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Abstract: An efficient face recognition system is essential for security and 

authentication-based applications. However, real-time face recognition systems have 

a few significant concerns, including face pose orientations. In the last decade, 

numerous solutions have been introduced to estimate distinct face pose orientations. 

Nevertheless, these solutions must be adequately addressed for the three main face 

pose orientations: Yaw, Pitch, and Roll. This paper proposed a novel deep transfer 

learning-based multitasking approach for solving three integrated tasks, i.e., face 

detection, landmarks detection, and face pose estimation. The face pose variation 

vulnerability has been intensely investigated here underlying three modules: image 

preprocessing, feature extraction module through deep transfer learning, and 

regression module for estimating the face poses. The experiments are performed on 

the well-known benchmark dataset Annotated Faces in the Wild (AFW). We evaluate 

the outcomes of the experiments to reveal that our proposed approach is superior to 

other recently available solutions.   

Keywords: Face alignment, Biometrics, Face recognition, Image processing, 

Landmark detection, Deep convolutional neural network. 

1. Introduction 

The global demand for face biometric-based identification systems is increasing 

significantly because of their non-intrusiveness nature, uniqueness, accessibility, and 

other related factors [1, 2]. Face recognition systems can easily be implemented for 

any computer vision application, such as color-texture-based face tracking [3, 4], 

border surveillance, face verification, human detection [5], and more. The process of 

locating the human face region in the entire image is termed face detection, which is 

the primary task of face recognition. Obtaining a frontal pose of the face before the 

verification/acquisition device is imperative for achieving accurate results. However, 

this often differs from the scenario in real-time systems, leading to the challenge of 

different face pose orientations. Current advancements in the field address the issue 
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of face pose variations by considering the angular displacement or rotation of face 

alignment in three dimensions, typically represented by Yaw, Pitch, and Roll angles, 

relative to the frontal position, as shown in Fig. 1. 

 

 
Fig. 1. Possible face pose orientations 

Yaw, pitch, and roll are terms commonly used to describe the orientation and 

position of the head in three-dimensional space. These terms can be defined as 

follows: 

 Yaw refers to the rotation around the vertical axis of an object. In the context 

of head position, it represents a left or right rotation of the face when viewed from 

the front. For instance, turning your head to the left or right without tilting it up or 

down is considered a yaw position. The yaw position can be identified and tracked 

from the center of gravity (i.e., Nose center) point, which is directly perpendicular to 

the right and left displacement of the head.  

 Pitch position can also be termed the transverse position, which means the 

rotation of the face around its horizontal axis. More specifically, it represents the 

head’s lateral movement (i.e., up or down tilt) from the center of gravity. For instance, 

if you nod your head up and down without turning it to the side.   

 Roll corresponds to the rotation of the face around the forward-facing axis. 

When it comes to face position, it represents the tilting of the face from one side to 

the other. Roll can be described as a longitudinal axis concerning the point of center 

gravity (i.e., Nose center) and directed in parallel to the line of reference. For 

illustration, if you tilt your head to the left or right, you alter the roll position.  

Face pose variation is the most common threat to face recognition systems, 

where a fraudster can bypass the verification device or benefit from the doubt by 

showing their profile or tiled face. 

1.1. Motivation 

The following motivational factors have inspired us to do this research work. 

 A particular face posture reflects a person’s gaze, psychology, and intention, 

which can help to analyze that person’s behavior [6].  

 Various face pose orientations (right, left, up, down, and round directions) 

are also prominent ways to represent the liveness of the face [7].  
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 Identifying the correct face, mainly when face images contain extreme poses, 

is still challenging [8].  

 Convolutional neural network-based architecture has presented an excellent 

performance recently for image-based classification and regression problems, such 

as face recognition, object detection, activity recognition, image and video 

classification, and more. 

1.2. Problem statement 

An intelligent face-recognition system must be capable of classifying the face and 

non-face images and estimating the facial landmarks and distinct face poses. More 

specifically, the verification system should be powered enough to detect the face 

region from the input frame (if the face exists). Additionally, the system should be 

able to estimate the various face poses ranging from –30° to +30° (i.e., –30°, –15°, 

0°, +15°, +30°) that comprise Yaw, Pitch, and roll direction.  

The verification system needs to examine whether the claimed face identity is 

the same as intended (i.e., same as stored in the database) through the two separate 

checks, first is the classification, and second is the regression. Based on automatic 

prediction and generated loss function, the estimation of different pose orientations 

of the claimed person is evaluated. Here, the hypothesis (i.e., presumption) is that if 

the input image has a face, then the face image must have a frontal, right, left, top, 

and down profile face. Here, the hypothesis (i.e., presumption) is that if the input 

image has a face, then the face image must have a frontal, right, left, top, and down 

profile face.    

1.3. Contribution 

We aimed to deploy a deep neural network-based multitasking approach that involves 

three proposed models, i.e., face detection, fiducial point detection, and face pose 

estimation. All these models have been trained on fused deep transfer learning-based 

architectures, consisting of InceptionV3, VGG16, ResNet50, and MobileNetV2. The 

discrimination between the frontal and non-frontal faces (profile images) is identified 

through the face detection model, whereas fiducial points for the face attributes have 

been detected through sixty-eight landmarks-based shape predictors utilized from the 

Dlib library. The face pose estimation has been analyzed through a regression model. 

Our major contribution can be summarized below: 

 A Dlib shape predictor library detects the human’s face region from the input 

image based on 68 landmark points.  

 To avoid the useless training of numerous parameters and features, we 

customized the Dlib shape predictor with a reduced number of the identified 68 

landmarks to only six essential points (i.e., nose, chin, left eye and right eye corner 

points, and corner points of mouth) which are enough to detect and estimate the face 

pose variations.    

 This work utilizes the four most prominent deep transfer learning-based 

models with optimized hyperparameters tuning for the training and validation tasks 

performed on a well-known AFW benchmark dataset.    
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 We investigated the performance of all the proposed models and compared 

them with other existing methods to demonstrate the effectiveness of challenging 

unconstrained datasets. 

1.4. Organization 

This paper is organized into five sections. Section 1 delineates a rationale behind this 

work with the valid motivation to develop an advanced face recognition system 

invariant to face pose variations. Section 2 discusses the related work supporting the 

study of face detection, various face poses orientations, multitasking, and deep neural 

networks-based state-of-the-art techniques. Section 3 illustrates the proposed 

methodology for data pre-processing, feature engineering, feature selection, and 

multi-tasking approach for classification and regression. Section 4 demonstrates the 

comparative analysis of achieved results with other existing methods. Section 5 

summarizes the work followed by the future scope in the last of the article.  

2. Related work 

Extensive research has been done for face detection and different face pose 

identification. This section briefly discusses a brief of the work done in the domain 

of face detection, multi-tasking, deep neural network-based techniques, and face pose 

estimation. In the recent past, face detection research has attracted the attention of 

researchers to a large extent. The solution for various challenges associated with face 

detection and recognition systems, such as face pose variations, facial expressions, 

and more has been introduced in the last decade.   

W u, Z h a n g  and T i a n  [9] introduced a multi-tasking cascaded framework 

consisting of two convolutional neural networks for solving two integrated tasks: face 

detection and pose estimation. The face detection and pose estimation tasks have been 

evaluated on FDDB and AFW benchmark datasets, respectively. The experimental 

results show that the multi-tasking CNN method is superior to other face detection 

and pose estimation methods. R a n j a n, P a t e l  and C h e l l a p p a  [10] presented an 

algorithm for four simultaneous tasks (i.e., face detection, landmark detection, pose 

estimation, and gender recognition), implemented using a deep convolutional neural 

network called Hyperface. The two variants of Hyperface are ResNet-101 

(performance improvement) and Fast-Hyperface (speed improvement). The  

HF-ResNet represents a minimum Normalized Mean Error (NME) of 2.71% for 

[0,30] face alignment cases with an overall mean of 2.93% and a Standard deviation 

of 0.25% on the AFLW dataset. The minimum NME for landmark detection is 8.18% 

for HF-ResNet on the IBUG dataset. While HF-Face represents less pose estimation 

error of 97.7% for the AFW dataset with ±15° error tolerance. HF-ResNet shows a 

better accuracy for gender recognition for both the celebs and LFWA datasets. 

Z h a n g  et al. [11] proposed a deep cascaded multi-task framework that 

incorporates the inherent correlation between multitasking to predict the face and its 

location through landmarks in a coarse-to-fine manner. The challenging FDDB and 

WIDER FACE benchmark datasets are utilized for face detection, while the AFLW 
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benchmark datasets are used for face alignment. A n  et al. [12] proposed a novel face 

alignment method named Adaptive Pose Alignment (APA) to estimate the face pose 

variation. This method aims to learn the alignment template, including two individual 

tasks first is to reduce the intra-class difference, and the second is to reduce the noise 

during traditional alignment. The IJB-A, IJB-C, and CPLFW datasets are used for 

experimentation purposes. The proposed method has achieved an accuracy of 99.80% 

on the LFW dataset and 92.95% on the CPLFW dataset. H e  et al. [13] proposed a 

novel Deformable Face Net (DFN) method named to analyze the pose variations for 

efficient face recognition. Here, the network has learned alignment-oriented and 

identity-preserving features of the faces. To evaluate the model’s performance, two 

loss functions are considered: Identity Consistency Loss (ICL) and the Pose Triplet 

Loss (PTL). The experiments reveal that the proposed method outperforms the other 

recent methods, especially on extreme pose datasets. 

H a n  et al. [14] introduced a novel face pose estimation method that integrates 

VGG-Face and multi-scale Curvelet representation. The VGG-Face representation 

utilized a CNN model as a backbone with additional transfer learning. The Mean 

Absolute Error (MAE) of 0.33° and 0.23° has been achieved for the Yaw and pitch 

angle on the CAS-PEAL pose database. M a s i  et al. [15] proposed a novel method 

to tackle the problem of extreme face pose variations instead of using a single model 

to learn pose invariance through the massive amount of data or to normalize the face 

images to a single frontal pose. Instead, the deep CNN-based proposed Pose-Aware 

Models (PAM) model with 3D rendering synthesizes distinct face poses. 

Comparative evaluations of this technique for both IJB-A and PIPA datasets are 

performed. F a r d, A b d o l l a h i  and M a h o o r  [16] proposed an active shape 

model-based method (i.e., ASMNet) to locate the target object (i.e., face), and 

lightweight CNN (i.e., MobileNetV2) is utilized to align the face and estimate the 

pose of the face onto an image. The results of the experiments reveal that ASMNet 

achieves an acceptable performance on a challenging dataset with a significantly 

smaller number of parameters. 

Y i n  and L i u  [17] introduced Multi-Tasking Learning (MTL) with a CNN 

model to identify the face from a given image. using a dynamic weighting scheme, 

this method also provides solutions for other side tasks related to facial recognition, 

such as pose, illumination, and expression estimation. A new CNN model for the 

pose-specific feature learning and energy-based weight analysis method is also 

proposed here. The multi-PIE dataset performs the face detection and pose variation 

experiments with a comparative analysis of LFW, CFP, and IJB-A datasets results.  

The state-of-the-art techniques discussed above convey two solutions for face 

pose variation problems. One is a deep learning-based single task, and the other is a 

deep learning-based multi-task. The multitask solution approach is always superior 

as this method can easily tackle face detection and generate loss functions for 

detecting landmarks and estimating the face pose. Therefore, this work proposed a 

deep neural network-based multi-tasking approach to detect the face and landmarks 

of the face and assess the distinct face poses. The next section discusses a systematic 

methodology. 
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3. Proposed methodology   

The recent development in deep neural network-based approaches represents 

outstanding results for classification and regression problems. We proposed a novel 

deep transfer learning-based approach to classify the input frame into frontal and non-

frontal faces along with an estimation of the face poses in three different orientations, 

i.e., Yaw, Pitch, and Roll position. The complete process of the proposed model 

consists of three processes: image preprocessing, feature extraction through deep 

transfer learning, and regression-based estimation of different face poses based on 

regression. The general framework of the proposed methodology is shown in Fig. 1. 

 

 
Fig. 2. A general framework of the proposed model 

The next sub-section illustrates a systematic process of image preprocessing after 

capturing an input frame.  

3.1. Image preprocessing module 

Image preprocessing is a set of functions and operations performed on images before 

the feature extraction process to enhance the quality of the input images or video 

frames. Our proposed approach involves various image processing techniques, such 

as grayscale conversion, resizing, face detection, segmentation, normalization, and 

augmentation. Grayscale is a single intensity-based representation used to 

discriminate the low-level information. Our proposed model deals with grayscale 

channels as it does not require any color information. Therefore, we convert the RGB 

color channel input data to the grayscale channel for fast computing and efficient 

results. Resizing is a process of changing the dimension of an object while preserving 

the aspect ratio. The images that are processed with deep learning methods, especially 

transfer learning models must have a predefined input size as per the requirement of 

the algorithm. The other operations on image processing are described as follows: 
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 Face detection is a primary task in any face biometric-based problems. We 

deployed a Dlib shape predictor consisting of 68 facial landmarks, also termed 

fiducial points for performing two specific tasks, such as face detection and fiducial 

point detection. Dlib is a pre-trained model that extracts the facial regions from an 

input image and subsequently locates the 68 fiducial points on the facial attributes, 

including eyes, nose, jawline, eyebrows, and inner, and outer mouth. These 

distinctive points have proven effective in various applications such as aligning faces, 

estimating head poses, swapping faces, detecting blinks, and more. This model 

returns a list of rectangles representing the bounding boxes of the detected faces.  

 Segmentation is a process of segregating a specific region (the face) and 

discarding other useless information about the image. Once the face points are 

identified by a Dlib shape predictor a trace covering all fiducial points generates a 

bounding box, which is finally cropped (or segmented). This function can be used to 

eliminate background or unwanted objects from the region of interest.   

 Normalization is a process to scale the corresponding pixel values to a 

standard range of allowed intensity values. We normalize our data as per the 

architectures proposed for feature extraction. 

 Augmentation is a process to enlarge the capacity of the available data to 

provide more samples to the feature extraction module for efficient training and 

subsequently learning the patterns. Augmentation is mostly utilized for the cases 

where size of the datasets is small. However, the augmentation process applies 

various random transformations to generate multiple variants from a single image, 

available only for training not for testing. The random transformation for the 

augmentation process includes rotation, translation, scaling, flipping, and shearing. 

3.2. Feature extraction module  

Estimating the various face pose orientations is a tough task. However, our proposed 

algorithm provides a simplified approach to estimate the yaw, pitch, and roll positions 

based on the objective of this work. We deployed transfer learning-based models 

consisting of fine-tuned VGG16, InceptionV3, ResNet50, and MobileNetV2 

architectures with an intuitive algorithm for extraction face pose orientations in three 

dimensions: Yaw, Pitch, and Roll. Algorithm 1 represents the steps of estimating the 

various face poses. Algorithm 1, tasked with detecting face pose orientations, begins 

by initializing variables and loading essential models for facial landmark prediction. 

The algorithm iteratively explores video stream A, processing sub-streams with a 

DLIB model to detect facial regions and landmarks. Notably, it addresses concerns 

regarding the absence of clarity on landmark visibility and orientation restrictions.  

For each frame in the sub-stream, specific facial landmarks for the eyes and nose 

are extracted, contributing to the calculation of Yaw, Pitch, and Roll Angles. 

However, concerns arise regarding the algorithm’s detail, specifically the unutilized 

Mouth_Lms and the correlation between Yaw and Roll angles. The Pitch angle is 

described as 90 degrees minus the Yaw angle, a correlation at odds with real-world 

variations. 
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Algorithm 1. Detection of Face Pose Orientations 

Step 1. Input: Facial Fiducial Points (Detected from the face images) from Video 

Stram A. 

Step 2. Output: Regression Outcome (Yaw, Pitch, and Roll Positions)  

Step 3. Procedure: FPOD_Mechanism () 

Step 4. Initialize Faces = [], Labels [], LandMarks = [LM1, LM2, … , LM68] 

Step 5. Load the face detector and facial landmark predictor 

Step 6. While A is not completely explored do 

Step 7.     For sub-stream of length 𝐿𝑖 do 

Step 8.        Deploy DLIB model to detect face ROI and Landmarks, also draw a 

bounding box 

Step 9.                  Crop the faces 

Step 10.                  Apply the image augmentation 

Step 11.                  Attain tracking consequences R in frame    

Step 12.             For frames in the sub-stream do 

Step 13.                  Read the frame consisting of faces and landmarks 

Step 14.                      Extract specific facial landmarks for eyes and nose from 68 LMs 

Step 15.                       Eye_LMs = {Left [], Right []}        

Step 16.                       Nose_LMs = []   

Step 17.                       Mouth_LMs = []  

Step 18.                       L_E_center = {
𝑥 (L_E_LMs)

2
,

𝑦 (L_E_LMs)

2
} 

Step 19.                       R_E_center = {
𝑥 (R_E_LMs)

2
,

𝑦 (R_E_LMs)

2
} 

Step 20.                       𝑑𝑥 = R_E_Center[0] − L_E_Center[0] 

Step 21.                       𝑑𝑦 =
(R_E_Center[1]+L_E_Center[1])

2
− NoseLM[1] − Mouse_LM[1] 

Step 22.                       Yaw_Angle (∝) =  arctan {
𝑑𝑥

𝑑𝑦
} 

Step 23.                  Pitch_Angle (𝛽) =  arctan {
𝑑𝑥.𝑑𝑥−𝑑𝑦.𝑑𝑦

𝑑𝑥.𝑑𝑦
} 

Step 24.                       𝑑𝑥roll = L_E_Center[0] − R_E_Center[0] 

Step 25.                       𝑑𝑦 = 𝑑𝑦roll =
(R_E_Center[1]+L_E_Center[1])

2
− Nose_LM[1] 

Step 26.                  Roll_Angle (𝛾) =    arctan {
𝑑𝑦

𝑑𝑥
} 

Step 27.                  𝑥𝑡 = TLModels(frames with Yaw, Pitch, and Roll_Angle) 

Step 28.                  Add 𝑥𝑡 to R 

Step 29.              End For 

Step 30.       Add R to the Final regression outcome 

Step 31.       End For 

Step 32. End While 

Step 33. End Procedure 
As seen in Algorithm 1, we detected parameters such as center eye point and 

rotation angle for three different orientations that are sufficient to estimate face pose 

variations. These identified points help the modified transfer learning models to learn 

more intuitive information from these extracted transformation features. Face 

normalization is the process of setting each image to an appropriate range.  

The deep neural network-based CNN model [18] achieves parameter reduction 

through the use of convolutional layers, which share weights across different spatial 

locations within an image. CNNs are designed to capture hierarchical features in 

images. CNNs are particularly effective at capturing both spatial and semantic 
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information in images. Convolutional layers learn spatial patterns such as edges, 

textures, and shapes, while higher-level layers learn semantic features such as object 

parts, object classes, and relationships between objects. This hierarchical 

representation enables CNNs to understand the content of images and make accurate 

predictions. Transfer learning can be applied in different ways with CNNS by 

leveraging the pre-trained weights (i.e., learned features and representations) that 

were previously trained on a specific task and later utilizing their knowledge by fine-

tuning the weights for some different but related problem. Transfer learning 

techniques use computational resources and save time over training a complex 

network from scratch. Transfer learning is the most preferable method as it can boost 

the performance of the target task. In case of limited data problems or when training 

from scratch is not feasible due to some constraints, transfer learning is more reliable 

and convenient to handle such situations. This work utilizes the intelligence of four 

prominent transfer learning-based models as described in the next four sub-section.  

InceptionV3 

InceptionV3 is a CNN architecture developed by Google that consists of a 

convolutional layer, pooling layer, and fully connected layer. This version is a third 

updated extension of the original Inception. This version allows multiple-size kernels 

at different scales. This model achieves excellent performance on image 

classification and computer vision-related problems. 

Visual Geometry Group (VGG16) 

VGG16 is also a CNN-based architecture developed by the Visual Geometry 

Group at the University of Oxford. This model contains 16 layers, including 

convolutional blocks, pooling, and fully connected layers. This model has a simple 

and uniform architecture with only one filter size, i.e., 3×3. The performance of this 

model is good enough. However, VGG16 is expensive in terms of computational 

overhead and complex network design.  

ResNet50 

This network architecture is also known as residual network, developed by 

Microsoft Research. This model also contains a complex network architecture that 

comprises 50 layers along with residual connections. However, residual mapping 

helps in deep models. Here, skip connections are utilized that allow gradients to flow 

directly, reducing the vanishing gradient problem. Due to heavy layer architecture, 

this model allows better representation learning and generalization ability.   

MobileNetV2 

MobileNetV2 is a second variant of MobileNet and comes after an extension of 

MobileNetV1. This model represents a lightweight and simple CNN architectural 

design.  This model is best suitable for low computational resource-based devices as 

it contains small model sizes and point-wise convolutions to increase model capacity.  

All these models are trained on ImageNet pre-trained weights on the large 

datasets, which contain approx. 1000 different classes. We optimized these transfer 

learning models by adjusting hyperparameters based on extensive experiments 

performed on these four architectures to finalize the value of various parameters. The 

model’s description, containing the features maps and other hyperparameters used in 

this paper, is presented in Table 1.  
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Table 1. Specification of the tuned parameters for proposed models 

Fine-Tuned Parameters InceptionV3 VGG16 ResNet50 MobileNetV2 

Input image 299 × 299 224 × 224 224 × 224 224 × 224 

CL 
45 blocks 

(Total 48) 

13 blocks 

(total 16) 

3 in each 

Convolutional 

block 

Bottleneck 

layers-19 

FC, Dense, and 

Classification 

05 (F, 1024, 

512, 256, 3) 

05 (F, 1024, 

512, 256, 3) 

05 (F, 1024, 

512, 256, 3) 

05 (F, 1024, 

512, 256, 3) 

Learning Rate 0.0005 0.0005 0.0005 0.0005 

Kernel Size 
1 × 1, 3 × 3, 

5 × 5, 7 × 7 
3 × 3 

1 × 1, 3 × 3, 

7 × 7 

1 × 1, 3 × 3, 

7 × 7 

Batch Size 96 96 96 96 

Pooling Average Average Average Average 

Optimization SGD SGD SGD SGD 

Dropout 0.5 (Dense) 0.25 (Dense) 0.5 (Dense) 0.25 (Dense) 

Number of Epochs 300 300 300 300 

Activation ReLU ReLU ReLU ReLU 

Regressor MSE MSE MSE MSE 

Callbacks 
ReducedLR, 

EarlyStopping 

ReducedLR, 

EarlyStopping 

ReducedLR, 

EarlyStopping 

ReducedLR, 

EarlyStopping 

Total number of 

parameters 
30,066,467 18,259,779 31,851,395 8,162,371 

Trainable parameters 30,032,035 18,259,779 31,798,275 8,128,259 

 

The process of fine-tuning involves adjusting the hyperparameters of the model 

after unfreezing the top layers and training the entire network with our data stream. 

We performed several experiments to find the best classification accuracy. Various 

hyper-parameters, such as learning rate, activation function, the total count of epochs, 

batch size, pooling, kernel size, optimizer, early stopping, and dropout were precisely 

fine-tuned and then finalized accordingly. The final layer of the deep network is the 

regression layer, where the minimum squared error loss function is utilized to 

estimate the different orientations of the facial poses.  

4. Experiments and result analysis   

The experimental setup for this work involved using an interactive interactive Python 

notebook (i.e., Google Colaboratory). Google Colab is an open-source cloud-based 

platform that provides free GPU and TPU support, regardless of the user's system 

configurations. During training, we utilized the “Tesla K80” GPU device accessed 

through CUDA version 11.2 to accelerate the preprocessing of image matrices. For 

programming purposes, we utilized Python 3.7.10 version along with Tensorflow 

2.4.1 and Keras 2.4.3. All experiments were conducted using these tools and the 

resulting outcomes were evaluated and analyzed comparatively across our proposed 

model.  
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4.1. Dataset used  

The AFW dataset refers to the Annotated Faces in the Wild dataset. It is a widely 

used benchmark dataset in computer vision and facial recognition research, especially 

for face pose variations problems. It is a widely used benchmark dataset that contains 

images that are collected from the open source (i.e., the internet) consisting of faces 

in different poses under unconstrained settings, making it more representative of real-

world scenarios. The AFW dataset provides annotations for fiducial points of the 

facial attributes, such as corners of the eyes, nose, and mouth. These points are 

essential in the context of detecting the faces and alignment of the facial coordinates. 

The diversity and challenging nature involved in the AFW dataset make it a valuable 

resource for developing robust and accurate facial analysis systems. The AFW dataset 

consists of JPEG and PNG format images. However, this dataset contains varying 

resolution and aspect ratios. As a large data size is required for deep learning 

approaches, the AFW datasets include annotated images that are often stored in 

formats like XML, JSON, or text files.  It is important to note that the configuration 

of the AFW dataset can be modified or customized as per the needs of the specific 

research problems.   

  

Fig. 3. Samples of the AFW dataset [19] 

4.2. Performance measures  

To estimate the effectiveness of the proposed models, the test samples are evaluated 

for identifying three different orientations, i.e., yaw, pitch, and roll using a regression 

method. Regression is a method whose purpose is to estimate the prediction for the 

correlation of dependent and independent variables. Unlike the classification 

technique, regression techniques do not expect classification accuracy, instead, 

regression techniques aim at evaluating the loss function in terms of errors. By the 

scope of this work, we use mean absolute error to evaluate the performance of 

regression models.  
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Mean Absolute Error (MAE) [20, 21]. Mean absolute error is a measure of the 

average error for all variables involved in estimating the absolute difference between 

the ground truth value and the predicted value, which is widely used to evaluate the 

regression model performance. Here, a lower value indicates that the model’s 

predictions are closer to the actual values, which implies a better fit to the data. It 

always shows error measures in positive terms due to absolute function, 

(1)    MAE =  
1

𝑁
∑|𝑌 − 𝑌′|, 

where 𝑌 is the ground truth value 𝑌′ is the predicted value and 𝑁 is the total number 

of data samples.  

4.3. Experimental outcomes  

The feature extraction and regression are performed on the AFW dataset using four 

dedicated deep transfer learning-based models. Table 2 represents the training losses 

and mean absolute errors evaluated over the AFW dataset for all four proposed 

models based on three face pose orientations, i.e., yaw, pitch, and roll. 

Table 2. Experimental training outcome (Loss/MAE) for all the proposed models 

Model Loss Yaw_MAE Pitch_MAE Roll_MAE 

InceptionV3 0.0135 0.0080 0.0032 0.0030 

VGG16 0.0015 1.3946×10–4 2.4751×10–4 0.0011 

ResNet50 0.0159 0.0078 0.0040 0.0044 

MobileNetV2 0.0187 0.0090 0.0054 0.0050 

In Table 3, validation results over the AFW dataset showcase the models’ 

effectiveness. While VGG16 maintains its excellence, InceptionV3, ResNet50, and 

MobileNetV2 present higher validation losses and MAE values. These findings 

underscore VGG16’s robustness in both training and validation phases, emphasizing 

its potential for accurate face pose estimation across diverse applications in computer 

vision and biometrics. 

Table 3. Experimental validation outcome (Loss/MAE) for all the proposed models 

Model Val_Loss Val_Yaw_MAE Val_Pitch_MAE Val_Roll_MAE 

InceptionV3 0.3786 0.3262 0.0183 0.0173 

VGG16 0.0937 0.0487 0.0198 0.0140 

ResNet50 0.5595 0.5138 0.0539 0.0443 

MobileNetV2 0.5216 0.4084 0.0279 0.0310 

 

The experiment results reveal that the proposed work achieves the minimum 

validation loss for VGG16 whereas the same VGG16 model obtained the best 

validation loss for Yaw and Roll positions. The InceptionV3 performs efficiently with 

a minimum loss for pitch orientation. The proposed model VGG16 represents the 

minimum mean absolute error for Yaw and Roll orientation. In contrast, InceptionV3 

shows a minimum loss in detecting the pitch orientation of the face. A trade-off 

between the training loss and validation loss along with mean absolute errors for all 
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four proposed models are presented in Fig. 4 (InceptionV3), Fig. 5 (VGG16), Fig. 6 

(ResNet50), and Fig. 7 (MobileNetV2). 

 

                            (a)                                                   (b)                                                       (c) 

Fig. 4. Comparative graph between training vs validation MAE for Inception V3: Yaw (a); Pitch (b); 

Roll (c) 

          (a)                                                       (b)                                                    (c) 

Fig. 5. Comparative graph between training vs validation MAE for VGG16: Yaw (a); Pitch (b);  

Roll (c) 

 

         (a)                                                   (b)                                                    (c) 

Fig. 6. Comparative graph between training vs validation MAE for ResNet50: Yaw (a); Pitch (b);  

Roll (c) 
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                           (a)                                                 (b)                                                 (c) 

Fig. 7. Comparative graph between training vs validation MAE for MobileNetV2: Yaw (a); Pitch (b); 

Roll (c) 

These figures depict the performance of our proposed approach for estimating 

the different face pose variations in multiple dimensions, i.e., through horizontal axis, 

vertical axis, and longitudinal to horizontal and vertical directions.  The real-time 

video stream capturing and subsequently, the performance analysis on the extracted 

feature frames is also analyzed to validate the performance of our proposed system. 

4.4. Outcomes of the real-time experiments  

The real-time performance analysis is performed on our proposed models. The best 

performance achieved by the VGG-16 model is also tested for real-time evaluations 

for our lab environment. We found extremely good performance in estimating the 

exact face pose orientation in multiple dimensions, such as yaw, pitch, and roll 

positions. The illustration of the real-time performance is depicted in Fig. 8.  

 
Fig. 8. Performance of our proposed approach on real-time video streams (frames) for all three 

orientations 
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4.5. Comparison with other state-of-the-art methods  

The outcomes of our proposed models are compared with other state-of-the-art 

methods to check the effectiveness in estimating the different face poses from the 

proposed models. Table 4 represents the mean absolute error for different proposals 

underlying different architectures performed on AFW datasets compared with our 

two best proposals. The VGG16 presents an extremely high performance for yaw and 

roll positions, whereas the InceptionV3 shows the best performance for correctly 

estimating the pitch position. Table 4 illustrates the baseline architectures deployed 

in state-of-the-art works with the obtained best accuracy performed on the AFW 

dataset. All the considered comparisons are properly cited with their references.  

Table 4.  Comparison of the proposed models with state-of-the-art methods for the AFW dataset 

Reference Baseline Architecture Mean Absolute Error (MAE) 

[22] 
3D Point Distribution Model and Cascaded 

Coupled-regressor. 
9.42 

[23] Cascaded CNN regressor and 3DMM. 7.43 

[24] 
A special visualization layer-based CNN 

architecture 
6.27 

[25] 
An Ensemble of Model Recommendation 

Trees (EMRT) 
3.55 

[26] 

Efficient H-CNN Regressors (KEPLER) for 

key points estimation and H-CNN (Heatmap-

CNN) for pose prediction. 

3.01 

[27] 
Pose Conditioned Dendritic Convolution 

Neural Network (PCD-CNN) 
2.36 

Proposed 

Model 

Deep Transfer Learning Model (VGG16) 
0.0487 (Yaw) 

0.0140 (Roll) 

Deep Transfer Learning Model (InceptionV3) 0.0183(Pitch) 

5. Conclusions   

This paper focuses on investigating the performance of four fine-tuned transfer 

learning-based models (VGG16, InceptionV3, ResNet50, and MobileNetV2) for 

identifying different face poses over the benchmark AFW dataset. The objective is to 

evaluate how facial attributes are displaced from their original (frontal face) position 

to new positions, which includes yaw, pitch, or roll-wise rotations or shifts. This 

estimation process described in the paper aims to detect faces accurately even if they 

are not in a frontal pose and determine their directional movement based on 

horizontal, vertical, and longitudinal positions. To achieve this, the paper proposes a 

new algorithm that combines traditional image processing operations with the 

detection of face regions, facial landmarks (fiducial points), and the calculation of 

three different orientations (yaw, pitch, and roll positions). The feature extraction 

process involves transfer learning consisting of InceptionV3, VGG16, ResNet50, and 

MobileNetV2 models with fine-tuned hyperparameters to leverage learned features 

of the pre-trained model. This technique improves the detection of face poses and the 
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estimation of facial attribute displacement in various orientations. The VGG16 

reveals excellent validation performance to estimate yaw and roll positions. Whereas 

the InceptionV3 outperforms others to estimate pitch position. The other two models 

also reflect a comparative outcome.  Our proposal outperforms the state-of-the-art 

approaches for identifying and estimating the different face poses. 

Shortly, we will develop a more generalized face pose invariant model that will 

be capable of dealing with different unconstrained conditions, such as face poses, 

illumination variation, and facial expressions over more realistic datasets.  
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