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Abstract: Cloud computing revolutionizes as a technology that succeeds in serving 

large-scale user demands. Workload prediction and scheduling tend to be factors 

dictating cloud performance. Forecasting the future workload in due to avoid unfair 

resource allocation, emerges to be a crucial inspecting feature for enhanced 

performance. The aforementioned issues of interest are addressed in our work by 

soliciting a Deep Learning driven Max-out prediction model, which efficiently 

forecasts the future workload by providing a balanced approach for enhanced 

scheduling with the Tasmanian Devil-Bald Eagle Search (TDBES) optimization 

algorithm. The results obtained proved that the TDBES scored efficacy in makespan 

with 16.75%, migration cost with 14.78%, and a migration efficiency rate of 9.36% 

over other existing techniques like DBOA, WACO, and MPSO, with additional error 

analysis of prediction performance using RMSE, MAP, and MAE, among which our 

contributed approach overrides traditional methods with least error. 

Keywords: Cloud computing, Task scheduling, Workload prediction, Virtual 

Machine, Migration.  

1. Introduction 

Recently, researchers have been majorly concentric around cloud platforms [1, 2]. It 

is recognized as the best method for controlling data use, resource allocation, and the 

provision of different computing IT services. Numerous web-based programs have 

started to employ cloud computing due to its boundless computational services and 

the Pay-as-you-go model. By utilizing virtualization strategies and by running several 

virtual instances on physical computers in data centres, a cloud system [3, 4] can offer 

more features. Utilizing this tactic, cloud computing providers can make better use 

of their infrastructure while spending less on energy utilization. 

The needs of cloud users to store their data and computational resource 

requirements are considered as their workload [5]. A desktop workload, for instance, 

accommodates several users registering into interactive desktop sessions. Several 
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cloud apps have their unique properties and metrics. The service required by the cloud 

user and the type of application dictates the type of cloud service needed. With proper 

workload prediction [6, 7], the cloud can operate more effectively with cost. To 

estimate the workloads in the cloud environment, several machine learning 

algorithms, such as Long Short-Term Memory (LSTM) and Deep Belief Network 

(DBN), are opted as common approaches in current times. Time series models are 

predicted using a variety of prediction techniques, including the AutoRegressive 

Integrated Moving Average (ARIMA) model, Support Vector Machine (SVM), 

Neural Network, Bayesian model, and Moving Average (MA) model. There is yet 

another category of prediction techniques for figuring out cloud workload trends [8] 

[9]. Eventually, due to the variation in cloud services, it is difficult to elevate the 

accuracy of prediction methods since the models are not flexible enough to encounter 

each service. 

The workload prediction model [10] to generate the scheduling algorithm is 

indigent to handle the solid mapping between the tasks of the users and the resources 

that are available. This is the major issue in this field, as [11, 12] balancing the 

computation and scheduling in the finest way is difficult for ascertaining high 

reliability and improved response time. Different optimization algorithms [13, 14] 

are in progress to deal with the optimum scheduling by considering it as the NP-hard 

problem. Meanwhile, the task of scheduling needs [15, 16] have to be automated and 

improved in terms of several factors like speed, energy efficiency, and optimal 

scheduling [17-19]. This paper proposes a system with workload prediction and 

scheduling, where the deep learning algorithm is insisted to train with features like 

Virtual Machine (VM) capacity as well as task capacity to make the scheduling 

appropriate via an optimization procedure [20, 21]. The proposed work is carried out 

in the following manner: 

• Proposing an improved Deep learning strategy, with an enhanced Deep Max-

out model for predicting workloads, trained in terms of the capacity of respective 

tasks and Virtual Machines. 

• The prediction paves the way for the optimum scheduling of tasks via the 

optimization strategy named Tasmanian Devil Bald Eagle Search (TDBES) 

algorithm, which ensures the attainment of objectives like time, cost, and efficiency. 

Structure of this suggested work: Section 1 presents an introduction followed by 

Section 2, where an intense literature review of traditional methods is addressed. 

Section 3 addresses the proposed cloud computing system model and workload 

prediction model, and also describes optimal load balancing and task scheduling. 

Section 4 handles the results and discussions of the contributed model. The 

conclusion of the work is summarized in Section 5. 

2. Related work 

In 2021 M a t o u s s i  and H a m r o u n i  [22] developed a workload forecasting 

strategy to enhance throughput planning, assure efficient management of resources, 

and subsequently serve SLA consensus with cloud users. In this situation, the 

author put up a novel method for anticipating the number of requests that would be 
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flooding a SaaS service and setting aside virtual resources for fulfilling the requests 

of users. The technology would be used to simultaneously acquire two benefits: 

accurate forecast findings and response time optimization. 

In 2021, M e y e r  et al. [23] developed a Machine Learning-driven classification 

method permitting optimized cloud resource allocation, majorly interference-aware. 

The goal of the work is to validate how resource scheduling is impacted by 

classification algorithms and the changes they impact in workload parameters. The 

author started by looking at the way the hardware components respond to various 

apps bearing different dynamic requests. The author investigated several interference 

classification schemes and assessed their effectiveness while taking into 

consideration the cloud workload dynamic nature. 

In 2020, G r z e g o r o w s k i  et al. [24] introduced a novel technique to construct 

a robust clustering technique using cloud resources that were tailored to the specific 

data processing need. The infrastructure-as-a-code framework was used in the given 

architecture to enable the configuration of clusters and manage them dynamically. It 

starts by determining the ideal cluster size for completing a task in the allotted amount 

of time. Further optimization of execution time is carried out to take advantage of the 

cloud spot market’s discounted rates by observing the price range patterns of spot 

instances and utilizing ARIMA models. 

In 2023, M i n  C a o  et al. [25] presented three new approaches for an energy-

aware EIS. To save energy, the author first chose the ideal schedule for each activity 

to execute on respective resources. Secondly, the EIS allocates workflow stack based 

on the optimal time for every task execution, thereby saving energy by lowering 

frequency and voltage factors. Further, the EIS takes advantage of the lapsed time 

created due to shortfalls of task precedence for minimizing dynamic energy usage 

and satisfying the deadline constraints of workflows. 

In 2021, J i n g  B i  et al. [26] used a logarithmic procedure to lower the SD 

before applying resource sequences and workloads. An improved filter was used to 

eliminate extreme spots and noise interference. The data was scaled using the Min-

Max method. For time series forecasting, a deep learning integrated technique was 

developed that uses Machine Learning network models, including Grid-Long Short-

Term Memory and Bidirectional-LSTM networks, to generate good-quality 

predictions of workload arriving and resource requirements at regular time Intervals. 

In 2021, K u m a r, S i n g h  and B u y y a  [27] developed an SDWF approach 

that divulges current predictions to compute the forecasting error trend and aid 

in improving future prediction efficiency and accuracy. For training neurons, 

the model makes use of an enhanced heuristic methodology depending on the 

black hole phenomenon. Additionally, Friedman and Wilcoxon’s ranking tests 

were used in the statistical analysis to confirm the accuracy of the 

recommended forecasting model. 
In 2021, K a i x u a n  J i  et al. [28] developed a Joint Energy Efficiency 

Optimization Scheme that jointly considers and co-optimizes the energy used by the 

cooling system and the servers. JEES includes the dynamic and optimal online task 

scheduling approach depending on the assessment of the marginal cost measure; a 

strategy called resource management integrates the workload forecasting model for 
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managing the set of resources as well as the task-migration approach using the 

evaluation of marginal cost. The overall energy usage of data centers can be lowered 

by utilizing the suggested approaches. 

In 2019, Z h e n g  X i a o  et al. [29] integrated the VM allocation as well as task 

scheduling, depending on the workload features. The workload is stochastic and time-

varying in practice. The author showed that the dataset for the acquired workload has 

a Markov property that can be represented by a Markov chain. Further, three major 

operators that characterize the workload are extracted: recurrence, entropy, and 

persistence. These operators assess the approximate burst times, predictability, and 

stability of the user requests, accordingly. It is established that the relationship among 

the VM amount and load characteristic operators is nonlinear to assess the 

approximate burst times, predictability, and stability of the user requests, 

accordingly. It is established that the relationship between the VM amount and load 

characteristic operators is nonlinear. 

C h a n d r a s e k a r  et. al. [30], in 2023 contributed a hybrid weighted Ant colony 

Optimization model that uses the solution function and pheromone update function 

for optimal task scheduling. The authors’ heuristic approach projects the overall 

improved performance over existing algorithms by evaluating parameters like 

resource management and execution time. 

S h a r m a, B e n i w a l  and G a r g  [31] 2020 proposed a QoS-driven 

Scheduling algorithm based on Ant colony optimization that employed a neural 

network approach to handle multi-objective scheduling efficiently. The results of the 

proposed approach have overridden the existing algorithms in terms of metrics like 

execution time and scheduling cost of user tasks. 

C h a u d h a r y  et al. [32], in 2023 came up with a modified particle swam 

optimization to handle high scheduling time and computational expenses during the 

scheduling process. The MPSO lowers the objective function of cost and make-span 

that aid in avoiding premature convergence by enhancing the efficiency of local 

search. The performance of the contributed model showcases the rise in the graph 

when compared against traditional approaches. 

H u s s e i n z a d e h  et al. [33], in 2021 presented a discrete butterfly optimization 

algorithm that is based on the levy fight approach to overcome resource wastage and 

improve the consequence speed of the algorithm. The proposed approach also 

succeeds in presenting local optima problems by prioritizing the tasks, followed by 

DBOA that aids in intensive workflow scheduling with enhanced performance.  

S. M a n g a l a m p a l l i, S. K. S w a i n  and V. K. M a n g a l a m p a l l i  [34], in 2023 

contributed an enhanced task scheduling method based on cat swam optimization that 

works by considering task priorities and words it for scheduling. The proposed 

algorithm works based on the behavior of cats, which overtakes the existing baseline 

algorithm concerning QOS parameters like spam and resource usage. 

3. Methodology 

Considering the cloud C having N sets of users Ui, i={1, 2, … , N}, as well as the M 

set of tasks generated from users Ui, represented as Tskj, j={1, 2, … , M}, scheduling 
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the set of tasks to the resources is the major objective, i.e., feasible virtual machines 

vmi, where i={vm1, vm2, …, vmn} as well as physical machine pmi where  

i={pm1, pm2, …, pmk}. Tasks are scheduled according to their priority as stated by 

this paradigm. In prior, the workloads are predicted via deep learning strategy. 

Workload prediction by Improved Deep Max-out model: An accurate and 

precise workload forecast plays a crucial role in enhancing cloud performance. It is 

also discovered that this may increase the effectiveness and lower operating costs. 

Taking this feature into consideration, this paper adopts the usage of a deep learning 

model for forecasting the workloads (subsequent tasks), for which, an improved Deep 

Max-out model is introduced that trains with features like CPU, hours-of-day and 

day-of-week, for predicting the task as the target label. The proposed prediction 

model is described in Fig. 1.  
 

 
Fig. 1. Workload-prediction scenario 

 

The mathematical modeling of improved deep max out is from [35]:  

(1)   SoftMax(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑘

𝑗=1

, 

(2)   𝐺 − SoftMax =
exp(𝑥𝑖+𝑔(𝑥))

∑ exp(𝑥𝑗+𝑔(𝑥))𝑗=1

, 

𝑔(𝑥) =
1

2
erf (−

√2(𝜇𝑖−𝑥𝑖)

2𝜎𝑖
) +

1

2
, 

erf =
1

√𝜋
∫ 𝑒−𝑡2𝑧

−𝑧
𝑑𝑡, 𝑡2 = 𝑥𝑖, 

(3)    𝑄(𝑀) = Max
𝑧∈[1,𝜂]

𝑅𝑦𝑧. 

In Equation (1), a traditional SoftMax activation function that can operate 

multitudinous classes is provided. It is divided by the sum of the normalized outputs 

for each class, which range from 0 to 1. The i/p layer, embedded layer, max pooling 

layer, dropout layer, convolution network layer, and dense layers work using max-

out and activation functions to make up the network structure of the Deep Max-out 

model.  

Equation (2) gives an improved SoftMax activation function(𝐺 − SoftMax) 

which enhances the model robustness, where 𝑥𝑖  is activation and 𝑔(𝑥) is Gaussian 

distributed term, 𝜇, 𝜎 is mean and SD.  

Equation (3) illustrates this network’s max out unit, where 𝑅𝑦𝑧 = 𝑀 ⋅ 𝜆𝑦𝑧 + 𝛾𝑦𝑧, 

𝛾 is bias, 𝑀 is input features which include task and virtual machine capacity, 𝜂 is 

feature map, and  𝜆  is weight. 
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The feature 𝑀 is initially subjected to the input layer, and the output derived 

from M is sent to the embedding layer, where the computation of output takes place. 

After the operation of the convolution layer, the dropout layer is continued and from 

the 3rd convolution layer, the outcome is received. After the convolution layer, the 

result is produced with the help of a max-pooling layer. The dropout layer follows 

the dense layer in order of appearance. The max-out module uses the input received 

at the previous dropout layer to compute its output, by later adding the resultant to 

the dense layer for the final result. The activation function then computes the output 

of the classification model using the dense layer’s output as a last step.  

(4)   𝐸he = Ls1
𝐸SE

MaxSE
+ Ls2

𝐸CE

MaxCE
, 

Here 

𝐸CE = −
1

Output_Size
∑ 𝑦𝑖

Output_Size
𝑖=1 log 𝑦𝑖

∧
+ (1 − 𝑦𝑖) × 1 × log (1 − 𝑦𝑖

∧
), 

(5)   𝐸he = Ls1
𝐸SE

MaxSE
+ 𝐿𝑠2

𝐸CE∗

MaxCE∗
, 

(6) 𝐸CE∗ = −
1

Output_Size
∑ ∑ 𝑤

𝑗

(1−𝑝𝑖𝑗)𝑐
𝑗=1 𝑦𝑖

Output_Size
𝑖=1 log 𝑦𝑖

∧
+ (1 − 𝑦𝑖) × 1 × log (1 − 𝑦𝑖

∧
), 

(7)   𝑤𝑗 = log (
max(𝑛𝑗|𝑗∈𝑐)

𝑛𝑗
) + 1. 

The hybrid loss functions [36] provided in Equation (4) are utilized to calculate 

a model’s error. The Sum Squared Error SE(𝐸SE) loss function and Cross Entropy 

Error CE loss function(𝐸CE) are two often-used error measures for assessing a 

classification model’s efficacy. According to the proposed model, improved hybrid 

loss function calculation is given in Equation (5), where 𝐸CE∗  in the dynamically 

weighted balanced CE (Equation (6)), 𝑦𝑖 is an actual label and 𝑦𝑖

  ∧
 is the predicted 

label, 𝑤𝑗 is equivalent to the frequency log. Equation (7) shows the ratio of 𝑛𝑗 class 

frequency and majority class (computed over training dataset), Ls1, Ls2  are the 

scalar values which are the proportions provided to loss functions, in which  

 Ls1 + Ls2 = 1. 

Enhanced Task Scheduling and Load Balancing: An effective and enhanced 

load balancing strategy can presciently monitor the workload of the VMs and assign 

tasks to them in accordance. Consider the task Tsk𝑗 as 1000 (Tsk𝑗 will be varied) and 

consider the physical machine pm𝐾as 50 and the virtual machine vm𝑁 between the 

range 20 and 25. Each pm𝐾 has some vm𝑁 which is in the range between 20 and 25. 

Then we have to randomly allocate each task into a pm𝐾. In this, workload prediction 

model, the task takes place by using the aforementioned improved Deep Maxout 

model, which is addressed, in Section 4. Here, the Virtual Machine capacity and Task 

requirements are taken as features given to the Improved Deep max out, and the target 

labels of deep max out are 0, 1 and 2. The conditions for underload, equal load, and 

overload are as follows: 

• When the capacity of the VM overrules the task needs the label of the target 

class is defined to 0, i.e., the machine is underloaded. 

• When the capacity of the VM equals the task requirements the label of the 

target class is defined to 1, i.e., the machine is equally loaded. 
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• When the capacity of the VM fails to handle the task requirements the label 

of the target class is defined to 2, i.e., the machine is overloaded. 

The optimal scheduling carried out is evaluated against performance metrics 

like Makespan (F1), Migration cost (F2), and Migration efficiency (F3). The model 

of scheduling is illustrated in Fig. 2.  
 

 
 

Fig. 2. Scheduling of tasks in cloud computing 
 

Formulating lower bound and upper bound as per input solution for loading  

Lb = 0 (Zeros(len(Machine_underload))), 

Ub = 1 (Ones(len(Machine_underload))),
 

and the problem size of TDBES is the count of the underload machine. The next 

equation gives the formulation of the objective function, where 𝑤1, 𝑤2, 𝑤3 are the 

random weights in [0, 1]: 

(8)   Obj = (𝑤1 × 𝐹1) + (𝑤2 × 𝐹2) + (𝑤3 × 𝐹3). 

Makespan (F1) is coined as the overall Computation Time CT𝑖 (Equation (10)) 

to execute the task, in which 𝑁 is the set of virtual machines: 

(9)
   

𝐹1 = Max
1≤𝑖≤𝑁

{CT𝑖}, 

(10)   CT𝑖 = ∑
𝑇𝑗×length

vm𝑁×Pes_Num×𝑋vm𝑁

𝑛
𝑗=1 . 

Migration cost (F2): The 𝑀 × 𝑀 matrix, whose columns and rows indicate the 

physical machine pm𝐾 migration cost, is used to compute the virtual machine vm𝑁 

migration cost. Here, the matrix has identical row and column components, i.e.,  

(1, 1) and (2, 2) both exhibiting lower migration costs. 

Migration efficiency F3 is calculated by using the migration value: 

(11)   𝐹3 =
1

𝐹1
. 

Load balancing process: In Table 1, 0 means underloaded, 1 means equally 

loaded, and 2 means overloaded. Here, the underload machine (physical machine 

pm𝐾) is (2, 5), and the overload machine (physical machine pm𝐾) is (4, 1). For 

example, in Table 2, consider the solution with the range of (0, 1) is (0.2, 0.1) with 

index (1, 2). We will perform an index-wise sort on this response in Table 3. 

According to the index sorted, the underloaded machine is arranged as (5, 2), where 
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5 is the second machine and 2 is the first machine. Here, two tasks are overloaded. 

As machine 5 only has one task space, one load task is assigned to it, while a second 

overload task is sent to machine 2, which has two task spaces. Finally, the load gets 

balanced. 
 

Table 1. Load balancing process 

pmK
 vmN

 Tsk j
 Load prediction 

1 3 4 2 

2 4 3 0 

3 2 2 1 

4 1 2 2 

5 5 4 0 

 

Table 2. Index and solution before sorting 

Index 1 2 

Solution 0.2 0.1 

 

Table 3. Index and solution after index-wise sort 

Index 2 1 

Solution 0.2 0.1 

 

TDBES Algorithm for optimal task scheduling. This section explains the 

contributed meta-heuristic TDBES, that fusions TDO [37] and BES [38], and 

presents its mathematical modelling. The T-devil (Tasmanian devil) uses two 

approaches for feeding: live prey attack or feasting on the carrion of deceased 

animals. This behavior is simulated in TDBES. Based on the problem’s restrictions, 

the agent’s random population is created initially. The problem-solving area search 

agent is the TDBES population members who propose the problem variables’ 

candidate values depending on the search area location. As a result, it is possible to 

conceptualize each member of a population functionally in vector form whose 

elements correspond to the variables count in the issue. To model the set of TDBES 

members, a matrix X in the next equation can be employed, where X is the Tasmanian 

population, 𝑁 is the searching count of T-devil, X𝑖 is the i-th candidate solution, as 

well as 𝑚 depicts the count of the given problem variables: 

(12)   X =

[
 
 
 
 
X1

:
X𝑖

:
X𝑁]

 
 
 
 

=

[
 
 
 
 
𝑥1,1. . . 𝑥1,𝑗. . . 𝑥1,𝑚

:
𝑥𝑖,1. . . 𝑥𝑖,𝑗. . . 𝑥𝑖,𝑚

:
𝑥𝑁,1. . . 𝑥𝑁,𝑗. . . 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

. 

The function of the defined objective can be determined by putting the readings 

of alternative solutions into objects of the defined objective function. In the next 

equation, a vector F is utilized to model the values attained for the defined objective 

function: 
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(13)   F =

[
 
 
 
 
F1

:
F𝑖

:
F𝑁]

 
 
 
 

=

[
 
 
 
 
𝐹(𝑋1)
:
𝐹(𝑋𝑖)
:
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

. 

Occasionally, the T-devil hunts for local carrion, whereas other raptors that hunt 

for large prey but are unable to complete the tasks preside above the T-devil. Another 

population member’s position is taken into account as Carrion puts for each T-devil 

in the TDBES design. The next equation simulates one of these instances’ random 

selection, where 𝐶𝑖 depicts the carrion that is chosen; depending on 𝐶𝑖, the T-devil is 

given a new location in the search area: 

(14)   𝐶𝑖 = 𝑋𝑘 , 𝑖 = 1, 2, … ,𝑁, and  𝑘 ∈ {1, 2, . . . , 𝑁|𝑘 ≠ 𝑖}. 
Equation (12) models the T-devil’s motion style, where 𝐼 ∈ (1, 2) depicts 

random numbers, 𝑟 ∈ (0,1) depicts random numbers, and 𝑥𝑖,𝑗
new,𝑆1

, gives T-devil’s 

current updated position depending on aforementioned strategy. Following the 

calculation of the T-devil’s updated position in Equation (15), if the goal function 

value is more at the newly updated position, then the position is acceptable; if not, 

the T-devil remains where it was. In Equation (16), according to the proposed 

concept, new update of Tasmanian is done by hybridizing the TDO and proposed 

BES update, where RF is the Random Factor (Equation (18)) [39], 𝑟2 ∈ (0, 1)  is the 

random value, ITMax denotes the Maximum number of Iteration, and 𝑇is the current 

iteration, Levy denotes levy flight update with Equation (19). The conventional BES 

update equation is in Equation (20), where 𝛼 is the position change controlling 

parameter. 

(15)   𝑥𝑖,𝑗
new,𝑆1 = {

𝑥𝑖,𝑗 + 𝑟 × (𝐶𝑖,𝑗 − 𝐼 × 𝑥𝑖,𝑗) if 𝐹𝐶𝑖
≺ 𝐹𝑖,

𝑥𝑖,𝑗 + 𝑟 × (𝑥𝑖,𝑗 − 𝐶𝑖,𝑗) otherwise,
 

(16)   𝑋𝑖 = {
𝑋𝑖

new,𝑆1 if 𝐹𝑖
new,𝑆1 ≺ 𝐹𝑖,

𝑋𝑖 otherwise,
 

(17)   𝑥𝑖,𝑗
new,𝑆1 = {

𝑥𝑖,𝑗 + RF × (𝐶𝑖,𝑗 − 𝐼 × 𝑥𝑖,𝑗) if 𝐹𝐶𝑖
≺ 𝐹𝑖 ,

𝑥new = 𝑥best + 𝛼 × 𝑟(𝑥mean − 𝑥𝑖) × 𝐿evy otherwise,
 

(18)   RF = 𝑟1 × sin(𝑟2) , 𝑟1 =
1.5×(ITMax−𝑡+1)

ITMax
, 

(19)   Levy =
𝑇(1+𝛽)×(sin(

𝜋𝛽

2
))

1
𝛽⁄

𝑇(
1+𝛽

2
)×𝛽×(2

(
𝛽−1

2
)
)

, 

(20)    xnew = 𝑥best + 𝛼 × 𝑟(𝑥mean − 𝑥𝑖), 

(21)   𝑃𝑖 = 𝑋𝑘 , 𝑖 = 1, 2, … ,𝑁, 𝑘 ∈ {1, 2, … ,𝑁|𝑘 ≠ 𝑖}. 
During the process of i-th T-devil updating, another population member position 

is taken as the location of prey. Equation (21) simulates the process of choosing prey, 

where 𝑘 ∈ (1,𝑁) is a natural random integer, 𝑃, and depicts the prey that is chosen. 

Equation (22) calculates a newer position for the T-devil based on the precise position 

of the prey. T-devil new location calculation replaces the prior location when it 
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enhances the objective function value. Equation (23) serves as an example of the 

second strategy. 

(22)   𝑥𝑖,𝑗
new,𝑆2 = {

𝑥𝑖,𝑗 + 𝑟 × (𝑃𝑖,𝑗 − 𝐼 × 𝑥𝑖,𝑗) if 𝐹𝑃𝑖
≺ 𝐹𝑖,

𝑥𝑖,𝑗 + 𝑟 × (𝑥𝑖,𝑗 − 𝑃𝑖,𝑗) otherwise.
 

(23)   𝑋𝑖 = {
𝑋𝑖

new,𝑆2 if 𝐹𝑖
new,𝑆2 ≺ 𝐹𝑖 ,

𝑋𝑖  otherwise.
 

Equation (24) can be used to get the radius 𝑅 of neighborhood, which represents 

the area where the T-devil follows its prey. So, using Equation (25), which simulates 

the T-devil’s chasing behaviour numerically, a new position can be determined. If the 

updated position offers an improved position than the existing position, the T-devil 

algorithm agrees upon it. The position updating process of T-devil is shown in 

Equation (26). As per the contributed model in Equation (27), the T-devil algorithm 

update process is done by introducing [40] the proposed factor PF (Equation (28)). 

(24)   𝑅 = 0.01 (1 −
𝑡

ITMax
), 

(25)   𝑥𝑖,𝑗
new = 𝑥𝑖,𝑗 + (2𝑟 − 1) × 𝑅 × 𝑥𝑖,𝑗, 

(26)   𝑋𝑖 = {
𝑋𝑖

new if 𝐹𝑖
new ≺ 𝐹𝑖 ,

𝑋𝑖 otherwise,
 

(27)   𝑋𝑖 = {
𝑋𝑖

new × PF  if  𝐹𝑖
new ≺ 𝐹𝑖,

𝑋𝑖   otherwise,
 

(28)   PF = exp (
−𝑖

𝛿×ITMax
). 

Shuffle crossover [41] aids in the development of offspring who are not 

dependent on the parents’ crossover points.  

 

Shuffle Crossover Operation 

Step 1. Select two parents: parent 𝐴 and parent 𝐵 from the parent pool 

Step 2. Two offspring:  𝐶𝑡+1, 𝐷𝑡+1are created 

Step 3. Shuffle the genes randomly in both the parents. 

Step 4. Select the 1-point crossover point 𝑐𝑝 randomly from the group 
{1, 2, . . . , 𝑛 − 1} 

Step 5. For i=1 to cp do 

Step 6. 1t t

i iC a+ =  

Step 7. 
1t t

i iD b+ =  

Step 8. end do 

Step 9. For 1i cp= + to n do 

Step 10. 
1t t

i iC b+ =  

Step 11. 
1t t

i iD a+ =  

Step 12. end do 
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Algorithm. Pseudocode of proposed TDBES for optimal load balancing and 

task scheduling 

Initialize t (iterations) and N ( member of the population), Set the T-devil’s 

location to its initial value and assess the objective function. 

Step 1. For t in 1 to N  

Step 2. For t in 1 to N 

Step 3. If  probb < 0.5, probb =  rand_value. 
Step 4. Choose the carrion prey for i-th T-devil by using Equation (14) 

Step 5. Evaluate an updated value of the T-devil by Equation (16) 

Step 6. The i-th T-devil proposed update is done via Equation (17) 

Step 7. Else 

Step 8. Choose the prey_value of i-th T-devil using Equation (21) 

Step 9. Evaluate the new modified value of the T-devil by Equation (22) 

Step 10. i-th T-devil update is done via Equation (23) 

Step 11. Upgrade R  via Equation (24) 

Step 12. Evaluate new update of i-th T-devil in ix  neighborhood by using 

Equation (25) 

Step 13. i-th T-devil proposed update is done via Equation (27) 

Step 14. End If 

Step 15. End For 

Step 16. Shuffle crossover operation 

Step 17. Save the optimal suggested solution so far 

Step 18. End For 

4. Results and discussions 

The proposed workload prediction and scheduling of tasks are implemented in Cloud-

sim. Google Cluster Workload Traces, about the 2019 dataset was considered and 

assembled from [42]. The efficiency of the TDBES work compared with the 

conventional strategies, like Discrete Butterfly Optimization Algorithm (DBOA), 

Weighted Ant Colony Optimization (WACO), and Modified Particle Swarm 

Optimization (MPSO), correspondingly. Moreover, it is assessed by evaluating 

parameters like Execution Time, Communication cost, Fitness, Migration cost, and 

so on. The analysis is also done while ranging the task count from 500 up to 2000. 

Dataset. The data set considered for our work is the Google Cluster Workload 

Traces 2019 dataset includes data, such as: 

• Utilization of CPU histograms throughout for every 5-minute duration;  

• Information related to allocation sets. 

4.1. Evaluation of execution time and communication cost 

The performance of the TDBES is computed over the WACO, MPSO, and DBOA 

for workload prediction, and scheduling the tasks about transfer cost and time of 

execution is displayed in Fig. 3. The communication cost and execution time ought 

to be lower for the proposed TDBES when compared to other approaches. 
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In particular, the TDBES yielded a minimized communication cost with a 500th 

task count against other compared algorithms with task counts of 1000, 1500, and 

2000. Moreover, the TDBES obtained an execution time of 1648 s with task counts 

of 2000, which is considerably minimized. Owing to the employment of improved 

deep max-out with a hybrid optimization model (TDO and BES), enhanced outcomes 

are achieved. 

 
(a) 

 
(b) 

Fig. 3. Communication cost over number of Tasks (a); Execution time  

over number of Tasks (b) 

4.2. Evaluation of makespan 

The assessment of performance metrics of the TDBES over the WACO, MPSO, and 

DBOA subjected to predicting workloads and task scheduling as depicted in Fig. 4 

tends to project a lowered make-span for the TDBES approach than the conventional 

methodologies, when the count of tasks is tuned at a count of 500. Hence, the findings 

indicate the reliability of the TDBES approach effective in workload prediction and 

task scheduling with a lowered makespan. 

 

 
Fig. 4.  Makespan over number of Tasks 

4.3. Evaluation of migration cost and efficiency 

Fig 5a and b depict the migration cost and efficiency of the TDBES inspected over 

the existing methods for the prediction of workload and task scheduling. The 

performance analysis is carried out by varying the set of tasks. The cost and efficiency 
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of task migration tend to be improved for the TDBES approach with a lower 

migration cost of 1.55, when scrutinized against the traditional methods bearing 

readings, DBOA=4.987, WACO=6.786, and MPSO=5.345, correspondingly. 

Additionally, the migration efficiency of the TDBES (0.0989) is greater than the 

DBOA (0.0238), MPSO (0.325), and WACO (0.375), respectively(task=2000). Thus, 

the betterment of the TDBES is proved in terms of migration cost and migration 

efficiency. 

 
(a)  

 
(b) 

Fig. 5. Migration cost over number of tasks (a); Migration efficiency vs number of tasks (b) 

4.4. Convergence evaluation 

The convergence analysis on TDBES is compared to the existing techniques, such as 

DBOA, WACO, CSO (cat swap optimization), and MPSO, which are presented in 

Fig 6.  

During the 0th iteration, the TDBES and the other methods generated the highest 

cost value, as that drastically came down with increased iterations. However, the 

TDBES acquired the minimized cost rate, mainly at the 26th iteration; the TDBES 

scored the least cost value of 4.427. Based on the graph, the TDBES convergence 

rate improves rapidly over the existing schemes, which leads to a reduction in cost 

and exact prediction of workload and task scheduling. 

 
Fig. 6. Cost function vs number of iterations 
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4.5. Regression evaluation 

The evaluation of the regression metric of the contributed model against other 

existing models for the prediction of workloads is presented in Fig. 7. In this 

assessment, we have presented the actual label and predicted label for the TDBES 

and the existing methodologies like RNN, CNN, and NN. The figures depict that our 

proposed model generated more identical values in both the actual and predicted 

labels, while the RNN, NN, and CNN tend to produce more discrepancy values. 
 

 
(a) 

 
(b)  

 
(c) 

 
(d) 

Fig. 7. Regression analysis of CNN (a); regression analysis of NN (b); regression analysis of RNN (c); 

regression analysis of TDBES (d) 
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4.6. Error analysis of Improved Deep Max-out 

Table 4 describes the error analysis of the proposed algorithm over legacy approaches 

like NN, RNN, CNN, Bi-GRU, and Conventional Deep Max-out about MAP, RMSE, 

MAE, and MALE. Here, the improved Deep Max-out has accomplished the lowest 

error measure ratings. Similarly, the RMSE of the improved Deep Max-out is 0.102, 

which is much lesser over the CNN (0.261), RNN (0.344), NN (0.163), Bi-GRU 

(1.182) and Conventional Deep Max-out (1.152), correspondingly. Simultaneously, 

the proposed recorded the minimized MAE=0.023, and MSLE=0.216, respectively. 

Table 4. Error rate evaluation 

Models MAP RMSE MAE MALE 

NN 0.323 0.163 0.058 0.446 

CNN 0.531 0.261 0.152 0.521 

RNN 0.452 0.344 0.143 0.688 

Bi-GRU 2.183 1.182 0.655 1.403 

Improved Deep Max-out 0.122 0.102 0.023 0.216 

4.7. Prediction analysis 

Table 5 illustrates the prediction assessment of TDBES against RNN, NN, and CNN 

models in terms of success rate for predicting over-predictions and under-predictions 

for the considered amount of workload. Here, the TDBES has accomplished superior 

prediction values than the RNN, NN, and CNN algorithms. 

Table 5. Prediction evaluation 

Models Success rate Over-prediction Under-prediction 

RNN 54.7 48 52 

NN 50.5 52 48 

CNN 49.5 52 48 

TDBES 96.5 15 26 

5. Conclusion 

The presented work successfully contributes an efficient prediction model that 

predicts the upcoming workload arriving at a machine depending on the data patterns 

of the previous workload using the Deep Max-out prediction model. The workload 

arriving at the machines that tend to unbalance the VM is balanced and scheduled 

with an optimal TDBES Algorithm that performs migration of tasks among VMs and 

aids in efficient scheduling considering evaluation metrics like makespan, Migration 

cost, and efficiency. The statistical analysis conducted has demonstrated that the 

proposed method effectively lowers the communication cost over conventional 

methods that exhibit high communication costs. Moreover, the analysis of prediction 

results highlights the importance of considering constraints like time of execution, 

Fitness, migration cost, and makespan of tasks, all of which are significantly lower 

in the proposed model compared to conventional methods. Notably, the execution 

time is minimized, whereas traditional methods exhibit poor performance with longer 

execution times. 
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