the dense layer in order of appearance. The max-out module uses the input received

at the previous dropout layer to compute its output, by later adding the resultant to

the dense layer for the final result. The activation function then computes the output

of the classification model using the dense layer’s output as a last step.

(4) 𝐸he = Ls1
𝐸SE

MaxSE
+ Ls2

𝐸CE

MaxCE
,

Here

𝐸CE = −
1

Output_Size
∑ 𝑦𝑖

Output_Size
𝑖=1 log 𝑦𝑖

∧
+ (1 − 𝑦𝑖) × 1 × log (1 − 𝑦𝑖

∧
),

(5) 𝐸he = Ls1
𝐸SE

MaxSE
+ 𝐿𝑠2

𝐸CE∗

MaxCE∗
,

(6) 𝐸CE∗ = −
1

Output_Size
∑ ∑ 𝑤

𝑗

(1−𝑝𝑖𝑗)𝑐
𝑗=1 𝑦𝑖

Output_Size
𝑖=1 log 𝑦𝑖

∧
+ (1 − 𝑦𝑖) × 1 × log (1 − 𝑦𝑖

∧
),

(7) 𝑤𝑗 = log (
max(𝑛𝑗|𝑗∈𝑐)

𝑛𝑗
) + 1.

The hybrid loss functions [36] provided in Equation (4) are utilized to calculate

a model’s error. The Sum Squared Error SE(𝐸SE) loss function and Cross Entropy

Error CE loss function(𝐸CE) are two often-used error measures for assessing a

classification model’s efficacy. According to the proposed model, improved hybrid

loss function calculation is given in Equation (5), where 𝐸CE∗ in the dynamically

weighted balanced CE (Equation (6)), 𝑦𝑖 is an actual label and 𝑦𝑖

 ∧
 is the predicted

label, 𝑤𝑗 is equivalent to the frequency log. Equation (7) shows the ratio of 𝑛𝑗 class

frequency and majority class (computed over training dataset), Ls1, Ls2 are the

scalar values which are the proportions provided to loss functions, in which

 Ls1 + Ls2 = 1.

Enhanced Task Scheduling and Load Balancing: An effective and enhanced

load balancing strategy can presciently monitor the workload of the VMs and assign

tasks to them in accordance. Consider the task Tsk𝑗 as 1000 (Tsk𝑗 will be varied) and

consider the physical machine pm𝐾as 50 and the virtual machine vm𝑁 between the

range 20 and 25. Each pm𝐾 has some vm𝑁 which is in the range between 20 and 25.

Then we have to randomly allocate each task into a pm𝐾. In this, workload prediction

model, the task takes place by using the aforementioned improved Deep Maxout

model, which is addressed, in Section 4. Here, the Virtual Machine capacity and Task

requirements are taken as features given to the Improved Deep max out, and the target

labels of deep max out are 0, 1 and 2. The conditions for underload, equal load, and

overload are as follows:

• When the capacity of the VM overrules the task needs the label of the target

class is defined to 0, i.e., the machine is underloaded.

• When the capacity of the VM equals the task requirements the label of the

target class is defined to 1, i.e., the machine is equally loaded.

 27

• When the capacity of the VM fails to handle the task requirements the label

of the target class is defined to 2, i.e., the machine is overloaded.

The optimal scheduling carried out is evaluated against performance metrics

like Makespan (F1), Migration cost (F2), and Migration efficiency (F3). The model

of scheduling is illustrated in Fig. 2.

Fig. 2. Scheduling of tasks in cloud computing

Formulating lower bound and upper bound as per input solution for loading

Lb = 0 (Zeros(len(Machine_underload))),

Ub = 1 (Ones(len(Machine_underload))),

and the problem size of TDBES is the count of the underload machine. The next

equation gives the formulation of the objective function, where 𝑤1, 𝑤2, 𝑤3 are the

random weights in [0, 1]:

(8) Obj = (𝑤1 × 𝐹1) + (𝑤2 × 𝐹2) + (𝑤3 × 𝐹3).

Makespan (F1) is coined as the overall Computation Time CT𝑖 (Equation (10))

to execute the task, in which 𝑁 is the set of virtual machines:

(9)

𝐹1 = Max
1≤𝑖≤𝑁

{CT𝑖},

(10) CT𝑖 = ∑
𝑇𝑗×length

vm𝑁×Pes_Num×𝑋vm𝑁

𝑛
𝑗=1 .

Migration cost (F2): The 𝑀 × 𝑀 matrix, whose columns and rows indicate the

physical machine pm𝐾 migration cost, is used to compute the virtual machine vm𝑁

migration cost. Here, the matrix has identical row and column components, i.e.,

(1, 1) and (2, 2) both exhibiting lower migration costs.

Migration efficiency F3 is calculated by using the migration value:

(11) 𝐹3 =
1

𝐹1
.

Load balancing process: In Table 1, 0 means underloaded, 1 means equally

loaded, and 2 means overloaded. Here, the underload machine (physical machine

pm𝐾) is (2, 5), and the overload machine (physical machine pm𝐾) is (4, 1). For

example, in Table 2, consider the solution with the range of (0, 1) is (0.2, 0.1) with

index (1, 2). We will perform an index-wise sort on this response in Table 3.

According to the index sorted, the underloaded machine is arranged as (5, 2), where

Tsk1 Tsk2 Tsk3 Tskj

Task

scheduling

Virtual

machine

Physical

machine

Us
er

s

 28

5 is the second machine and 2 is the first machine. Here, two tasks are overloaded.

As machine 5 only has one task space, one load task is assigned to it, while a second

overload task is sent to machine 2, which has two task spaces. Finally, the load gets

balanced.

Table 1. Load balancing process

pmK
 vmN

 Tsk j
 Load prediction

1 3 4 2

2 4 3 0

3 2 2 1

4 1 2 2

5 5 4 0

Table 2. Index and solution before sorting

Index 1 2

Solution 0.2 0.1

Table 3. Index and solution after index-wise sort

Index 2 1

Solution 0.2 0.1

TDBES Algorithm for optimal task scheduling. This section explains the

contributed meta-heuristic TDBES, that fusions TDO [37] and BES [38], and

presents its mathematical modelling. The T-devil (Tasmanian devil) uses two

approaches for feeding: live prey attack or feasting on the carrion of deceased

animals. This behavior is simulated in TDBES. Based on the problem’s restrictions,

the agent’s random population is created initially. The problem-solving area search

agent is the TDBES population members who propose the problem variables’

candidate values depending on the search area location. As a result, it is possible to

conceptualize each member of a population functionally in vector form whose

elements correspond to the variables count in the issue. To model the set of TDBES

members, a matrix X in the next equation can be employed, where X is the Tasmanian

population, 𝑁 is the searching count of T-devil, X𝑖 is the i-th candidate solution, as

well as 𝑚 depicts the count of the given problem variables:

(12) X =

[

X1

:
X𝑖

:
X𝑁]

=

[

𝑥1,1. . . 𝑥1,𝑗. . . 𝑥1,𝑚

:
𝑥𝑖,1. . . 𝑥𝑖,𝑗. . . 𝑥𝑖,𝑚

:
𝑥𝑁,1. . . 𝑥𝑁,𝑗. . . 𝑥𝑁,𝑚]

𝑁×𝑚

.

The function of the defined objective can be determined by putting the readings

of alternative solutions into objects of the defined objective function. In the next

equation, a vector F is utilized to model the values attained for the defined objective

function:

 29

(13) F =

[

F1

:
F𝑖

:
F𝑁]

=

[

𝐹(𝑋1)
:
𝐹(𝑋𝑖)
:
𝐹(𝑋𝑁)]

𝑁×1

.

Occasionally, the T-devil hunts for local carrion, whereas other raptors that hunt

for large prey but are unable to complete the tasks preside above the T-devil. Another

population member’s position is taken into account as Carrion puts for each T-devil

in the TDBES design. The next equation simulates one of these instances’ random

selection, where 𝐶𝑖 depicts the carrion that is chosen; depending on 𝐶𝑖, the T-devil is

given a new location in the search area:

(14) 𝐶𝑖 = 𝑋𝑘 , 𝑖 = 1, 2, … ,𝑁, and 𝑘 ∈ {1, 2, . . . , 𝑁|𝑘 ≠ 𝑖}.
Equation (12) models the T-devil’s motion style, where 𝐼 ∈ (1, 2) depicts

random numbers, 𝑟 ∈ (0,1) depicts random numbers, and 𝑥𝑖,𝑗
new,𝑆1

, gives T-devil’s

current updated position depending on aforementioned strategy. Following the

calculation of the T-devil’s updated position in Equation (15), if the goal function

value is more at the newly updated position, then the position is acceptable; if not,

the T-devil remains where it was. In Equation (16), according to the proposed

concept, new update of Tasmanian is done by hybridizing the TDO and proposed

BES update, where RF is the Random Factor (Equation (18)) [39], 𝑟2 ∈ (0, 1) is the

random value, ITMax denotes the Maximum number of Iteration, and 𝑇is the current

iteration, Levy denotes levy flight update with Equation (19). The conventional BES

update equation is in Equation (20), where 𝛼 is the position change controlling

parameter.

(15) 𝑥𝑖,𝑗
new,𝑆1 = {

𝑥𝑖,𝑗 + 𝑟 × (𝐶𝑖,𝑗 − 𝐼 × 𝑥𝑖,𝑗) if 𝐹𝐶𝑖
≺ 𝐹𝑖,

𝑥𝑖,𝑗 + 𝑟 × (𝑥𝑖,𝑗 − 𝐶𝑖,𝑗) otherwise,

(16) 𝑋𝑖 = {
𝑋𝑖

new,𝑆1 if 𝐹𝑖
new,𝑆1 ≺ 𝐹𝑖,

𝑋𝑖 otherwise,

(17) 𝑥𝑖,𝑗
new,𝑆1 = {

𝑥𝑖,𝑗 + RF × (𝐶𝑖,𝑗 − 𝐼 × 𝑥𝑖,𝑗) if 𝐹𝐶𝑖
≺ 𝐹𝑖 ,

𝑥new = 𝑥best + 𝛼 × 𝑟(𝑥mean − 𝑥𝑖) × 𝐿evy otherwise,

(18) RF = 𝑟1 × sin(𝑟2) , 𝑟1 =
1.5×(ITMax−𝑡+1)

ITMax
,

(19) Levy =
𝑇(1+𝛽)×(sin(

𝜋𝛽

2
))

1
𝛽⁄

𝑇(
1+𝛽

2
)×𝛽×(2

(
𝛽−1

2
)
)

,

(20) xnew = 𝑥best + 𝛼 × 𝑟(𝑥mean − 𝑥𝑖),

(21) 𝑃𝑖 = 𝑋𝑘 , 𝑖 = 1, 2, … ,𝑁, 𝑘 ∈ {1, 2, … ,𝑁|𝑘 ≠ 𝑖}.
During the process of i-th T-devil updating, another population member position

is taken as the location of prey. Equation (21) simulates the process of choosing prey,

where 𝑘 ∈ (1,𝑁) is a natural random integer, 𝑃, and depicts the prey that is chosen.

Equation (22) calculates a newer position for the T-devil based on the precise position

of the prey. T-devil new location calculation replaces the prior location when it

 30

enhances the objective function value. Equation (23) serves as an example of the

second strategy.

(22) 𝑥𝑖,𝑗
new,𝑆2 = {

𝑥𝑖,𝑗 + 𝑟 × (𝑃𝑖,𝑗 − 𝐼 × 𝑥𝑖,𝑗) if 𝐹𝑃𝑖
≺ 𝐹𝑖,

𝑥𝑖,𝑗 + 𝑟 × (𝑥𝑖,𝑗 − 𝑃𝑖,𝑗) otherwise.

(23) 𝑋𝑖 = {
𝑋𝑖

new,𝑆2 if 𝐹𝑖
new,𝑆2 ≺ 𝐹𝑖 ,

𝑋𝑖 otherwise.

Equation (24) can be used to get the radius 𝑅 of neighborhood, which represents

the area where the T-devil follows its prey. So, using Equation (25), which simulates

the T-devil’s chasing behaviour numerically, a new position can be determined. If the

updated position offers an improved position than the existing position, the T-devil

algorithm agrees upon it. The position updating process of T-devil is shown in

Equation (26). As per the contributed model in Equation (27), the T-devil algorithm

update process is done by introducing [40] the proposed factor PF (Equation (28)).

(24) 𝑅 = 0.01 (1 −
𝑡

ITMax
),

(25) 𝑥𝑖,𝑗
new = 𝑥𝑖,𝑗 + (2𝑟 − 1) × 𝑅 × 𝑥𝑖,𝑗,

(26) 𝑋𝑖 = {
𝑋𝑖

new if 𝐹𝑖
new ≺ 𝐹𝑖 ,

𝑋𝑖 otherwise,

(27) 𝑋𝑖 = {
𝑋𝑖

new × PF if 𝐹𝑖
new ≺ 𝐹𝑖,

𝑋𝑖 otherwise,

(28) PF = exp (
−𝑖

𝛿×ITMax
).

Shuffle crossover [41] aids in the development of offspring who are not

dependent on the parents’ crossover points.

Shuffle Crossover Operation

Step 1. Select two parents: parent 𝐴 and parent 𝐵 from the parent pool

Step 2. Two offspring: 𝐶𝑡+1, 𝐷𝑡+1are created

Step 3. Shuffle the genes randomly in both the parents.

Step 4. Select the 1-point crossover point 𝑐𝑝 randomly from the group
{1, 2, . . . , 𝑛 − 1}

Step 5. For i=1 to cp do

Step 6. 1t t

i iC a+ =

Step 7.
1t t

i iD b+ =

Step 8. end do

Step 9. For 1i cp= + to n do

Step 10.
1t t

i iC b+ =

Step 11.
1t t

i iD a+ =

Step 12. end do

 31

Algorithm. Pseudocode of proposed TDBES for optimal load balancing and

task scheduling

Initialize t (iterations) and N (member of the population), Set the T-devil’s

location to its initial value and assess the objective function.

Step 1. For t in 1 to N

Step 2. For t in 1 to N

Step 3. If probb < 0.5, probb = rand_value.
Step 4. Choose the carrion prey for i-th T-devil by using Equation (14)

Step 5. Evaluate an updated value of the T-devil by Equation (16)

Step 6. The i-th T-devil proposed update is done via Equation (17)

Step 7. Else

Step 8. Choose the prey_value of i-th T-devil using Equation (21)

Step 9. Evaluate the new modified value of the T-devil by Equation (22)

Step 10. i-th T-devil update is done via Equation (23)

Step 11. Upgrade R via Equation (24)

Step 12. Evaluate new update of i-th T-devil in ix neighborhood by using

Equation (25)

Step 13. i-th T-devil proposed update is done via Equation (27)

Step 14. End If

Step 15. End For

Step 16. Shuffle crossover operation

Step 17. Save the optimal suggested solution so far

Step 18. End For

4. Results and discussions

The proposed workload prediction and scheduling of tasks are implemented in Cloud-

sim. Google Cluster Workload Traces, about the 2019 dataset was considered and

assembled from [42]. The efficiency of the TDBES work compared with the

conventional strategies, like Discrete Butterfly Optimization Algorithm (DBOA),

Weighted Ant Colony Optimization (WACO), and Modified Particle Swarm

Optimization (MPSO), correspondingly. Moreover, it is assessed by evaluating

parameters like Execution Time, Communication cost, Fitness, Migration cost, and

so on. The analysis is also done while ranging the task count from 500 up to 2000.

Dataset. The data set considered for our work is the Google Cluster Workload

Traces 2019 dataset includes data, such as:

• Utilization of CPU histograms throughout for every 5-minute duration;

• Information related to allocation sets.

4.1. Evaluation of execution time and communication cost

The performance of the TDBES is computed over the WACO, MPSO, and DBOA

for workload prediction, and scheduling the tasks about transfer cost and time of

execution is displayed in Fig. 3. The communication cost and execution time ought

to be lower for the proposed TDBES when compared to other approaches.

 32

In particular, the TDBES yielded a minimized communication cost with a 500th

task count against other compared algorithms with task counts of 1000, 1500, and

2000. Moreover, the TDBES obtained an execution time of 1648 s with task counts

of 2000, which is considerably minimized. Owing to the employment of improved

deep max-out with a hybrid optimization model (TDO and BES), enhanced outcomes

are achieved.

(a)

(b)

Fig. 3. Communication cost over number of Tasks (a); Execution time

over number of Tasks (b)

4.2. Evaluation of makespan

The assessment of performance metrics of the TDBES over the WACO, MPSO, and

DBOA subjected to predicting workloads and task scheduling as depicted in Fig. 4

tends to project a lowered make-span for the TDBES approach than the conventional

methodologies, when the count of tasks is tuned at a count of 500. Hence, the findings

indicate the reliability of the TDBES approach effective in workload prediction and

task scheduling with a lowered makespan.

Fig. 4. Makespan over number of Tasks

4.3. Evaluation of migration cost and efficiency

Fig 5a and b depict the migration cost and efficiency of the TDBES inspected over

the existing methods for the prediction of workload and task scheduling. The

performance analysis is carried out by varying the set of tasks. The cost and efficiency

 33

of task migration tend to be improved for the TDBES approach with a lower

migration cost of 1.55, when scrutinized against the traditional methods bearing

readings, DBOA=4.987, WACO=6.786, and MPSO=5.345, correspondingly.

Additionally, the migration efficiency of the TDBES (0.0989) is greater than the

DBOA (0.0238), MPSO (0.325), and WACO (0.375), respectively(task=2000). Thus,

the betterment of the TDBES is proved in terms of migration cost and migration

efficiency.

(a)

(b)

Fig. 5. Migration cost over number of tasks (a); Migration efficiency vs number of tasks (b)

4.4. Convergence evaluation

The convergence analysis on TDBES is compared to the existing techniques, such as

DBOA, WACO, CSO (cat swap optimization), and MPSO, which are presented in

Fig 6.

During the 0th iteration, the TDBES and the other methods generated the highest

cost value, as that drastically came down with increased iterations. However, the

TDBES acquired the minimized cost rate, mainly at the 26th iteration; the TDBES

scored the least cost value of 4.427. Based on the graph, the TDBES convergence

rate improves rapidly over the existing schemes, which leads to a reduction in cost

and exact prediction of workload and task scheduling.

Fig. 6. Cost function vs number of iterations

 34

4.5. Regression evaluation

The evaluation of the regression metric of the contributed model against other

existing models for the prediction of workloads is presented in Fig. 7. In this

assessment, we have presented the actual label and predicted label for the TDBES

and the existing methodologies like RNN, CNN, and NN. The figures depict that our

proposed model generated more identical values in both the actual and predicted

labels, while the RNN, NN, and CNN tend to produce more discrepancy values.

(a)

(b)

(c)

(d)

Fig. 7. Regression analysis of CNN (a); regression analysis of NN (b); regression analysis of RNN (c);

regression analysis of TDBES (d)

 35

4.6. Error analysis of Improved Deep Max-out

Table 4 describes the error analysis of the proposed algorithm over legacy approaches

like NN, RNN, CNN, Bi-GRU, and Conventional Deep Max-out about MAP, RMSE,

MAE, and MALE. Here, the improved Deep Max-out has accomplished the lowest

error measure ratings. Similarly, the RMSE of the improved Deep Max-out is 0.102,

which is much lesser over the CNN (0.261), RNN (0.344), NN (0.163), Bi-GRU

(1.182) and Conventional Deep Max-out (1.152), correspondingly. Simultaneously,

the proposed recorded the minimized MAE=0.023, and MSLE=0.216, respectively.

Table 4. Error rate evaluation

Models MAP RMSE MAE MALE

NN 0.323 0.163 0.058 0.446

CNN 0.531 0.261 0.152 0.521

RNN 0.452 0.344 0.143 0.688

Bi-GRU 2.183 1.182 0.655 1.403

Improved Deep Max-out 0.122 0.102 0.023 0.216

4.7. Prediction analysis

Table 5 illustrates the prediction assessment of TDBES against RNN, NN, and CNN

models in terms of success rate for predicting over-predictions and under-predictions

for the considered amount of workload. Here, the TDBES has accomplished superior

prediction values than the RNN, NN, and CNN algorithms.

Table 5. Prediction evaluation

Models Success rate Over-prediction Under-prediction

RNN 54.7 48 52

NN 50.5 52 48

CNN 49.5 52 48

TDBES 96.5 15 26

5. Conclusion

The presented work successfully contributes an efficient prediction model that

predicts the upcoming workload arriving at a machine depending on the data patterns

of the previous workload using the Deep Max-out prediction model. The workload

arriving at the machines that tend to unbalance the VM is balanced and scheduled

with an optimal TDBES Algorithm that performs migration of tasks among VMs and

aids in efficient scheduling considering evaluation metrics like makespan, Migration

cost, and efficiency. The statistical analysis conducted has demonstrated that the

proposed method effectively lowers the communication cost over conventional

methods that exhibit high communication costs. Moreover, the analysis of prediction

results highlights the importance of considering constraints like time of execution,

Fitness, migration cost, and makespan of tasks, all of which are significantly lower

in the proposed model compared to conventional methods. Notably, the execution

time is minimized, whereas traditional methods exhibit poor performance with longer

execution times.

 36

R e f e r e n c e s

1. E b a d i f a r d, F., S. M. B a b a m i r. Autonomic Task Scheduling Algorithm for Dynamic Workloads

through a Load Balancing Technique for the Cloud-Computing Environment. – Cluster Computing,

2020. DOI: 10.1007/s10586-020-03177-0.

2. D e v i, K. L., S. V a l l i. Multi‑Objective Heuristics Algorithm for Dynamic Resource

Scheduling in the Cloud Computing Environment. – The Journal of Supercomputing, 2020.

DOI: 10.1007/s11227-020-03606-2.

3. K a u r, G., A. B a l a. Prediction-Based Task Scheduling Approach for Food Plain Application in Cloud

Environment. – Computing, Vol. 103, 2021, pp. 895-916. DOI: 10.1007/s00607-021-00936-8.

4. K a u r, G., A. B a l a. OPSA: An Optimized Prediction-Based Scheduling Approach

for Scientific Applications in Cloud Environment. – Cluster Computing, 2021.

DOI: 10.1007/s10586-021-03232-4.

5. L i, H., Y. Z h a o, S. F a n g. CSL‑Driven and Energy‑Efcient Resource Scheduling in the Cloud Data

Center. – The Journal of Supercomputing. DOI: 10.1007/s11227-019-03036-9.

6. K a r i m u n n i s a, S., Y. P a c h i p a l a. Task Classification and Scheduling Using Enhanced Coot

Optimization in Cloud Computing. – International Journal of Intelligent Engineering and Systems,

2023. DOI: 10.22266/ijies2023.1031.43.

7. P e n g, Z., J. L i n, D. C u i, Q. L i, J. H e. A Multi-Objective Trade-Off Framework for Cloud Resource

Scheduling Based on the Deep Q-Network Algorithm. – Cluster Computing, 2019.

DOI: 10.1007/s10586-019-03042-9.

8. S h i s h i r a, S. R., A. K a n d a s a m y. A Novel Feature Extraction Model for Large‑

Scale Workload Prediction in Cloud Environment. – SN Computer Science, 2021.

DOI: 10.1007/s42979-021-00730-5.

9. T a r a f d a r, A., M. D e b n a t h, S. K h a t u a, R. K. D a s. Energy and Makespan Aware Scheduling

of Deadline Sensitive Tasks in the Cloud Environment. – Journal of Grid Computing, 2021.

DOI: 10.1007/s10723-021-09548-0.

10. P a c h i p a l a, Y., D. B. D a s a r i, V. V. R. M. R a o, P. B e t h a p u d i, T. S r i n i v a s a r a o.

Workload Prioritization and Optimal Task Scheduling in Cloud: Introduction to Hybrid

Optimization Algorithm. – Wireless Networks, 2024. DOI: 10.1007/s11276-024-03793-3.

11. Nabi, S., M. A h m e d. OG‑RADL: Overall Performance‑Based Resource‑Aware Dynamic

Load‑Balancer for Deadline Constrained Cloud Tasks. – The Journal of Supercomputing, 2020.

DOI: 10.1007/s11227-020-03544-z.

12. S i n g h, H., A. B h a s i n, P. R. K a v e r i. QRAS: Efficient Resource Allocation for Task Scheduling

in Cloud Computing. – SN Appl. Sci., Vol. 3, 2021, 474. DOI: 10.1007/s42452-021-04489-5.

13. L e k a, H. L., Z. F e n g l i, A. T. K e n e a, N. W. H u n d e r a, T. G. T o h y e, A. T. T e g e n e.

PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage

Prediction. – Symmetry, Vol. 15, 2023.

14. K a r i m u n n i s a, S., Y. P a c h i p a l a. An AHP Based Task Scheduling and Optimal Resource

Allocation in Cloud Computing. – International Journal of Advanced Computer Science and

Applications, 2023. DOI: 10.14569/ijacsa.2023.0140317.

15. M e n o n, S. M., P. R a j a r a j e s w a r i. A Hybrid Machine Learning Approach for Drug

Repositioning. – International Journal of Computer Science and Network Security, Vol. 20, 2020,

Issue 12, pp. 217-223.

16. U m b a r k a r, A. J., P. D. S h e t h. Crossover Operators in Genetic Algorithms: A Review. – ICTACT

Journal on Soft Computing, Vol. 6, October 2015, Issue 1. DOI: 10.21917/ijsc.2015.0150.

17. D i c k s o n, M. C., A. S. B o s m a n, K. M. M a l a n. Hybridised Loss Functions for Improved Neural

Network Generalisation. – arXiv:2204.12244v1 [cs.LG] 26 April 2022.

18. R a m a d a n, A., S. K a m e l, M. H. H a s s a n, T. K h u r s h i d, C. R a h m a n n. An Improved Bald

Eagle Search Algorithm for Parameter Estimation of Different Photovoltaic Models. – Processes

2021, Vol. 9, 1127. DOI: 10.3390/pr9071127.

19. I l a n k u m a r a n, A., S. J. N a r a y a n a n. An Energy-Aware QoS Load Balance Scheduling Using

Hybrid GAACO Algorithm for Cloud. – Cybernetics and Information Technologies, Vol. 23, 2023,

No 1, pp. 161-177.

https://doi.org/10.1007/s10586-020-03177-0
https://doi.org/10.1007/s11227-020-03606-2
https://doi.org/10.1007/s00607-021-00936-8
https://doi.org/10.1007/s11227-019-03036-9
https://doi.org/10.1007/s10586-019-03042-9
https://doi.org/10.1007/s42979-021-00730-5
https://doi.org/10.1007/s10723-021-09548-0
https://doi.org/10.1007/s11227-020-03544-z
https://doi.org/10.1007/s42452-021-04489-5
https://doi.org/10.3390/pr9071127

 37

20. S r i v a s t a v a, V., K. D w i v e d i, A. K. S i n g h. Cryptocurrency Price Prediction Using Enhanced

PSO with Extreme Gradient Boosting Algorithm. – Cybernetics and Information Technologies,

Vol. 23, 2023, No 2, pp. 170-187.

21. G u l i a s h k i, V., L. K i r i l o v, A. N u z i. Optimization Models and Strategy Approaches Dealing

with Economic Crises, Natural Disasters, and Pandemics – an Overview. – Cybernetics and

Information Technologies, Vol. 23, 2023, No 4, pp. 3-25.

22. M a t o u s s i, W., T. H a m r o u n i. A New Temporal Locality-Based Workload Prediction Approach

for SaaS Services in a Cloud Environment. – Journal of King Saud University – Computer and

Information Sciences, 2021. DOI: 10.1016/j.jksuci.2021.04.008.

23. M e y e r, V. D., F. K i r c h o f f, M. L. D a S i l v a, C. A. F. D e R o s e. ML-Driven Classification

Scheme for Dynamic Interference-Aware Resource Scheduling in Cloud Infrastructures. – Journal

of Systems Architecture, Vol. 116, 2021.

24. G r z e g o r o w s k i, M., E. Z d r a v e v s k i, A. J a n u s z, P. L a m e s k i, C. A p a n o w i c z,

D. S l e z a k. Cost Optimization for Big Data Workloads Based on Dynamic Scheduling and

Cluster-Size Tuning. – Big Data Research, Vol. 25, 2021.

25. C a o, M., Y. L i, X. W e n, Y. Z h a o, J. Z h u. Energy-Aware Intelligent Scheduling for Deadline-

Constrained Workflows in Sustainable Cloud Computing. – Egyptian Informatics Journal, Vol. 24,

2023, Issue 2.

26. B i, J., S. L i, H. Y u a n, M. C. Z h o u. Integrated Deep Learning Method for Workload and Resource

Prediction in Cloud Systems. – Neurocomputing, Vol. 424, 2021, No 1.

27. K u m a r, J., A. K. S i n g h, R. B u y y a. Self-Directed Learning Based Workload Forecasting Model

for Cloud Resource Management. – Information Sciences, Vol. 543, 2021.

28. J i, K., F. Z h a n g, C. C h i, P. S o n g, B. Z h o u, A. M a r a h a t t a, Z. L i u. A Joint Energy

Efficiency Optimization Scheme Based on Marginal Cost and Workload Prediction in Data Centers.

– Sustainable Computing: Informatics and Systems, Vol. 32, 2021.

29. X i a o, Z., B. W a n g, X. L i, J. D u. Workload-Driven Coordination between Virtual Machine

Allocation and Task Scheduling. – Advances in Parallel and Distributed Computing for Neural

Computing, Neural Computing and Applications, 2019. DOI: 10.1007/s00521-019-04022-1.

30. C h a n d r a s h e k a r, C., P. K r i s h n a d o s s, V. K. P o o r n a c h a r y,

B. A n a n t h a k r i s h n a n, K. R a n g a s a m y. HWACOA Scheduler: Hybrid Weighted

Ant Colony Optimization Algorithm for Task Scheduling in Cloud Computing. – Applied Sciences,

Vol. 13, 2023, No 6, p. 3433. DOI: 10.3390/app13063433.

31. S h a r m a, N., S. B e n i w a l, P. G a r g. Ant Colony Based Optimization Model for QoS-Based Task

Scheduling in Cloud Computing Environment. – SSRN Electronic Journal, 2022.

DOI: 10.2139/ssrn.4237751.

32. C h a u d h a r y, S., V. K. S h a r m a, R. N. T h a k u r, A. R a t h i, P. K u m a r, S. S h a r m a. Modified

Particle Swarm Optimization Based on Aging Leaders and Challengers Model for Task Scheduling

in Cloud Computing. – Mathematical Problems in Engineering, Vol. 2023, 2023, No 1.

DOI: 10.1155/2023/3916735.

33. H o s s e i n z a d e h, M., et al. Improved Butterfly Optimization Algorithm for Data Placement and

Scheduling in Edge Computing Environments. – Journal of Grid Computing, Vol. 19, March 2021,

No 2, DOI: 10.1007/s10723-021-09556-0.

34. M a n g a l a m p a l l i, S., S. K. S w a i n, V. K. M a n g a l a m p a l l i. Multi Objective

Task Scheduling in Cloud Computing Using Cat Swarm Optimization Algorithm. – Arabian

Journal for Science and Engineering, Vol. 47, September 2021, No 2, pp. 1821-1830.

DOI: 10.1007/s13369-021-06076-7.

35. P e t a, J,. S. K o p p u. An IoT-Based Framework and Ensemble Optimized Deep Maxout Network

Model for Breast Cancer Classification. – Electronics, Vol. 11, 2022, 4137.

DOI: 10.3390/electronics11244137.

36. D i c k s o n, M. C., A. S. B o s m a n, K. M. M a l a n. Hybridised Loss Functions for Improved Neural

Network Generalisation. – arXiv:2204.12244v1 [cs.LG] 26 April 2022.

37. D e h g h a n i, M., T. P. H u b a l o v s k y, P. T r o j o v s k y. Tasmanian Devil Optimization: A New

Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. – Digital Object

Identifier, Vol. 10, 2022. DOI: 10.1109/Access.2022.3151641.

https://doi.org/10.1007/s00521-019-04022-1
https://doi.org/10.3390/electronics11244137

 38

38. A l s a t t a r, H. A., A. A. Z a i d a n, B. B. Z a i d a n. Novelmeta-Heuristic Bald Eagle Search

Optimization Algorithm. – Artificial Intelligence Review, Vol. 53, 2020, No 6.

DOI: 10.1007/s10462-019-09732-5.

39. R a m a d a n, A., S. K a m e l, M. H. H a s s a n, T. K h u r s h i d, C. R a h m a n n. An Improved Bald

Eagle Search Algorithm for Parameter Estimation of Different Photovoltaic Models. – Processes,

Vol. 9, 2021, 1127. DOI: 10.3390/pr9071127.

40. Y a n g, X., J. L i u, Y. L i u, P. X u, L. Y u, L. Z h u, H. C h e n, W. D e n g. A Novel Adaptive

Sparrow Search Algorithm Based on Chaotic Mapping and T-Distribution Mutation. – Appl. Sci.,

Vol. 11, 2021, 11192. DOI: 10.3390/app112311192.

41. U m b a r k a r, A. J., P. D. S h e t h. Crossover Operators in Genetic Algorithms: A Review. – ICTACT

Journal on Soft Computing, Vol. 6, 2015, Issue 1. DOI: 10.21917/ijsc.2015.0150.

42. https://research.google/tools/datasets/google-cluster-workload-traces-2019/

Received: 11.12.2023; Second Version: 05.08.2024; Accepted: 10.08.2024

https://doi.org/10.1007/s10462-019-09732-5
https://doi.org/10.3390/pr9071127
https://doi.org/10.3390/app112311192
https://research.google/tools/datasets/google-cluster-workload-traces-2019/

