
 50 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 24, No 2 

Sofia  2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2024-0015 

 

 

An Approach to Hopfield Network-Based Energy-Efficient RFID 

Network Planning 

Le Van Hoa1, Nguyen Van Tung2, Vo Viet Minh Nhat3 
1School of Hospitality and Tourism – Hue University, Vietnam  
2University of Sciences, Hue University, Vietnam 
3Institute for Educational Testing and Quality Assurance – Hue University, Vietnam 

E-mails:       levanhoa@hueuni.edu.vn          nvtung@hueuni.edu.vn          vvmnhat@hueuni.edu.vn 

Abstract: Radio Frequency IDentification (RFID) Network Planning (RNP) is the 

problem of placing RFID readers in a working area where a tag is interrogated by 

at least one reader and at the same time satisfies some constraints such as minimum 

number of placed readers, minimal interference, and minimal outside coverage. The 

RNP optimization has been proven NP-hard; thus, natural-inspired approaches are 

often used to find the optimal solution. The paper proposes an energy-efficient RNP 

approach in which the positions of placed readers are optimized by a Hopfield 

network, and the energy efficiency is achieved through a placement area restriction 

technique. A mechanism of redundant reader elimination is also added to minimize 

the number of placed readers. Simulation results show that the Hopfield network-

based energy-efficient RNP approach achieves the maximum tag coverage and 

energy efficiency by reducing interference, outside coverage, and the number of 

placed readers. 

Keywords: RFID Network Planning (RNP), Energy efficiency, Optimization, 

Hopfield network, Redundant reader elimination. 

1. Introduction 

Radio Frequency IDentification (RFID) is the most known automatic identification 

technology widely deployed in Internet of Things (IoT) systems. An RFID system 

consists of RFID readers connected to form an RFID network, which can monitor 

tags or tagged objects in a working area. A server (host) is connected to the RFID 

network to store and process the collected data. The tags in an RFID system can be 

active, i.e., having their power source, or passive, i.e., not being powered by any 

source. With the latter, passive tags must harvest the energy from reader interrogation 

pulses to return their data [1, 2]. 

To maximize the coverage of a working area, the RFID network needs to be 

well-designed, and a good location for readers is essential. An RFID network is said 

to be well deployed if a tag is interrogated by at least one reader. The primary 

objective of RFID Network Planning (RNP) is to achieve maximum coverage. 
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Some additional constraints can be included, such as the minimum number of 

placed readers, the minimum interference, and the minimum outside coverage 

[3]. In the paper, the energy efficiency is of interest. 

Energy efficiency in the RNP problem refers to minimizing the energy 

consumption of the deployed RFID network. The energy consumption of an RFID 

network mainly comes from the tag interrogation of readers, including the power for 

sending the interrogation command, the power for holding the downlink carrier on 

which the tag returns its response, and the energy for receiving/reading the tag's data. 

If only one reader covers a tag, the reader only consumes energy for interrogating the 

tag. However, if multiple readers cover a tag, i.e., the tag is in the overlap area, these 

readers interrogate the tag simultaneously. There is a waste of energy due to 

redundant interrogation. Therefore, minimizing the number of tags in the overlap 

area, called overlapped tags, increases energy efficiency. 

Readers placed at the edges of a working area result in outside coverage, which 

is not helpful for tag monitoring. Meanwhile, the reader still has to expend energy to 

maintain outside coverage. Therefore, placing the readers with minimal outside 

coverage increases energy efficiency. 

The number of readers placed also indirectly affects the energy efficiency of an 

RFID network. As the number of readers increases, the coverage outside the working 

area and the size of the overlap area may also increase, potentially increasing the 

number of overlapped tags. Reducing the number of readers placed thus also 

contributes to energy efficiency. 

The paper proposes an approach of Hopfield network-based energy-efficient 

RNP, in which the reader placement location is optimized by a Hopfield network, 

and the energy efficiency is achieved through a placement area restriction technique. 

A mechanism of redundant reader elimination is integrated into the optimization 

process to minimize the number of placed readers. Simulation results demonstrate 

that the Hopfield network-based RNP outperforms similar RNP approaches in terms 

of coverage rate and energy efficiency. 

The main contributions of the paper include: 

 Proposing an energy efficiency model for the RNP problem, in which the 

energy-efficient RNP problem is formulated as an RNP problem with the maximum 

number of covered tags and the minimum energy consumption. 

 Converting the energy-efficient RNP problem and related constraints into the 

energy function of a Hopfield network.  

 Proposing a placement area restriction technique to eliminate overlap area 

and outside coverage, which is integrated into the Hopfield network-based 

optimization process. 

 Using a mechanism of redundant reader elimination to minimize the number 

of placed readers. 

The remainder of the paper is organized as follows. Section 2 reviews research 

in the past ten years on nature-inspired approaches to solving the RNP problem. 

Based on the analysis and evaluations, a Hopfield network-based energy-efficient 

RNP approach is proposed in Section 3, including the case study, the energy 

efficiency model of the energy-efficient RNP problem, and the Hopfield network-
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based energy-efficient RNP optimization. Next, Section 4 describes the simulation 

and result analysis. Finally, Section 5 presents the conclusion. 

2. Related works 

RFID Network Planning is an essential issue in deploying RFID applications. RNP 

is also a challenging problem because it needs to satisfy many constraints. RNP 

optimization has proved NP-hard [4], and nature-inspired approaches are receiving 

much attention in solving it [5]. Some typical approaches can be listed as Particle 

Swarm Optimization (PSO) Algorithm [6], Genetic Algorithm (GA) [4], Artificial 

Bee Colony (ABC) Algorithm [7], Firefly Algorithm [8], Cuckoo Search (CS) 

Algorithm [9], and Chicken Swarm Optimization (CSO) Algorithm [10]. 

Furthermore, other combination approaches are also proposed to enhance further the 

efficiency of solving the RNP problem. The section presents a review of notable 

studies in the past ten years. 

GA and PSO attract the most attention in improving the efficiency of RNP 

solutions. Combinations of PSO and GA with each other or other techniques are, 

therefore, the majority in number. The first combination of GA and PSO, called 

multi-community GA-PSO, was proposed by F e n g  and Q i  [11] to solve the RNP 

problem of large-scale systems. The main idea is to divide the single population of 

PSO into several colonies and use genetic selection and mutation strategies to 

improve the dynamic rules of the particle swarm. Simulation results show that the 

multi-community GA-PSO achieves a superior solution to the standard PSO. 

PSO can be combined with a Tentative Reader Elimination (TRE) operator as 

proposed in [12], which is called PSO-TRE. To minimize the number of readers 

needed, the TRE operator temporarily deletes readers during the PSO process and 

can restore deleted readers after a few generations if the deletion reduces tag 

coverage. By using TRE, PSO-TRE can adaptively adjust the number of readers used 

to improve the overall performance of the RFID network. Furthermore, the mutation 

operator is embedded into the algorithm to improve the success rate of TRE. To 

evaluate the effectiveness, six requirements of RNP and real-world RFID operation 

scenarios are considered. Experimental results show that PSO-TRE achieves higher 

coverage and uses fewer readers than some compared algorithms. 

PSO can also be combined with differential evolution strategies as in [13], 

which forms the Differential Evolutionary Particle Swarm Optimization (DEEPSO) 

model [14]. Operationally, on the one hand, DEEPSO relies on past information of 

the optimization process to generate new solutions and replaces individual memory 

with collective memory to improve sensitivity in the optimization context. On the 

other hand, DEEPSO has a self-adaptive property thanks to the self-adaptive 

recombination operator. With the combination, DEEPSO-based RNP has improved 

global convergence and particle diversity and can avoid falling into local 

convergence. Through simulation results, DEEPSO-based RNP outperforms standard 

PSO-based RNP. 

In [15], C a o, L i u  and X u  proposed a hybrid PSO algorithm combining  

k-Means clustering with virtual force. The hybrid algorithm, called HPSO-RNP, can 
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automatically search for the number of readers and initialize reader coordinates 

through the k-Means Algorithm. Virtual Force (VF) is incorporated into the random 

motion to adjust the reader’s position during the search process of PSO. Four 

objective functions are considered hierarchically. The results show that HPSO-RNP 

outperforms existing methods in RFID network planning in terms of the number of 

readers, interference, energy, and load balancing. 

GA is also combined with another technique to optimize the RNP solution 

search results. Instead of acting as a part of the PSO process as in [11], GA can be 

combined with Simulated Annealing, called GA-SA [16], in a two-stage process. 

First, GA initiates the optimization process in the first stage, and the results are the 

input parameters for SA in the second optimization stage. The GA-SA model has 

exploited the advantages of the two methods while bypassing their disadvantages. 

Through three experiment deployment scenarios at an emergency department of a 

hospital, simulation results show that GA-SA increases the coverage and reduces the 

total cost compared to some previous models. 

GA can also be integrated with the Redundant Reader Elimination (RRE) 

technique in a two-stage process (called GA-RRE) to minimize the number of readers 

placed in RNP [17]. GA first finds the optimal position of readers in terms of 

maximum tag coverage, minimum number of readers used, and minimum 

interference. For the RRE technique, a policy is proposed to eliminate the redundant 

readers without or with little impact on the tag interrogation efficiency. The number 

of candidate readers is limited to reduce the computational complexity. The working 

area is gridded, where each cell is a candidate position to place a reader. Simulation 

results show that, with some cases of investigated cell sizes, GA-RRE performs better 

regarding tag coverage, interference, and number of placed readers. 

In addition, some combinations of different nature-inspired algorithms have also 

been proposed. Typically, Y i x u a n  et al. [18] proposed a hybrid Gray Wolf-

Optimized Cuckoo Search (GWO-CS) Algorithm, which uses an input representation 

based on a random gray wolf search and evaluates tag density and location to 

determine the combined performance of the reader’s propagation area. Compared 

with PSO, CS, and GWO under the same experimental conditions, the coverage of 

GWO-CS is 9.306% higher than PSO, 6.963% higher than CS, and 3.488% higher 

than GWO. The results show that GWO-CS improves the global search coverage and 

the local search depth.  

Another hybrid method, which is a combination of Redundant Antenna 

Elimination (RAE) and Neural Network Algorithm (NNA), called RAE-NNA, was 

proposed by M a i m o u n i, M a j d  and B o u y a  [19], in which RAE focuses on 

optimizing the RNP problem by eliminating redundant antennas and NNA 

minimizing the difference between the target solution and the forecasted solutions. 

The study also examines a combination of RAE and GA (RAE-GA) to compare with 

RAE-NNA regarding convergence and quality of the solutions found. The results 

demonstrate the effectiveness and reliability of RAE-NNA in solving the RNP 

problem and designing cost-effective networks by minimizing the number of 

antennas and collisions between antennas and maximizing coverage. 

Table 1 describes a short comparison between combination approaches. 
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Table 1. A short comparison between combination approaches  
Problem Problem statement Methodology Evaluations 

GA- 
PSO  
[11] 

Optimizing the RNP 
problem with coverage, 
interference, and load 
balancing constraints 

– Combine GA and PSO 
– Divide the single population into 
several colonies and use genetic 
selection and mutation strategies to 
improve the dynamic rules of the 
particle swarm 

GA-PSO performs better than PSO 
regarding coverage, power, and 
interference 

PSO- 
TRE  
[12] 

Solve the RNP problem 
with four optimization 
goals: tag coverage, 
number of readers, 
interference, and the sum 
of transmitted power 

The TRE operator is embedded into 
the PSO process to remove 
redundant readers without reducing 
coverage 

PSO-TRE achieves 100% coverage, 
zero interference, and equivalent 
power consumption, and uses 30% 
more readers when compared to 
traditional PSO 

DEEPSO 
[14] 

Increases the performance 
of RNP with minimum 
reader interference and 
maximum tag coverage 

– combine DE and PSO 
– DEEPSO relies on past 
information of the optimization 
process to generate new solutions 
and proposes to replace individual 
memory with collective memory to 
improve the sensitivity of the 
optimization context 

Compared with PSO, the fitness value 
of DEEPSO is improved by 3.39% 

HPSO- 
RNP  
[15] 

Optimize RNP by 
maximizing tag coverage, 
minimizing interference 
between readers, 
minimizing total power, 
and minimizing load 
balancing 

– k-Means and VF are embedded in 
PSO 
– k-Mean initializes the initial 
position of readers and VF to adjust 
readers’ location during the process 
of PSO optimization 

HPSO-RNP achieves good 
performance in terms of coverage, 
interference, total energy, and load 
balance compared to a multi-objective 
evolutionary algorithm based on 
decomposition and a curling algorithm 
based on kinematics 

GA- 
SA  
[16] 

RNP optimization for 
tracking assets in a hospital 
is a multi-objective 
function of coverage, cost, 
collision, interference, 
energy, and path loss 

– A hybrid of GA and SA 
– GA starts with the initial 
optimization phase, and its found 
solution is the input parameter of SA 
in the second optimization phase. SA 
continues to search for neighbor 
solutions to detect the optimal one 

With three different scenarios in terms 
of coverage ratio and cost, GA-SA 
outperforms GA in terms of 
effectiveness in terms of coverage, 
cost, collision, interference, energy, 
and path loss 

GA- 
RRE  
[17] 

Optimize the RNP problem 
with maximum tag 
coverage, minimum 
interference, and reduced 
number of readers 

– GA combines with RRE in a two-
stage process 
– GA first finds the optimal 
installation location for readers, and 
RRE then removes redundant 
readers 

GA-RRE performs better regarding 
coverage ratio, interference, and the 
number of placed readers 

GWO-CS 
[18] 

Solve the RNP problem 
with requirements of tag 
coverage, interference, 
load balancing, and 
transmission power 

– Combine GWO with CS 
– GWO-CS uses the probability 
found in the CS Algorithm to update 
the population, introduce memory 
preference directional mutation to 
improve the global search ability of 
GWO, and avoid it falling into the 
local optimum 

GWO-CS is 9.301% better than PSO, 
6.953% better than CS, and 3.488% 
better than GWO in the case of 
coverage 

RAE- 
NNA  
[19] 

optimize the RNP problem 
by maximizing the network 
coverage,  minimizing 
interference, and 
eliminating the redundant 
antennas 

– Merge NNA and RAE; 
– The optimization phase is 
addressed using an unsupervised 
method based on ANNs, and RAE 
plays an auxiliary role in the second 
phase by eliminating redundant 
antenna 

RAE-NNA reaches perfect solutions 
in interference, coverage, and the 
number of antennas when compared to 
RAE-GA 

 

In summary, given the nature of the NP-hard problem, RNP should be solved 

by nature-inspired methods such as GA, PSO, CS, GWO, and NNA. Some 

combinations of nature-inspired algorithms with another technique or another nature-
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inspired algorithm have also been proposed to find a more effective solution for 

reader installation. Also, with this goal, the paper proposes a new approach that 

applies the Hopfield network to determine the optimal placement location for readers. 

The objective function of the RNP problem is therefore formulated in the form of a 

Hopfield energy function, and the energy minimization process by the Hopfield 

network helps to find the optimal placement solution. An RRE technique is also 

integrated into the Hopfield network-based optimization process to reduce the 

number of used readers further, thus highlighting the advantages of our combination 

model. The following section specifically describes our model. 

3. Hopfield network-based energy-efficient RNP approach 

Energy-efficient RNP is about finding a solution to place RFID readers in a working 

area to achieve maximum coverage and energy efficiency. The energy consumption 

in an RFID network mainly comes from the tag interrogation of readers. Ideally, only 

one reader interrogates a tag, so the total energy consumed is proportional to the 

number of tags covered. However, as a tag is within the overlap of coverage between 

two or more readers, these readers simultaneously interrogate the tag. There is an 

additional energy consumption for excess interrogation. Energy consumption is, 

therefore, proportional not only to the number of tags covered but also to the number 

of tags located in the overlap area. Minimizing the number of tags in the overlap area 

increases the energy efficiency of the RNP problem. The following subsections detail 

the approach of Hopfield network-based energy-efficient RNP. 

3.1. Problem description 

The RNP problem can appear in many practical applications, such as monitoring 

medical devices in a hospital. Accordingly, the working area can have any shape. 

However, without loss of generality, we can consider a rectangular working area with 

the dimension of X×Y m2, as shown in Fig. 1, where m tags (marked by green ‘’) 

are evenly and randomly distributed. The objective is to find a distribution of n-

placed readers (marked with red triangles) that maximizes tag coverage and is energy 

efficient.  

With geographic coordinates in 2-D space, there are infinite possible placement 

locations, which results in an explosive number of candidate solutions. To reduce the 

number of options, the working area needs to be gridded where each cell is a possible 

placement location [19]. Cell size is an essential parameter because if the cell size is 

large, the number of possible placement locations is small, and the time to determine 

a placement solution becomes quick. However, the optimality of the solution found 

is not high. In the case of small cell sizes, the number of placement locations 

increases, and it takes longer to determine a suitable placement solution. However, 

the optimality of the solution is significantly improved. Therefore, a compromise 

between optimality and solution determination time must be considered.  

The gridding can be hexagonal or quadrilateral [20]. In the case of quadrilateral 

gridding (Fig. 2), the cell sizes considered are divisors of the normalized reader 

coverage diameter (rn). With the RFID reader coverage radius of r = 3.69 m [4], the 
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normalized reader coverage diameter is calculated by dn = 2×3.69×cos(45o) ≈ 5.2 m. 

The cell sizes considered in the paper include 5.2, 3.9, 2.6, and 1.3 m. 

 

reader

tags

cells

coverage area

 
Fig. 1. An example of a gridded working area 

 

45o

3.69m

» 2.6 m

reader2reader1

Cell size » 5.2m

 
Fig. 2. The ideal distance between two adjacent readers in quadrilateral gridding 

 

With the cell size determined, the number of cell rows and columns of the 

gridded working area is N = Y/dn and M = X/dn, respectively. The gridded working 

area becomes a 2-dimensional cell matrix (as shown in Fig. 1), in which the state of 

each cell (i, j), i = 1, ..., N and j = 1, ..., M, is represented by a variable sij; sij = 1 if the 

cell is selected to place a reader, and sij = 1 otherwise. 

The primary objective of the RNP problem is to cover the maximum number of 

tags in a working area, which means the ratio of covered tags to total tags reaches the 

maximum as  

(1)  
, ,

1 2

, 1 ,

maximize  

N M N M

ij kh

ij kh

i j k i h j

T T
f s s

m  


    

where Tij is the set of tags covered if a reader is placed at cell (i, j); |Tij| is thus the 

number of tags covered by the reader. 

In this paper, energy efficiency is of interest. The following is the energy 

efficiency model considered in the energy-efficient RNP problem. 
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3.2. Energy efficiency model of the RNP problem 

The energy efficiency of the RNP problem can be interpreted as how to plan an RFID 

network that maximizes the number of covered tags and, at the same time,  minimizes 

energy consumption. The energy consumption of an RFID network mainly comes 

from the energy consumption of the readers for tag interrogation. Specifically, a 

reader spends power on sending the interrogation command to a tag, maintaining the 

downlink carrier so the tag can harvest power for its response, and, finally, 

receiving/reading the tag’s data [21]. Thus, the energy consumption of an RFID 

network is proportional to the number of tags covered. 

When placing readers in a working area, the coverage of the readers may 

overlap, and some tags may be in that overlap area. Therefore, these tags are 

interrogated multiple times, which leads to redundant interrogations and unnecessary 

energy consumption. Minimizing the number of tags in the overlap area is a measure 

to increase energy efficiency, as  

(2)  
, ,

2

, 1 ,

2
minimize  

N M N M
ij kh

ij kh

i j k i h j

T T
f s s

m  


    

where Tij∩Tkh is the number of tags in the overlap of coverage between two readers 

placed at cell (i, j) and cell (k, h). 

The readers placed near the edges of the working area waste their energy due to 

outside coverage. The outside coverage does not benefit tag interrogation and 

sometimes even creates vulnerabilities for attacks. Minimizing the number of readers 

placed near the edges can save energy and maintain the stability of the RFID network 

from outside intrusions. Consider a reader at cell (i, j) with the distances dij,k to four 

edges Zn, n = 1, ..., 4, the lost energy due to outside coverage, considered in a tag 

interrogation, which is determined as 

(3)  lost ,

4

,1
if 

0 otherwise

( , )
ij k ij

ij

ij ij kk
d r

E
L r d









   

where rij is the coverage radius of the reader at cell (i, j) and L(rij, dij,k) is the energy 

loss function which is proportional to the outside coverage radius. 

In the paper, minimal outside coverage is achieved by a Placement Area 

Restriction (PAR) technique, in which edge locations (the gray area in Fig. 3) are not 

selected for reader placement. 

Having multiple readers placed in a working area can increase the size of 

overlap coverage, which results in an increased number of overlapped tags and 

requires multiple interrogations per overlapped tag. Additionally, increasing the 

number of placed readers can create unnecessary outside coverage if the readers are 

located at the edges of the working area. Both overlap area and outside coverage 

cause wasteful energy consumption. Therefore, minimizing the number of placed 

readers is necessary, expressed as in  

(4)  
,

3

, 1

minimize  
N M

ij

i j

s
f

n

 .  
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From Equations (2), (3), and (4), the energy efficiency model of the RNP 

problem can be expressed as a weighted sum. However, the constraint in Equation 

(3) is implemented by a placement area restriction technique. Combined with 

Equation (1), the objective function of the energy-efficient RNP problem is 

determined in the next equation: 

(5)  
, , , , ,

1 2 3

, 1 , , 1 , , 1

2 2

1
minimize  

N M N M N M N M N M

ij kh ij kh

ij kh ij kh ij

i j k i h j i j k i h j i j

T T T T
f a s s a s s a s

m m n      

 
          

where an, n = 1, …, 3, is the weight of the objective function and constraints, and  

Σan = 1. 

 

right border 

top border 

bottom border 

left border 

placement restriction areas

 
Fig. 3. An example of placement restriction areas (at four edges and around a placed reader) 

3.3. Hopfield network-based energy-efficient RNP optimization 

The Hopfield network is a recurrent neural network consisting of one fully connected 

neuron layer. The Hopfield network is generally used in performing auto-association 

and optimization tasks. The Hopfield network is applied to optimize the energy-

efficient RNP problem in the paper. 

Considering a Hopfield network of N×M neurons, its energy function is  

(6)  
,

, 1 1

1

2

N M N

ij i j i i

i j i

E w v v v
 

      

where vi and vj are the activation values of neurons i and j, and wij is the weight of the 

connection between neurons i and j. 

After each execution cycle, the variance of energy is 
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(7)  

1

1

2

M

ij j i i

j

E w v v


     
 
 
 
 .  

As shown in [22], E is never positive, which means E never increases, 

regardless of any variation of vi. That is the Hopfield-based optimization principle, 

which is “minimum energy, optimal solution.” 

Based on the optimization principle, the function in Equation (5) is rewritten as  

(8)  

, , ,

1 2 3

, 1 , , 1

, , ,

1 2 3

, 1 1, 1 , 1

2

2

1
      2

2
,

N M N M N M

ij kh ij kh

kh ij ij

i j k i h j i j

N M N M N M

ij kh ij kh

ik jh kh ij ij

i j k h i j

a T T a T T a
f s s s

m n

a T T a T T a
C C s s s

m n

   

   

   
 

  
 

  

  

  

where C is a constant square matrix, where Cik = 0 if i = k, otherwise Cik = 1. 

By comparing Equations (8) and (6), the weight and threshold are obtained as  

(9)  1 2

2
2

ij kh ij kh

ijkh ik jh

a T T a T T
w C C

m

  
  and 3

ij

a

n
  .  

The proposed Hopfield network for RNP optimization is shown in Fig. 4, where 

each neuron corresponds to a cell in the working area. A cell is randomly selected to 

place each reader, corresponding to an input 1 at the corresponding neuron. The 

weighted sum of the inputs is then calculated to determine the activation level of its 

neighboring neurons. The neuron with the highest activation determines the 

corresponding cell to place the reader. The optimization process continues with the 

subsequent reader placement and stops when there are no more suitable locations to 

set a new reader or all readers are placed. 

Maximum activation

activate neighboring neurons

Input =1

Randomly select a cell which corresponds to 
input with value 1 of the corresponding neuron

The maximum activated neuron determines 
the cell location to place a reader

 
Fig. 4. The Hopfield network for energy-efficient RNP optimization is a matrix of N×M neurons 

The reader placement process must satisfy the constraints in Equations (2) and 

(3) in that the cells surround a placed reader (with a minimum reader-to-reader 

distance dr2r) and are at the edges of the working area. (with a normalized radius rn) 

is not selected to place readers. The placement area restriction mechanism is 

integrated into the Hopfield network-based energy-efficient RNP optimization 
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process to eliminate outside coverage and reduce overlap area. The integration speeds 

up the optimization process to find the optimal solution.  

The Hopfield network-based energy-efficient RNP optimization process is 

described by the HNEE-RNP Algorithm. 

Algorithm 1. HNEE-RNP Algorithm 

Input:    n  // maximum number of readers that can be placed 

  M   // number of tags in the working area 

Output: c  // matrix of nm cells selected to place readers 

Step 1. Initialize the Hopfield network of nm with inputs assigned to 0 

Step 2. Initialize the weights and the thresholds as Equations (9) 

Step 3. Initialize the matrix of nm cells (c) corresponding to the Hopfield 

network 

Step 4. Initialize the placement restriction area: the matrix of cells limited to 

place  

Step 5. while (n > 0) or (there is no suitable location to place a new reader) do 

Step 6. Randomly select a cell, which does not belong to the placement 

restriction area, to place a new reader 

Step 7. Activate the neuron corresponding to the selected cell by setting its input 

to 1 

Step 8. Calculates a weighted sum of inputs of each neuron whose 

corresponding cells are not within placement restriction areas 

Step 9. Determine the neuron with the highest activation and the corresponding 

cell is selected to place a new reader 

Step 10. Update the selected cell into the matrix of nm cells (c) 

Step 11. Update the neighbors of the selected cell into the placement restriction 

area  

Step 12. n = n  1 

Step 13. end while 

The complexity of the HNEE-RNP algorithm mainly comes from calculating 

the activation of neurons. With NM neurons, the complexity of computing the 

activations is O(n×N2×M2). Accordingly, as the number of neurons corresponding to 

the number of cells in the gridded working area is large, the algorithm complexity 

increases. 

In the HNEE-RNP Algorithm, the two objectives of maximum tag coverage and 

minimum energy consumption are prioritized and represented by the higher weights 

(w1 and w2) as in Equation (5). Therefore, the number of placed readers in the optimal 

solution may be more than necessary, and redundancy occurs. Redundant readers are 

defined as readers whose elimination does not affect the tag coverage. The Redundant 

Reader Elimination (RRE) technique in [23] is used to connect to the HNEE-RNP 

Algorithm to reduce the number of placed readers. The RRE mechanism goes through 

all placed readers and, for each reader, removes tags that fall within the reader’s 

overlap with other readers. A reader is eliminated if there are no more tags in its 

coverage. Other readers can interrogate tags belonging to this reader’s coverage. The 

RRE technique reduces the number of redundant interrogations of eliminated readers 

and thus increases energy efficiency.  
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4. Simulation and result analysis 

Simulation is implemented with Python on a PC Intel(R) Core(TM) i5, 2.40GHz, 

8GB RAM. A square-shaped working area is considered, where the gridding is done 

with different cell sizes and minimum reader-to-reader (r2r) distances. The value dr2r 

depends on the normalized reader coverage radius (rn = 2.6 m), where two cases, 

(3/2)rn = 3.9 m and 2rn = 5.2 m, are considered. Selecting these parameters ensures 

that the coverage overlap between two adjacent readers is reduced if any occurs. We 

consider two cases of even and uneven distribution of tags. The uneven distribution 

makes tags dense in the lower left corner and gradually sparser towards other corners. 

Other simulation parameters are described in Table 2.  

The simulation objective is to evaluate the efficiency of HNEE-RNPs without 

and with RRE regarding tag coverage rate, which is the ratio of the number of covered 

tags to the total tags in the working area and energy efficiency. The HNEE-RNP with 

RRE (briefly, HNEE-RRE) is also compared with other combinations such as PSO-

TRE [12] and GA-RRE [17]. The analyses and comparisons are described in the 

following subsections. 
 

Table 2. Simulation parameters of HNEE-RNP 

No Parameters Values 

1 Dimension of the working area (m2) 52×52 

2 Number of tags in the working area 300 

3 Cell size (m) 5.2, 3.9, 2.6, 1.3 

4 Minimum reader-to-reader (r2r) distances (m) 5.2, 3.9 

5 Weights of the objective function (a1) and constraints (a2, a3) 0.4, 0.5, 0.1 

4.1. Tag coverage rate 

Table 3 describes the results of tag coverage rate with different cell sizes (5.2, 3.9, 

2.6, and 1.3 m), minimum r2r distances (dr2r) of 3.9 and 5.2, and even and uneven tag 

distributions. The tag coverage rate achieved is relatively high, in which the smaller 

the cell size is, the more the tag coverage rate increases due to many placement 

options. 

Table 3. Tag coverage rate with different cell sizes, minimum r2r distances, and tag distributions 

 Even distribution Uneven distribution 

Cell size (m) dr2r = 3.9 dr2r = 5.2 dr2r = 3.9 dr2r = 5.2 

5.2 0.9967 0.7900 0.9933 0.7807 

3.9 0.8967 0.8373 0.9293 0.8333 

2.6 0.9473 0.8887 0.9687 0.9220 

1.3 0.9873 0.9620 0.9960 0.9687 

4.2. Energy efficiency 

The energy efficiency evaluation criteria are based on Equation (5), where the 

weights (a1, a2, and a3) are given in Table 2. Different cell sizes (5.2, 3.9, 2.6, and  

1.3 m) were investigated, in which each case was performed ten times, and the 
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average value was taken. Simulation results for HNEE-RNP without and with RRE 

are collected. Fig. 5 shows that HNEE-RNP with RRE achieves the best energy 

efficiency at cell size 2.6 m for both minimum r2r distances of 3.9 and 5.2 m. 

Table 4. The elimination rate with different cell sizes, minimum r2r distances, and tag distributions 

 Even distribution Uneven distribution 

Cell size (m) dr2r = 3.9 dr2r = 5.2 dr2r = 3.9 dr2r = 5.2 

5.2 0.1859 0 0.1763 0.4930 

3.9 0.1282 0.520 0.1622 0.9050 

2.6 0.4260 0.150 0.1582 0.1137 

1.3 0.3288 0.912 0.3333 0.1638 
 

 
(a) dr2r = 3.9 and even distribution 

 
(b) dr2r = 5.2 and even distribution 

 
(c) dr2r = 3.9 and uneven distribution 

 
(d) dr2r = 5.2 and uneven distribution 

Fig. 5. Comparison of the energy efficiency of HNEE-RNP without and with RRE 
 

 
(a) Even distribution and without RRE 

 
(b) Even distribution and with RRE 
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(c) Uneven distribution and without RRE 

 
(d) Uneven distribution and with RRE 

Fig. 6. Comparison of the energy efficiency of HNEE-RNPs with and without RRE 

Fig. 5 also shows that RRE improves energy efficiency for even and uneven tag 

distributions. The elimination rate, which is the ratio of the number of eliminated 

redundant readers to total placed readers, for different cell sizes is varied (Table 4), 

in which the finer the gridding is, the more the candidate placement locations and the 

placed readers are. Increasing placed readers creates many redundant readers, so the 

number of readers eliminated increases significantly. 

Fig. 6 intuitively shows the reader placement results and the effectiveness of the 

RRE technique in reducing redundant readers for even distribution (Fig. 6a-b) and 

uneven distribution (Fig. 6c-d). 

4.3. Optimality and runtime 

The optimization process is based on the principle of Hopfield network energy 

minimization. Specifically, with the cell size of 2.6 m and the minimum r2r distance 

of 3.9 m, the energy varies through the optimization process, as shown in Fig. 7. It is 

clear that the Hopfield energy gradually decreases through each step of searching the 

placement location for each reader and saturates when no suitable location can be 

found. Not increasing the Hopfield network energy ensures that the reader placement 

results are guaranteed to be optimal. 

 
Fig. 7. The Hopfield energy decreases with the optimization process and saturates at the end 

When comparing the runtime, Fig. 8 shows that the runtime is inversely 

proportional to cell size. In other words, the smaller the gridding is, the larger the 

number of cells is. Therefore, the runtime increases quite quickly when the cell size 

becomes small. 
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Fig. 8. Runtime increases rapidly as cell size decreases 

4.4. Comparing HNEE-RRE with PSO-TRE and GA-RRE  

HNEE-RRE achieves the best results with a cell size of 2.6 m and a minimum r2r 

distance of 3.9 m. These parameters are then used to simulate PSO-TRE and GA-

RRE. The fitness function of PSO-TRE and GA-RRE is the energy efficiency 

function in Equation (5) with weights as in Table 2. Simulation parameters for PSO-

TRE and GA-RRE are described in Table 5. 

Table 5. Simulation parameters for PSO-TRE and GA-RRE 

No Parameters Values 

 GA-RRE 

1 Selection operator Roulette wheel  

2 Crossover operator Single point 

3 Mutation operator and probability At a single gene with a probability of 0.05 

4 New generation 30% elite parents and 70% best children 

 PSO-TRE 

5 Interaction weight between individual and 

population (w) 

0.7 

6 Interaction coefficient between individuals (c1) 1.5 

7 Interaction coefficient for the whole population  

(c2) 

1.5 

 

With over 100 generations and a population size of 20, the results in Fig. 9 show 

that the achieved coverage rate is low. Specifically, with the number of readers used 

as in HNEE-RRE (68 readers as in Fig. 6a), the coverage rate and the overlap ratio, 

from the number of overlapped tags to the number of covered tags, are 78% and 

37.6%, respectively. The reason is that GA-RRE lacks a mechanism to limit 

placement at locations close to placed readers, so the size of the overlap area is more 

significant than that of HNEE-RRE. Furthermore, placing readers near the edges of 

the working area results in a low tag coverage rate for GA-RRE because the outside 

coverage is useless. Therefore, the coverage rate of GA-RRE is lower than that of 

HNEE-RRE. Fig. 9 depicts a visual example of GA-RRE's reader placement results 

for even and uneven tag distributions. 
 



 65 

 
(a) Even tag distribution 

 
(b) Uneven tag distribution 

Fig. 9. The reader placement results of GA-RRE with different tag distributions 

PSO-TRE achieved the lowest results regarding tag coverage rate, energy 

efficiency, and optimality. The reason is that the optimization process depends a lot 

on the particle movement process (solution), and in turn, the particle movement 

process depends on the appropriate velocity control process when changing the reader 

positions. As a result, the coverage rate and the overlap ratio, the number of 

overlapped tags to the number of covered tags, are 72% and 35.5% (Fig. 10.) 

 
(a) Even tag distribution 

 
(b) Uneven tag distribution 

Fig. 10. The reader placement results of PSO-TRE with different tag distributions 

5. Conclusion 

The increasingly widespread application and deployment of IoT systems in practice 

has raised the need to optimize the number of devices used and increase energy 

efficiency while still ensuring that they cover tagged objects. RNP methods aim to 

solve this multi-objective problem, where the weights of the objectives/constraints 

and the trade-offs between them must be considered. The paper proposed an approach 

of Hopfield-based energy-efficient RNP, in which finding the optimal placement 

location for readers is performed by a Hopfield network-based optimization process, 

and a placement area restriction technique is proposed to increase energy efficiency. 
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The runtime to find an optimal solution for nature-inspired methods is often very long 

for large working areas and many deployed tags. Applying the optimization principle 

based on Hopfield network energy reduction makes HNEE-RNP highly adaptive, 

where later solutions are always better or equal to previously found solutions. HNEE-

RNP can return a near-optimal solution if the runtime is limited. To further increase 

the effectiveness of HNEE-RNP, a technique of redundant reader elimination is also 

combined with HNEE-RNP. The simulation results show that HNEE-RNP has 

achieved the best energy efficiency. HNEE-RNP with RRE (HNEE-RRE) also 

demonstrated superiority over PSO-TRE and GA-RRE in terms of maximum 

coverage and the best energy efficiency. 
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