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Abstract: Malware remains a big threat to cyber security, calling for machine 

learning-based malware detection. Malware variations exhibit common behavioral 

patterns indicative of their source and intended use to enhance the existing 

framework’s usefulness. Here we present a novel model, i.e., African Vulture 

Optimization-based Decision Tree (AVO-DT) to increase the overall optimization.  

The datasets from Android apps and malware software train the AVO-DT 

model. After training, the datasets are pre-processed by removing training errors. 

The DT algorithm is used by the developed AVO model to carry out the detection 

procedure and predict malware activity. To detect malware activities and improve 

accuracy, such an AVO-DT model technique employs both static and dynamic 

methodologies. The other measurements on Android applications might be either 

malicious or benign. Here we also developed malware prevention and detection 

systems to address ambiguous search spaces in multidimensionality difficulties and 

resolve optimization challenges. 

Keywords: Android, Malware detection, Malicious software, Android malware 

detection, Machine learning, Classification. 

1. Introduction 

Intelligent smartphone gadgets and complex sensors have revolutionized the realm 

of associated and ease in the rapidly evolving digital technology. Software designed 

to compromise computer operations, obtain confidential data, or breach protected 

computer networks is referred to as malware. Programs that inadvertently cause harm 

owing to flaws are not considered malware as their definition is based on their 

malevolent intent and their violation of what the user expects. Sometimes, both 

deliberately destructive software and actual malware are referred to as “badware”. 

These pose a threat to the internet's accessibility, the reliability of its recipients, and 

the confidentiality of its users since they are designed to obtain access to computer 

systems and network assets, interfere with computer processes, and collect data about 

individuals without the creator of the system’s agreement. Malware propagation has 

mailto:praveenkaithal@yahoo.com
mailto:varshasharma@rgpv.ac.in


 143 

impacted many aspects of daily life, including social networks [2], digital automation 

[3], e-Governance [1], and mobile networks [4]. Software infection can take many 

different forms, including viruses, worms, trojan horses, rootkits, backdoors, botnets, 

spyware, and adware. Because the aforementioned malware types do not conflict with 

one another, a single malware sample may exhibit traits from multiple categories 

simultaneously. 

Typically, detection models should be periodically (e.g., regularly) revamped 

based on the collected data from outdoors to be conscious of malware evolution. 

Regardless, this leads to damaging attacks, namely auxiliary pathway attacks that 

compromise the expanding expertise and create escape routes for regulated malware 

experiments. As of right moment, we are aware of no prior research that looked into 

this fundamental problem with Android malware locators [5]. This type of malware 

has been a common threat that targets mobile devices in recent times. 

The authors of malware employ obfuscation techniques [6] such as guidance 

replacement, register reassignment, procedure restructuring, dead code deployment, 

code transposition, and code integration to avoid being detected by firewalls, 

antivirus software, and gateways to other networks These security measures usually 

rely on signature-based methods, which make it difficult to identify fraudulent 

activity software programs that have not been before observed. Zero-day infections 

cannot be immediately protected against by commercial antivirus providers because 

these must first be analyzed for them to produce indications. Static or dynamic 

malware evaluation approaches are frequently employed to get beyond the limitations 

of signature-based methodologies. The methods for analyzing malware assist 

investigators in comprehending the dangers and motivations connected to a harmful 

code snippet. With this enhanced information, one can respond to current 

developments in malware generation or take proactive steps to mitigate possible 

future attacks. Unidentified malware can be grouped and categorized into pre-

existing families using characteristics that are obtained from the examination of 

malware. Several scholars have examined the problem and offered theories and 

methods from different perspectives. This outdated strategy is readily circumvented 

by contemporary viruses, consequently, novel strategies built around structure and 

behaviors are required. In such circumstances, machine learning can be useful. 

Furthermore, there are times when the method is not enough to manage a large 

enough dataset [15]. A variety of techniques, such as ML with a checking scheme 

[17], MLDroid [16], and others, were developed to tackle this issue, but no practical 

solution has yet been found. By selecting certain features, one can train a classifier to 

identify important behavioral characteristics in an almost limitless supply of 

malware. The optimization models and methodologies utilized in economic crises, 

natural disasters, wars, and pandemics are reviewed here by the author [32]. 

Furthermore, an effort has been taken to highlight opportunities for model 

formulation and optimization efforts that have not yet been investigated, as well as 

shortcomings in the study of one type of event.  

The existing research papers explore various opportunities for detecting 

malware and developing intelligent response systems. To detect malware, 

K a k a v a n d, M o h a m m a d  and A l i  [8] used SVM and KNN, and training was 
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provided based on the flagged data points. Neither a dynamic approach nor hybrid 

malware detection strategies are included in their models. L o p e s  et al. [9] 

examination of several Machine Learning (ML) algorithms focused on mobile 

malware and examined methods based on permissions, API calls, used features, 

permissions, and calls, and those based on both. It struggles with data imbalance and 

small data sets. A deep learning framework Droid Deep Learner was proposed by 

W a n g  et al. [12]. To get API function calls and permissions, their approach analyses 

Java source code as well as manifest files, enabling users to access all the 

functionality of Android apps. 

This novel proposed paper presents the following contributions: 

 Design an Algorithm for detecting and analyzing the malware. This paper 

provides the meta-heuristic algorithm optimal selection built on AVO-DT Algorithm 

for Android malware detection and analysis, here they obtain a novel model i.e., 

African Vulture Optimization-based Decision Tree (AVO-DT) to increase the overall 

optimization for detecting and analyzing the malware. There has been a numerous 

optimization algorithm in the area of malware detection specific to machine learning, 

android, and a few surveys on static and dynamic analysis.  

 Guide for malware analysts. Finally, it is realized that the contribution 

claimed in this paper will help, guide, and assist researchers and malware analysts in 

getting appropriate using such proposed model presented model successfully predicts 

whether the provided application is malicious or benign and was created for malware 

detection and protection for their domain-specific analysis. 

 Creating an innovative rotational search formula for optimization tasks. 

 Offering a strong and effective algorithm with a short execution time, little 

difficulty in computation, and good performance. 

The research work is structured as follows: Section 2 provides some background 

information on Android applications, such as the Android system designs, security 

features, and categories for Android malware. Section 3 provides a thorough analysis 

of machine learning-based methods for detecting malware, data collection from 

different sources, data pre-processing, feature selection, machine learning 

approaches, computations, and detection efficiency assessment. Section 4 makes 

some recommendations for potential study topics and obstacles to be overcome. 

Finally, Section 5 presents our conclusions. 

2. Literature review 

Deep learning models aim to enhance prediction accuracy through a metaheuristic 

approach, that learning model more deeply in this context. To prove the 

SEDMDroid’s viability, Z h u  et al. [7] present testing results on two different 

datasets collected using the static assessment approach. The initial analysis focuses 

on features like permission, sensitive programming interfaces, monitoring 

frameworks, etc. that are frequently used in Android malware, and SEDMDroid 

achieves 89.07% accuracy in terms of these asymmetrical unchanging parts. The next 

dataset accurately distinguishes sensitive information stream data as highlights with 
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an average precision of 94.92%. Positive test outcomes demonstrate that the 

suggested approach is a powerful means of identifying Android malware.  

According to A l z u b a i d i  [10], the proliferation of cell phones across the 

globe has spurred the development of millions of applications that are both free and 

profitable. The aforementioned apps enable users to carry out many tasks, such as 

gaming, communication, and completing financial and educational tasks. These 

commonly used devices have been increasingly identified by dangerous malicious 

programming since they routinely store sensitive personal information. The concepts 

and risks associated with malware are the main focus of this article, which also 

examines the systems and approaches currently in use to differentiate malware in 

terms of methodology, relevant datasets, and evaluation metrics. 

Based on a Synthesis Proportion (CR) of consent matches, K a t o, S a s a k i  and 

S a s a s e  [11] suggest where Android malware is located. A consent pair’s 

percentage of all responses in an application’s database is how we define the CR. Our 

main focus was on how unnecessary credentials lead to a generally low CR in 

malware. We build knowledge bases on the CR to obtain insights without using 

frequency information. The ability to compare ratings is determined for every 

software application based on the available data sets. Eight scores are finally 

processed into elements for AI (ML) based classification algorithms. It is possible to 

achieve steady exposition in this way. Our features consist of only eight layers; thus 

the suggested plot requires a shorter period to prepare and can work with other 

machine learning-based plans. Furthermore, our main points can statistically provide 

unambiguous data that helps people comprehend geographical results. Since we can 

meet all of the needs, our approach makes sense for practical usage. Our results show 

that our strategy can accurately detect malware with up to 97.3% accuracy using real 

datasets. Furthermore, in comparison with an existing plan, our plan can reduce the 

element aspects by about 100% while maintaining equivalent precision on recent 

datasets. 

Focusing on the subsequent development attack against Android malware IDs 

was motivated by L i  et al. [13]. Without revealing the preparation information, an 

additional advancement is constructed and subtly incorporated into the model. It is 

then activated upon the introduction of an application containing the trigger that 

initiates the event. We demonstrate the suggested attack on four common malware 

investigators that have received a lot of attention from academics. Our analysis 

demonstrates that the suggested secondary passage attack successfully avoids more 

than 750 malware tests with an evasion rate of up to nearly 100%. Furthermore, the 

aforementioned successful attack is supported by a small number of products (only 

four components) and a very low understanding damaging rate (0.3%). 

G o n g  et al. [14] An improved and reasonable solution to these shortcomings 

would be to enable early detection of overlay-based malware in the course of the 

utilization market investigation procedure, to preserve all of the capabilities of 

overlays. Because of this, we first conduct an extensive look into the combined 

features of both benign and malicious applications in the present research. We then 

implement the Overlay Checker structure to automatically identify overlay-based 

malware for one of the largest Android application marketplaces in the world. To be 
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more precise, we have made conscious efforts in the areas of designing, UI research, 

copying engineering, and run-time environment. As a result, we have been able to 

maintain outstanding recognition preciseness (97% accuracy and 97% review) and a 

short per application investigation time (1.7 min) with only two ware servers, despite 

having an increased workload of 10,000 recently uploaded tasks every day. 

Another method for finding malware known as ransom that uses a 

transformative AI approach is presented by A l m o m a n i  et al. [18]. The synthesized 

minority oversampling purposes method (wiped out) for implementation is employed 

in conjunction with the help Vector Machines (SVM) calculation to adjust the 

hyperparameters of the configuration calculation and determine highlights. The data 

that was utilized dataset, which includes 10,153 Android applications – 500 of which 

have been classified as ransomware – was compiled from many different places. The 

proposed method Destroyed tBPSO-SVM has shown superiority over standard AI 

computations with the highest scores in terms of understanding, specificity, and g-

mean. 

M e r c a l d o  and S a n t o n e  [19] Contemporary and exploratory networks 

provided a few ways to overcome the drawbacks of the progress signature-based 

positioning methodologies adopted by free and businesses antagonistic to malware. 

Most of these tactics are AI-managed, and to generate excellent predictive models, a 

perfect class of the ideal state is necessary. In this research, we use formal 

identicalness testing to identify the having a place family and present a method to 

derive reusable application malicious behavior. 

Here the authors introduce new algorithms to decrease the number of flexible 

application tests and establish a metric to measure application harmfulness. Valid 

experiments conducted on 35 Android malware families between 2010 and 2018 

confirm the practicality of the suggested method for flexible malware identification 

and family tree building. V u  and J u n g  [20] their analysis of AdMat is peculiar 

since it creates a contiguousness lattice for each application. These grids function as 

“input pictures” for the Convolutional Brain Organisation model, enabling it to 

distinguish between categories of malware and safe and harmful apps. We found that 

AdMat could adapt to different preparation sizes and achieve an average detection 

rate of 98.26% across multiple malware datasets throughout the evaluation period. 

With a predetermined quantity of preparatory data, it also successfully identified over 

97.00% of different malware strains in implementation tasks. 

G o n g  et al. [21] show that developing such frameworks successfully involves 

several steps, including feature selection and encoding, designing and being 

transparent, application research efficiency and sufficiency, architect and client 

determination, and ML development of models. The “wooden barrel influence” of 

the whole structure could be triggered by discontent with any of the aforementioned 

points of view. To construct a workable ML-controlled malware identification 

system, the following paper outlines our rational strategy choices and first-hand 

organizational experiences. It has been operational at T-Market, checking 

approximately 12K applications every day with a single software computer. It has 

achieved a 98.9% overall accuracy and a 98.1% review rate, with an average of  

0.9 min for each application analysis phase. 
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Here authors Y u a n  et al. [22], essentially use a single computation for model 

construction. As a result, it might very easily be made entirely or gradually using a 

cell phone. When all factors are included, our indicator outperforms models that 

utilize shallow learning, such as Support Vector Machines (SVM) and AdaBoost, and 

gets close to models based on extensive learning, such as Multi-Facet Perceptrons 

(MLP) and Convolutional Neural Organization (CNN). Moreover, our value appears 

more robust against adversarial methods than the existing detectors, and its strength 

can be enhanced even more by upgrading on-gadget methods. Finally, extensive 

testing confirms the advantages it provides, and operational evaluation on 

smartphones demonstrates its rationality. 

L i u  et al. [23] presentation of extensions to previous investigations looks at a 

wider range of point components. In light of AI, this study provides a comprehensive 

summary of methods for discovering Android malware. For the time being, we briefly 

cover the basics of application development for Android, such as the technology 

behind the framework that makes up Android, safety standards, and the classification 

of Android malware. Next, with AI as our focus, we dissect and summarize the state 

of investigation from several angles, including test acquisition, knowledge pre-

processing, highlighting identification, AI models, computations, and breakthrough 

sustainability evaluation. Finally, they assess the potential future research directions 

for Android malware detection given AI. This investigation will help academics get 

a complete picture of Android malware detection in the context of artificial 

intelligence. It might then catalyze subsequent researchers to start innovative 

initiatives and contribute to generally directing further investigation in this domain. 

Here author D. L i  and Q. L i  [24] gathering advancing usually involves 

defensive measures, enemies might also utilize this process to improve their attack 

appropriateness. This motivates us to investigate the level of heartiness that the 

ensemble attack or ensemble protection can achieve, particularly during combat. 

Therefore, we suggest an alternative attack strategy called multifaceted incidents, 

which involves providing attackers suitable for multiple generation techniques and 

controlling sets to agitate malware architecture despite eliminating its harmful usage. 

This typically results in the introduction of extra disruptive training, which is also 

designed to enhance the collection of deep brain structures. We evaluate defenses 

with Android malware identifying characteristics versus 26 different attacks on two 

realistic datasets. Experimental results demonstrate that the new maladaptive training 

effectively increases the robustness of deep neural networks against numerous 

attacks; collection techniques improve robustness when the base classifiers are robust 

enough, but group attacks can evade the enhanced malware detectors and even 

significantly reduce the VirusTotal leadership. 

3. Proposed architecture 

This proposed research work has offered a novel approach to anticipate how malware 

in Android applications may function with an African Vulture Optimization-based 

Decision Tree (AVO-DT). Here the AVO-DT is applied to this algorithm and uses 

an optimization strategy that can get beyond the difficulties given by various 

optimization challenges as well as an ambiguous search space in multidimensionality. 
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The AVO-DT was inspired by This work and proposes a different algorithm inspired 

by African vulture’s lifestyles with a comprehensive model to develop a new 

metaheuristic optimization algorithm., particularly simulates African vultures’ 

foraging and navigation behaviors. The design of the AVO-DT is an attempt to create 

an algorithm that is quick, reliable, and user-friendly using AVO filled with adequate 

ability to capitalize on and investigate the realm of possibilities within alert modeling 

of the representative cum interactive features of the cape of vulture, also known as 

African vulture, in their search for clarifications [25]. AVO-DT replicates the 

cooperative behavior, communication skills, and group decision-making processes of 

African Vulture, which places great value on using the foraging and navigation 

hunting behaviors collective intelligence.  

The development stages of the AVO-DT include the design of a metaheuristic 

optimization algorithm in twelve steps, as previously noted. These procedures were 

meticulously followed during the creation of the African Vulture Optimization. 

Step 1. Initialize Vultures 

def initialize_vultures(population_size): 

return [np.random.rand() for _ in range(population_size)] 

Step 2. Define Features (Assuming 10 features for demonstration) 

num_features = 10 

Step 3. Prepare Data (Assuming X as feature vectors and y as labels) 

Replace X and Y with your actual dataset 

X = np.random.rand(100, num_features) 

y = np.random.randint(2, size=100)  # Binary labels for demonstration 

Step 4. Optimization Loop 

num_generations = 10 

population_size = 5 

for generation in range(num_generations): 

Step 5. Fitness Evaluation 

fitness_scores = initialize_vultures(population_size)   

# Placeholder 

Step 6. Selection and Reproduction (Not implemented for simplicity) 

Step 7. Decision Tree Construction decision_trees = [] for vulture in range 

(population_size): 

Assuming X_train, X_val, y_train, y_val are split data for training and 

validation 

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, 

random_state=42) 

Step 8. Training 

decision_tree = DecisionTreeClassifier() 

decision_tree.fit (X_train, y_train) 

Step 9. Evaluate on Validation Data 

y_pred = decision_tree.predict(X_val) 

accuracy = accuracy_score(y_val, y_pred) 

fitness_scores[vulture] = accuracy 

decision_trees.append(decision_tree) 
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Step 10. Survival of the Fittest (Not implemented for simplicity) 

Step 11. Result 

best_decision_tree=decision_trees[np.argmax(fitness_scores)] 

Step 12. Application 

Replace X_test with your actual test data 

X_test = np.random.rand(10, num_features) 

y_pred_test = best_decision_tree.predict(X_test). 

4. Practical work and results discussion 

The use of optimization issues to support operational procedures is discussed in this 

section. In terms of factor and random selection, they can evaluate the effectiveness 

of unmarked search algorithms as a result. After being used in a Python context, the 

function is tested. The software is developed in Python and is powered by an Intel 

Core i7 (1.8 GHz) CPU with 16 GB of RAM. 

Testing process of the proposed AVO-DT Algorithm. By employing AVO 

decision variables to reframe the existing design issues, it would be possible to 

improve an algorithm. The optimization algorithm is constructed by re-creating the 

current design competition using AVO decision variables. We look at the solutions 

to well-known design problems. While creating a global optimization space for a 

problem, normal variables are swapped out with changeable variables. The 

effectiveness of the AVO-DT method in upgrading the AVO Algorithm was assessed. 

4.1. Data sources description 

For the training and testing phases of this model, the first dataset inputs are gathered. 

To carry out the training and testing process, both the dataset for safe Android 

applications and the dataset for well-known malware are gathered. So, the 5000 

programs that are directly downloaded from the Google Play store are included in the 

benign Android application dataset that is used for processing.  These programs serve 

a variety of purposes as well, including social media, talking, cooking, music, games, 

and education. The malware dataset also contains 5000 known samples. Thus, the 

malware dataset and the dataset for Android applications are used for processing 

during training and testing. The Android file format is identified as APK or Android 

Application Package. As a result, the suggested African Vulture Optimization-based 

Decision Tree (AVO-DT) model is processed on the dataset after the gathered dataset 

is taught to the system. 

4.2. Comparative performance metrics evaluation with existing algorithm 

Our objective is to suggest upgraded algorithm performed better than the alternatives. 

To illustrate the relevance of the results, a statistical test was conducted. To evaluate 

optimization problems and processes various top models are chosen using these 

standards. To completely evaluate the detection effect of Android malware, a variety 

of KPIs are typically combined. The proposed AVO-DT approach and the current 

AVO method are statistically compared in this paper. The performance of the 

developed model is compared to that of existing methods, such as the categorization 
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of harmful apps using images and fine-tuned neural models are TaintDroid [26], 

DroidScope [27], AdDroid [28], (IMCFN) [29], and SEdroid [30]. 

The following list includes the outcomes that were not considered in 

performance reviews. The accuracy, precision, recovery rate, and error precision of 

algorithms for optimization issues are evaluated using various ways. 

4.3. Accuracy formulation  

The performance of the AVO-DT model is computed depending on malware 

detection accuracy. To estimate reliable malware prediction, the AVO-DT model is 

used to compute detection accuracy as mentioned in the next equation: 

(1) 
TPR+TNR

Accuracy= .
TPR+TNR+FPR+FNR

  

Table 1. Parameters evaluation of detection accuracy 

Number of APKs 

in the dataset 

Accuracy detection (%) 

IMCFN 
SE 

droid 

Ad 

droid 

Taint 

droid 

Droid 

scope 

AVO-DT 

(proposed) 

1000 98.70 97.46 98.82 95.62 99.11 96.74 

1500 98.48 98.72 98.56 92.56 98.67 97.31 

2000 97.96 97.83 95.87 90.56 97.41 98.92 

2500 98.54 98.72 96.21 93.67 95.39 98.5 

3000 95.57 97.10 97.29 92.84 94.36 97.42 

3500 98.64 98.72 98.38 99.33 98.34 98.68 

4000 98.64 97.27 97.74 98.21 97.74 97.92 

4500 98.64 98.30 96.48 95.36 96.48 97.05 

5000 98.64 97.83 98.31 99.33 98.30 98.56 
 

The presented AVO-DT model has higher detection accuracy than other models 

when compared to existing methodologies such as TaintDroid [26], DroidScope [27], 

AdDroid [28], (IMCFN) [29], and SEdroid [30], which is shown in Table 1. 
 

 
Fig. 1. Evaluation of detection accuracy 

 

AVO-DT model demonstrated great malware detection accuracy when compared 

to other existing malware detection techniques. The constructed model achieved 

99.85% detection accuracy when analyzing 5000 APK files in the dataset. Fig. 1 also 

shows the validation results. 
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4.4. Recall formulation 

The proposed Enhanced Decision Tree Algorithm’s detection ratio the AVO-DT 

model is considered based on the performance of the malware detection system in 

terms of recall. It is an estimate of the total number of malware programs accurately 

detected in the dataset that was used. Furthermore, it is utilized to calculate whether 

or not the suggested approach correctly detected the infection using the next equation: 

(2) 
FPR

Recall= .
TPR+TNR

 

Table 2. Parameters evaluation of recall 

Number of APKs in the dataset 

Recall (%) 

IMCFN 
SE  

droid 

Ad 

droid 

Taint  

droid 

Droid  

scope 

AVO-DT  

(proposed) 

1000 98.92 95.87 98.86 98.26 99.13 98.21 

1500 98.37 96.21 98.67 97.75 98.44 98.82 

2000 97.74 97.74 97.59 96.50 97.49 97.41 

2500 96.48 98.38 98.34 92.44 98.89 96.02 

3000 97.53 95.82 95.87 90.52 97.83 98.51 

3500 96.48 96.21 96.21 93.67 95.41 98.46 

4000 97.74 97.29 98.59 92.56 98.73 98.97 

4500 96.48 98.38 95.87 90.56 97.56 98.77 

5000 97.74 95.87 96.21 93.67 95.61 99.82 
 

The demonstrated AVO-DT compared to other current models, such as IMCFN, 

SEdroid, AdDroid, TaintDroid, and DroidScope, this proposed model has a better 

recall rate in the table-2. It has also been validated using methods from TaintDroid 

[26], DroidScope [27], AdDroid [28], (IMCFN) [29], and SEdroid [30]. 
 

 
Fig. 2. Evaluation of recall value 

 

The AVO-DT Model [31] fared better in terms of recall value than other 

malware detection algorithms currently in use. The developed model achieved a high 

recall value of 99.83% while taking into account 100 APK files in the dataset. 

Additionally, Fig. 2 displays the validation outcomes. 
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4.5. Precision formulation 

It is the measure of attack detection confidence and is defined as the ratio of 

projections of positive results versus actual positive samples. It is discussed how to 

determine how many Android applications had positive detections in the entire 

dataset as 

(3) 
TPR

Precision= .
TPR+FPR

  

Table 3. Parameters evaluation of precision 

Number of APKs  

in the dataset 

Precision (%) 

IMCFN 
SE 

droid 

Ad 

droid 

Taint 

droid 

Droid 

scope 

AVO-DT 

(proposed) 

1000 98.6 97.59 96.5 98.3 99.33 98.06 

1500 97.45 98.34 92.44 97.74 98.59 99.91 

2000 98.46 95.87 90.52 96.48 95.69 99.40 

2500 97.39 96.21 93.67 95.34 97.36 98.99 

3000 97.08 98.59 92.56 94.76 94.35 98.46 

3500 97.21 97.74 97.59 96.5 97.63 97.33 

4000 96.48 98.43 98.48 92.44 98.42 96.43 

4500 97.38 97.74 97.12 96.5 97.73 98.29 

5000 96.29 98.46 98.76 92.28 98.49 98.69 
 

The proposed AVO-DT model’s accuracy is evaluated in comparison to current 

malware prediction techniques including TaintDroid [26], DroidScope [27], AdDroid 

[28], (IMCFN) [29], and SEdroid [30]., in Table 3. 
 

 
Fig. 3. Evaluation of precision 

 

In comparison to other malware detection techniques currently in use, the AVO-

DT models [31] with high precision values have been attained by the model. 

Assuming 100 APK files, the produced model has a high precision value of 99.76%. 

Additionally, Fig. 3 displays the validation results. 

To assess the suggested AVO-DT technique based on the provided assessment 

requirements, the effectiveness analysis of several outcome parameters is computed. 
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The suggested approach based on the AVO Algorithm is well evaluated for a novel 

meta-heuristic optimization technique called the AVO-DT. Based on the 

aforementioned factors and the capability of the input data set to identify assaults, the 

proposed model is evaluated. The degree to which each incident was accurately 

detected was measured by accuracy; the percentage of attacks that were detected by 

the classifiers was measured by detection rate; and the number of attacks that the 

model returned was measured by recall. How many returned attacks were effective is 

referred to as precision. 

5. Conclusion 

By effectively evaluating the deep learning algorithms under consideration and using 

a new metaheuristic algorithm that was developed in this study, the study's goal of 

reducing the dimensionality of the problem space for problem-solving in the visual 

world was achieved. To advise the optimal technique choice from the evidence using 

5000 applied data, metaheuristics have several algorithms like AVO and other 

motivational algorithms. Here, it is presumed that there are 2000 mobile applications 

in total, 2000 of which are malware applications. The effectiveness of the suggested 

algorithm is assessed and contrasted with the AVO algorithms meta-heuristic. The 

reason is to develop a novel AVO-DT to identify malware activities in Android 

applications. 

Here, the proposed algorithm explores about malware features, and Android 

apps are educated for predetermined specific machines and tasks. Furthermore, the 

application incorporates the AVO-DT reporting technique to find malware in each 

program through static and dynamic investigation. To detect malware APKs in 

Android APKs, the created approach has demonstrated accuracy, precision, and recall 

capabilities. As a result, the suggested AVO-DT model attains a detection accuracy 

of 99.85%. 
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