
 32 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 24, No 2 

Sofia  2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2024-0014 

 

 

An Improved Parallel Biobjective Hybrid Real-Coded Genetic 

Algorithm with Clustering-Based Selection 

Andranik S. Akopov1,2,3 

1Central Economics and Mathematics Institute of Russian Academy of Sciences, 47, Nachimovski 

Prosp., 117418 Moscow, Russian Federation 
2MIREA – Russian  Technological University, 78, Prospekt Vernadskogo, 119454 Moscow, Russian 

Federation 
3Moscow Institute of Physics and Technology, 9, Institutsky lane, 141700 Dolgoprudny, Moscow 

Region, Russian Federation 

E-mail: andranik.s.akopov@ieee.org 

Abstract: This work presents an improved parallel biobjective hybrid real-coded 

genetic algorithm (MORCGA-MOPSO-II). The approach is based on the combined 

use of the parallel Multi-Objective Real-Coded Genetic Algorithm (MORCGA) and 

the Multi-Objective Particle Swarm Optimization (MOPSO). At the same time, 

clustering-based selection techniques are used to form subpopulations of parent 

individuals. Using well-known clustering algorithms (e.g., k-Means, hierarchical 

clustering, c-means, and DBSCAN) in combination with the proposed clustering-

based mutation (the CL-mutation) directed toward the obtained cluster centers 

allows for improving the quality of the Pareto fronts’ approximations. The results of 

the MORCGA-MOPSO-II were compared with other well-known multi-objective 

evolutionary algorithms (e.g., SPEA2, NSGA-II, FCGA, MOSPO, etc.). Moreover, 

the MORCGA-MOPSO-II was integrated with the previously developed agent-based 

model of a goods exchange through the objective functions. As a result, the Pareto 

fronts have been obtained for the agent-based model of a goods exchange in different 

configurations of the initial distribution of agents.   

Keywords: Clustering algorithms, Multi-objective optimization, Real-coded genetic 

algorithms, Particle swarm optimization, Multiagent socioeconomic systems, Agent-

based modeling. 

1. Introduction 

The search for optimal solutions in large-scale Multi-Agent Systems (MASs) is a 

challenging computational problem. The values of objective functions in MASs are 

computed as a result of simulation modeling. Therefore, well-known gradient-based 

techniques cannot be applied in simulation-based optimization. Instead of this, 

derivative-free optimization methods such as evolutionary algorithms can be used to 

find optimal solutions, e.g., standard (binary-coded) Genetic Algorithms (GA) [1], 

https://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/in+combination
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Real-Coded Genetic Algorithms (RCGAs) [2], Particle Swarm Optimization (PSO) 

algorithms [3], Parallel Hybrid Genetic Algorithms (RCGA-PSO) [4, 5], etc.   

A line of research is devoted to evolutionary optimization algorithms (e.g.,  

[6-9]). At the same time, as shown in works [4, 5], hybrid algorithms of the  

RCGA-PSO type have a higher time efficiency while maintaining the required level 

of accuracy in the obtained solutions.  

There is a line of research devoted to developing effective clustering methods. 

In particular, such clustering techniques as the k-Means [10], the hierarchical 

clustering [11], the c-Means [12] and the DBSCAN [13] are well known and have 

widespread applications. There is possible the combined use of clustering and genetic 

algorithms as it is shown in [14]. This paper presents a modified parallel bi-objective 

hybrid real-coded genetic algorithm (MORCGA-MOPSO-II) in which clustering 

techniques are used to improve the selection procedure of the best potential decisions 

for usage as parent individuals within the evolutionary search.  

This paper presents an approach in clustering techniques that can be used to form 

subpopulations of potential decisions (i.e., individuals) with subsequent mutations in 

the hybrid algorithms of the RCGA-PSO type. RCGAs first proposed in [2], use real-

coded heuristic operators such as the Simulated-Binary Crossover [15], the Laplace 

Crossover (LX) [16], the Power Mutation [17], and similar approaches. The 

important advantage of both standard GAs and RCGAs is the possibility of 

parallelizing evolutionary searching procedures related to selection, crossover, and 

mutation, as well as providing the exchange of the best potential decisions generated 

by agent processes interacting through a global population.   

The main purpose of this study is to develop the MORCGA-MOPSO-II to 

improve the performance of evolutionary search due to the clustering of potential 

decisions at the stage of selection of parent individuals and forming new offspring 

individuals. At the same time, the MORCGA-MOPSO-II is applied for seeking 

optimal solutions and approximating the Pareto fronts for the bi-objective 

optimization problem formulated for the previously developed stochastic agent-based 

model of goods exchange [4]. This model considers paired interactions between 

multiple agents (sellers and buyers) at random moments, provided that their mutual 

interests coincide (i.e., there is a supply and demand for a particular product). The 

objective functions of the studied multiagent socio-economic system are the average 

utility of future consumption for an ensemble of agents and the total number of agents 

with money that need to be maximized. 

2. Parallel Biobjective Hybrid Real-Coded Genetic Algorithm 

2.1. Problem statement 

In general terms, the following objective simulation-based optimization problem is 

considered: 

(1)    1 2min ( ) ( ),  ( )F f x f xx , 

s.t.  
T

1 2( ,  ,  ..., )  nx x x x = , 

https://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/in+general+terms
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where x is a decision variable vector with dimension n , 
1

[ ,  ]
n

i i

i

a b


   is the feasible 

region of the search space ( 1,  2,  ...,  i n  is the index of decision variables), and are 

the m-ths objective functions computed in the result of the simulation modeling. A 

similar problem statement is suggested in works [4, 5, 8]. In particular, the parallel 

single-objective hybrid genetic algorithm RCGA-PSO [4] is used to optimize the 

characteristics of the environment and strategies for making individual decisions by 

agents involved in barter and monetary interaction. In [5] the first version of the 

MORCGA-MOPSO has been applied to seek optimal behavior strategies within the 

simulation model of a multi-agent socio-economic system. In [8], a parallel hybrid 

objective Real-Coded Genetic Algorithm (FCGA) is proposed that allows for the 

search for the best solutions within the developed Intelligent Transportation System 

(ITS). The main difference between the genetic algorithm presented here and others 

is the use of clustering-based selection techniques to form subpopulations of parent 

individuals, in combination with the directed (guided) mutation in the vicinity of 

cluster centers. 

The stochastic model of goods exchange proposed in [4] considers a multi-agent 

trade system. At each moment in time, a barter or monetary transaction can take place 

between each pair of agents within the visibility range. Agents make individual 

decisions based on the formation of optimal states (readiness) to conclude trade 

transactions at each moment. These states are determined outside the model using a 

developed hybrid genetic algorithm (RCGA-PSO) [4]. The previous problem 

statement considered the average utility of future consumption as the main objective 

for an ensemble of agents. At the same time, the total number of agents with money 

at the end of the model could be considered as a second (alternative) objective to be 

maximized, along with the utility of future consumption. This objective reflects the 

level of monetary equality among agents and their ability to participate in non-barter 

transactions.   

The average utility of future consumption for an ensemble of agents at the final 

moment of the model ,  
T T

t t T , equals to 

(2) 
0 1

1
( ).

k

T I

i k

t i

U t
I

 

   

Here, 

 
0 1{ ,   ...,  } 

T
T t t t is the set of time moments (by days), T

 
is the total 

number of time moments; 
T

t T are the initial and final moments of the model; 

 
1 2{ ,  ,  ..., }

I
I i i i  is the set of indices of agents, where I  is the total number 

of agents, i I  is the sellers’ indices, î I  is the buyers’ indices; 

 ( ),  i k kt t T  , is the value of the utility function of the i-th agent, which is 

computed as a result of the trade interaction between the seller and the buyer 

considering the costs of the distance between the target and the purchased product.  
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The total number of agents with money at the final moment of the model 

,  ,
T T

t t T  equals to 

(3) 
1

( )
I

i T
i

M m t


 , 

where 

(4) 
1 if ( ) 0,

( )
0 if ( ) 0.

i T

i T

i T

s t
m t

s t


 



 

Here, 

 ( ),  ,i k ks t t T  is the value of the money savings of the i-th agent, which is 

defined as the amount of agent’s money considering those received and spent within 

the trade interactions.  

Therefore, the problem of finding optimal strategies for agents’ behavior and 

improving environmental characteristics can be stated as follows.  

Problem A*. The need to maximize the average utility of future consumption 

for an ensemble of agents and the total number of agents with money over the sets of 

control parameters that determine the states of agents 
2 2{ ,  ,  ,  }b b m m     and 

environmental characteristics { ,  ,  ,  }:c r h  

(5) 
2 2

2 2

{ , , , }, { , , , }

{ , , , }, { , , , }

max ,

max ,

b b m m

b b m m

c r h

c r h

U

M

    

    







  

s.t. 

, [ 1,  1]b m    , 
2 2, (0,  1]b m   , {1,  2, 3, 4, 5, 6}c , [0,  1] , [1,  ]r r , 

[0,  1].h  

Here:  

 
2 2, (0,  1]b m    are the parameters of log-normal distributions that determine 

the readiness of agents to conclude barter and monetary transactions; 

 {1,  2, 3, 4, 5, 6}c  is the configuration of the initial distribution of agents 

in a discrete space (e.g., “the uniform distribution”, etc.); 

 [0,  1]  is the coefficient of contractility of the product of the agent-seller 

with the interests of the agent-buyer, which determines the probability of a deal; 

  is the radius of trading interaction; 

 [0,  1]h  is the probability of moving agents in the discrete space. 

2.2. Algorithm description 

The developed algorithm (MORCGA-MOPSO-II) as the RCGA-PSO suggested 

earlier [4, 5] is based on the combined use of the RCGA and the PSO. At the same 

time, the clustering-based selection is used to form subpopulations of individuals for 

choosing the most adapted parent solutions. In particular, the k-Means, the 

[1,  ]r r
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hierarchical clustering, the c-means, and the DBSCAN, along with a tournament 

selection [18] can be used to form clusters of potential parent solutions. 

Each individual in the RCGA contains the set of decision variables’ values 

united with the set of objective functions’ values (particular solutions) calculated over 

these decisions and the fitness function which estimates the level of dominance of 

this solution to others. At the same time, clustering executes in a criteria space using 

computed values of objective functions belonging to individuals.   

The k-Means Algorithm [10] provides a partition in the number of observations 

(i.e., all individuals of the RCGA) into K clusters (i.e., potential parent solutions of 

the RCGA) in which each observation belongs to the cluster with the nearest mean.  

That assumes solving the following optimization problem: 

(6)    
2

1

arg min
i j

C

i j
C j x c

x 
 

 .  

Here, 

 
1 2( ,  ,  ...,  )

I
I i i i  is the set of individuals’ indices, where I  is the total 

number of individuals; 

 
1 2

( ,  ,  ...,  )
Ii i iX x x x  is the set of individuals with their particular solutions 

(i.e., points that are to be clustered); 

 
1 2{ ,  ,  ... , }

C
C c c c=  is the set of clusters, where C  is the total number of 

clusters; 

 j  is the mean (i.e., the centroid) of points (individuals) in jc , where

1, 2,  ...,  j C  are indexes of clusters.    

The Hierarchical Clustering Algorithm [11] is based on constructing a 

hierarchy of clusters. For this purpose, the iterative procedure of combining 

and splitting clusters based on a measure of dissimilarity between sets of 

observations is exercised (e.g., the Euclidean distance).     

For instance, the following distance update formula is used within the 

median linkage clustering [11]: 

(7) 
2 2 2( ,  ) ( ,  ) ( ,  )

( ,  ) .
2 2 4

d A G d B G d A G
d A B G     

Here,  

 ,  A B  are two clusters joined into a new cluster; 

 G  is any other cluster that does not contain points (i.e., individuals) 

belonging to A or B . 

The c-Means Algorithm (also referred to as fuzzy clustering) [12] assumes data 

points can potentially belong to multiple clusters. Therefore, the membership matrix 

is used to fuzzy graduate such points (e.g., points on the edge of a cluster can belong 

to the cluster with a lesser degree than points located in the center of the cluster): 
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(8) 

11 1

1

N

c cN

w w

W

w w

 
 

  
 
 

. 

Here, 

 {0,  1},  ,  ,ijw i I j C    is the degree to which element ix  belongs to the 

cluster jc , where N is the total number of points joined into the c-th cluster. 

To execute the fuzzy clustering algorithm, it is necessary to minimize the 

following objective function: 

(9)   
2

1 1

arg min ,
I C

m

ij i j
C i j

w x 
 

  

where  

 (1,  )m   is the fuzzifier (i.e., the parameter defines the degree of fuzziness, 

which m is commonly set to 2);   

 j  is the centroid of points jc that is computed with considering values of

{0,  1},  ,  ijw i I j C   . 

The DBSCAN is one of the most popular density-based clustering non-parametric 

algorithms. The algorithm has been proposed in [13]. As with other clustering 

techniques, it operates with a set of points in some space to be clustered, groping that 

a closely located together based on the estimation of their density. Those points that 

lie alone in low-density regions are marked as outliers and are not to be clustered. 

The DBCSAN requires the following rule to be fulfilled for each ,  ix X i I  : 

(10) ( ) { :  ( ,  ) }i i i iC x y X d x y     , 

where C  is a subset of individuals belonging to the set of located with a distance of 

no more than from ix , d  is the Euclidian distance between xi and iy . 

Thus, the k-Means, the hierarchical clustering, the c-Means, and the DBSAN are 

used in the MORCGA-MOPSO-II to provide the selection of the most adapted 

potential solutions. Moreover, to improve the quality of the Pareto fronts’ 

approximations the directed (guided) mutation in the vicinity of cluster centers is 

proposed.  

The MORCGA-MOPSO-II uses the concept of Pareto dominance within the 

evolutionary search. At each moment ,  1,  2,  ... , ,kt T k K   the archive of 

nondominated solutions is updated if a new (offspring) solution 
1 2

{ ( ), ( )}
i i i i i I

f f


x x  

is better than the existing one, i.e., if the following condition is fulfilled: 

(11) 
       

       
1 21 2

2 12 1

( ) ( )  and  ( ) ( )  or

( ) ( )  and  ( ) ( )  for  ,

i i k k i i k ki i i i

i i k k i i k ki i i i

f t f t f t f t

f t f t f t f t i I 

x x x x

x x x x
 

where: 

https://en.wikipedia.org/wiki/Cluster_analysis#Density-based_clustering
https://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/in+the+vicinity
https://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/condition+is+fulfilled
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 1 2{ ,  ,...,  }
I

I i i i  are the indices of new individuals (e.g., offspring-

individuals), where I  is the total number of new individuals;  

 ( )i ktx , ( )ki
tx  are the decision variable vectors of existing i-ths individuals 

( )i I  and the new -thi  individual ( )i I  at moment ,kt T  respectively, where 

n  is the total number of decision variables; 

 1 2{ ( ),  ( )},  ,i i i if f i Ix x  are the values of objective functions computed with 

the decision variable .ix  

When using the MORCGA, the fitness function is calculated for each new 

individual in each evolutionary process with a following update to the archive of 

nondominated solutions if condition (10) is fulfilled for these. The fitness function is 

computed based on the sum of the Pareto strengths of all solutions dominated by the 

new -thi individual i I : 

(12)  
 

 
 

( )
( ) ,

1
1 ( )

2 ( )

ki i

ki i

ki i

ki i

h t
f t

w t
d t



 


x
x

x
x

 

where 

 
i

h  is the contribution of the -thi  individual i I  to the Logarithmic 

HyperVolume (LHV) [19] computed using particular solutions; 

 
i

w  is the Pareto weakness of the -thi  individual ,i I  computed at the kt  

iteration ( )kt T , The value of 
i

w  is the sum of the Pareto strengths of all individuals 

that dominate the -thi  individual i I ; 

 
i

d  is the Euclidean Distance (ED) from the -thi  individual to the nearest 

individual in the criteria space. 

The values of decision variables ( )ki
tx of the new -thi  individual (i.e., the 

offspring) ( )i I  are forming with well-known crossover (e.g., SBX, LX, etc.,  

[15, 16]) and mutation operators (e.g., PM, SUM, etc., [6, 8, 17]). At the same time, 

it is suggested to use the following new clustering-based mutation operator  

(CL-mutation): 

(13)  
( ),  if ( ) [ ,  ],

( )
(0,  1)( ),  if ( ) [ ,  ],

k kic ic

ki

kic

t t
t

u t




  

L L x x
x =

x x x L x x
 

where   

(14) 
     

 

2

1 1

1

ln ( ) ,  ( )  if ,Lambert
( )

( )  if ,

iс ic k iс ic k m

kic

i k m

N t t p
t

M t p

W   



 



 
 



x x
L

x
 

where 

 ,  x x  are the lower and upper boundary values of the decision variables; 

 (0,  1)u  is the random value with a uniform distribution in the range of (0,  1);  
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      2

1 1ln ( ) ,Lamber  ( ) ,  ,  t iс ic k iс ic kN t t i I c CW     x x  is the random 

value with the heavy-tailed distribution and generated through the combination of the 

Lambert W function [20] and the log-normal distribution  2ln ,  iс iсN    (to 

transform it to a heavy-tailed version), where  1( )iс ic kt x ,  2

1( )iс ic kt x  are the 

mean value and the standard deviation  calculated over decision variables 1( )ic kt x  

belonging to i-ths individuals of c-ths clusters; 

  1( )i kM t x  is the random value generated with one of the well-known 

mutation operators, such as the Uniform Mutation (UM), the Power Mutation (PM), 

the Scalable-Uniform Mutation (SUM), etc.;  

 mp  is the probability of the CL mutation, 

   is the given threshold value. 

When using the MOPSO, the velocity vector for the decision variables is 

calculated, which determines the position of the i-ths particles ( )i I  in the space of 

potential decisions at the moment kt  ( )kt T : 

(15) 

*

1 1 1 1

2 1 1

( ) ( ) (0,  1)( ( ) ( ))

                               + (0,  1)( ( ) ( )).

i k i k i k i k

g

k i k

t t c q t t

c e t t

   

 

   



v v x x

x x
 

Additionally, the values of decision variables are computed with the following 

updating the archive of nondominated solutions if condition (10) is fulfilled for these:  

(16)  
1 1 1 1

1 1 1

( ) ( ) if ( ) ( ) [ ,  ],
( )

( ) if ( ) ( ) [ ,  ].

i k i k i k i k

i k

i k i k i k

t t t t
t

t t t

   

  

  
 

 

x v x v x x
x

x x v x x
   

Here, 

 
1 2{ ,  ,  ..., }

I
I i i i  is the set indices of particles of MOPSO, where the total 

number of agent particles; is the best (i.e., nondominated) potential decisions 

obtained by particles of MOPSO during the search period and all particles at 

the moment kt 1( )kt T  ; 

 (0,  1),  (0,  1)q e  are random values uniformly distributed on the interval 

[0,  1] ; 

 1 2,  ,  c c  are constants, the values of which, as a rule, are set as follows:  

𝜃 ∈ [0.4, 1.4], 𝑐1 ∈ [1.5, 2], 𝑐2 ∈ [2, 2.5]. 
The developed MORCGA-MOPSO-II Algorithm is shown in Fig. 1. Here, the 

parameter sets the frequency of the interaction between the MORCGA and the 

MOPOSO.    

As shown in Fig. 1, the proposed MORCGA-MOPSO-II Algorithm has two 

important features. The first of these is related to the selection procedure, which is 

based on the use of one of the clustering techniques (e.g., k-Means, DBSCAN, etc.). 

The proposed clustering-based approach aims to form subpopulations of the 

most similar solutions, providing the possibility of selecting the most dissimilar 

parent individuals during the selection procedure and overcoming the well-known 
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inbreeding problem [1]. At the same time, to form new offspring individuals besides 

crossover operators, it is suggested to use the mutation directed towards the cluster 

centers calculated as a result of clustering. This process executed within the 

MORCGA is illustrated in Fig. 2. 

 

 
Fig 1. An improved bi-objective hybrid genetic algorithm (MORCGA-MOPSO-II) 

 

As shown in Fig.2 some stages of the developed procedure are highlighted in 

grey because such elements are related to the MORCGA-MOPSO-II as a whole (see 

Fig. 1). Here, 1, 2, ...,kg G  is the index of internal iterations (to generate multiple 

offspring-individuals), G  is the total number of internal iterations.  
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Fig 2. The procedure of forming new offspring-individuals based on clustering selection in MORCGA 

2.3. Test results 

In Table 1 known test instances [21] were used to test and verify the developed 

MORCGA-MOPSO-II Algorithm. The number of decision variables is set equal to 

120 (i.e., 120n   in Table 1), which can be considered as solving large-scale 

optimization problems.  

At the initial stage, the efficiency of the MORCGA-MOPSO-II uses the  

k-Means technique for the selection procedure of the parent individuals. The  

CL-mutation to generate offspring-individual should be compared with other parallel 

evolutionary algorithms where a tournament selection is used. An assessment of 

performance metric values was conducted for the following parallel heuristic 

algorithms: 

 SPEA2 is the multiobjective evolutionary algorithm based on the estimation 

of the Pareto strengths [22]; 

 NSGA-II is the multiobjective evolutionary algorithm based on the fast non-

dominated sorting technique [23]; 

 FCGA is the multiobjective evolutionary algorithm based on fuzzy clustering 

and applied in ITS [8]; 

 MOPSO is the multi-objective particle swarm algorithm in which an 

interaction between all particles is carried out to find the global one [24]. 

 MORCGA-MOPSO is the parallel hybrid real-coded genetic algorithm that 

uses a tournament selection [5]; 

 MORCGA-MOPSO-II is the hybrid algorithm that combines the Multi-

Objective Real-Coded Genetic Algorithm (MORCGA) with the Multi-Objective 



 42 

Particle Swarm Optimization (MOPSO) and uses the clustering-based selection  

(equations (6)-(10)) with subsequent CL-mutations (equations (13)-(14)). 

Table 1. Test instances for MORCGA-MOPSO-II 

Test instances 
Problem statement 

(objectives to be minimized) 
Feasible ranges 

FT1 – Zitzler-

Deb-Thiele’s 

function No 1 

1 1

2

;

,

f x

f gh





 

where 

2

1

9
1 ;

1

1 /

n

jj
g x

n

h x g




 


  


 

0 1,jx   

1 j n   

FT2 – Zitzler-

Deb-Thiele’s 

function No 2 

1 1

2

;

,

f x

f gh





 

where 

 

2

2

1

9
1 ;

1

1 /

n

jj
g x

n

h x g




 


  


 

0 1,jx   

1 j n   

FT3 – Zitzler-

Deb-Thiele’s 

function No 3 

1 1

2

;

,

f x

f gh





 

where 

 

2

1 1 1

9
1 ;

1

1 / / sin(10 )

n

jj
g x

n

h x g x g x




 


   


 

0 1,jx   

1 j n   

FT4 – Zitzler-

Deb-Thiele’s 

function No 4 

1 1

2

;

,

f x

f gh





 

where 

 2

2

1

1 10( 1) 10cos(4 ) ;

1 /

n

j jj
g n x x

h x g




     

  


 

10 1,x   

5 5,jx    

2 j n   

FT5 – Zitzler-

Deb-Thiele’s 

function No 5 

6

1 1 1

2

1 exp( 4 )sin (6 );

,

f x x

f gh

   



 

where 

 
 

0.25

2

2

1

1 9 / ( 1) ;

1 /

n

jj
g x n

h x g




  


  


 

0 1,jx   

2 j n   

 

Afterward, the performance of the MORCGA-MOPSO-II Algorithm is assessed 

in comparison with other known parallel multicriteria optimization algorithms 

according to the most important criteria [25]: 

 LHV is the metric characterizing the logarithmic hypervolume, which 

determines the total area of space covered by the Pareto front (it is to be maximized); 

 CPF is the Pareto front cardinality characterizing the number of calculated 

non-dominated solutions belonging to the Pareto front (it is to be maximized); 
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 PT (in s) is the processing time spent to get the Pareto-optimal solutions. 

Optimization experiments were conducted on the portable supercomputer at the 

Central Economics and Mathematics Institute of the Russian Academy of Sciences 

(DSWS PRO with 2x Intel Xeon Silver 4114, 1x NVIDIA QUADRO RTX 6000) 

using 100 evolutionary processes in the MORCGA and particles in MOPSO. 
 

Table 2. Evaluation of performance metrics of MORCGA-MOPSO-II 

Performance 

metrics 

MORCGA-

MOPSO-II 

Other evolutionary algorithms 

MORCGA-

MOPSO 
SPEA2 NSGA-II FCGA MOPSO 

FT1 – Zitzler-Deb-Thiele’s function No 1 

LHV –0.00053 –0.00054 –0.00054 –0.00054 –0.00054 –0.00059 

CPF 751 751 749 748 749 744 

PT, s 143.3 126.0 76.5 101.0 122.5 96.5 

FT2 – Zitzler-Deb-Thiele’s function No 2 

LHV –0.00054 –0.00055 –0.00055 –0.00055 –0.00055 –0.00099 

CPF 748 747 747 743 744 741 

PT, s 139.5 124.0 75.5 98.0 110.0 85.5 

FT3 – Zitzler-Deb-Thiele’s function No 3 

LHV 0.20205 0.20151 0.20173 0.20133 0.20210 0.20105 

CPF 260 259 261 260 261 257 

PT, s 126.1 104.5 38.0 60.0 74.5 81.0 

FT4 – Zitzler-Deb-Thiele’s function No 4 

LHV 3.20729 3.20409 3.20411 3.20411 3.20411 1.52874 

CPF 24 20 74 109 110 9 

PT, s 67.6 53.3 51.7 82.0 78.3 88.0 

FT5 – Zitzler-Deb-Thiele’s function No 5 

LHV –0.16147 –0.19354 –0.21217 –0.21070 –0.19006 –0.29704 

CPF 30 21 23 37 49 29 

PT, s 101.2 99.7 28.4 77.3 79.3 81.6 

 

The following values of control parameters are used:  

 total number of iterations: |T|, is set to 100; 

 population size: |I|, is set to 100; 

 a total number of internal iterations with the CL-mutation: |G|, is set to 1; 

 total number of clusters in MORCGA-MOPSO-II: |C|, is set to 10; 

 frequency of the interaction between the MORCGA and the MOPOSO: w, is 

set to 5. 

The results of optimization experiments (i.e., the average values of performance 

metrics) completed using the MORCGA-MOPSO-II (with the selection based on  

k-Means clustering) in comparison with other evolutionary algorithms are presented 

in Table 2.  

As evident from Table 2, the MORCGA-MOPSO-II (which uses a clustering-

based selection method and CL-mutations) outperforms the MORCGA-MOPSO 

(which uses a tournament selection) in terms of the LHV and the CPF for the most of 

test instances. At the same time, it maintains a comparable level of time efficiency 

(i.e., PT). The main advantage of the proposed MORCGA-MOPSO-II Algorithm is 

that it can improve the values of the most important performance metrics (such as 

LHV and CPF), in comparison to other evolutionary algorithms. Although the 
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MOPSO often demonstrates better values for time efficiency than many genetic 

algorithms, traditional swarm methods for multi-objective optimization do not 

produce solutions of the required quality. Therefore, it is justified to develop hybrid 

algorithms such as MORCGA-MOPSO-II. 
 

 

Table 3. Evaluation of performance metrics of MORCGA-MOPSO-II at different clustering techniques  

Performance 

metrics 

Method of clustering-based selection 

k-Means 
hierarchical 

clustering 
c-Means DBSCAN 

FT1 – Zitzler-Deb-Thiele’s function No 1 

LHV –0.00053 –0.00053 –0.00052 –0.00053 

CPF 751 744 752 748 

PT, s 143.3 142.0 343.0 141.0 

FT2 – Zitzler-Deb-Thiele’s function No 2 

LHV –0.00054 –0.00054 –0.00053 –0.00054 

CPF 748 744 749 745 

PT, s 139.5 129.9 329.2 128.4 

FT3 – Zitzler-Deb-Thiele’s function No 3 

LHV 0.20205 0.20219 0.23961 0.20201 

CPF 260 260 263 260 

PT, s 126.1 122.7 280.6 120.9 

FT4 – Zitzler-Deb-Thiele’s function No 4 

LHV 3.20729 3.20670 3.20785 3.20551 

CPF 24 22 48 19 

PT, s 67.6 65.3 241.1 63.6 

FT5 – Zitzler-Deb-Thiele’s function No 5 

LHV –0.16147 –0.13686 –0.11601 –0.19833 

CPF 30 29 37 27 

PT, s 101.2 99.5 171.4 95.1 

 

 

In the second stage, the effectiveness of the MORCGA-MOPSO-II is assessed 

when using different clustering techniques (Table 3). 

As seen in Table 3, using the k-Means algorithm in the selection procedure of 

the MORCGA-MOPSO-II is preferable to the other techniques in terms of the values 

of the main performance metrics. However, the c-Means algorithm that is the most 

time-expensive provides the best values of the LHV and the CPF for all tests. The 

sensitivity tests for the LHV and the CPF completed using the MORCGA-MOPSO-

II with the selection procedure based on the k-Means technique are shown in Fig. 3.  

 

 

https://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/most+preferable+to
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Fig. 3. Sensitivity tests completed with the MORCGA-MOPSO-II: dependencies of the normalized 

values of the LHV and CPF on the total number of clusters and the population size, where the best 

values of performance metrics correspond to 1 and the worst values of performance metrics 

correspond to 0 

 

Fig. 3 shows that, as a rule, the performance metrics for the MORCGA-

MOPSO-II Algorithm improve with an increase in the population size. At the 

same time, the total number of clusters to be set up depends on the solved 

optimization problem. As evident from Fig. 3, the best values of the total 
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number of clusters are different for various test instances. This is consistent 

with the known principles concerning the need for a choice of the number of 

clusters optimal in compactness criteria. 

3. Results of simulation and optimization experiments 

The results of optimization experiments aiming at solving the Problem A* 

completed with the proposed genetic algorithm (MORCGA-MOPSO-II) are 

presented in Fig. 4. These experiments were carried out under different 

configurations of the initial distribution of agents (i.e., sellers and buyers) in 

a discrete space of the stochastic agent-based model of goods exchange [4]. 

At the same time, the total number of economic agents equals 2000, and half 

of them with money.  

 

 

Fig. 4. The Pareto fronts computed with the use of the MORCGA-MOPSO-II and the stochastic agent-

based model of goods exchange 

Table 4 presents the values of decision variables corresponding to the most 

different optimal solutions belonging to the Pareto fronts shown in Fig. 4. 
 

 

https://www.google.com/search?sca_esv=600777061&sxsrf=ACQVn0-m0JHlPmSdb7BAyL4fmeOmM6DWJQ:1706026114003&q=a+compactness+criteria&spell=1&sa=X&ved=2ahUKEwivqoLE8vODAxVMKBAIHUGjCDwQkeECKAB6BAgHEAI
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Table 4. The values of decision variables 

Configurations 

of the initial 

distribution of 

agents 

Optimal 

solutions 

Decision variables (control parameters) 

b  2

b  m  2

m    r  h  

Uniform 

distribution of 

agents 

Solution 1.1 0.432 0.078 0.645 0.034 0.012 12 0.157 

Solution 1.2 0.087 0.048 –0.618 0.677 0.461 7 0.044 

Solution 1.3 0.084 0.060 –0.750 0.133 0.295 13 0.157 

Ring 

distribution of 

agents 

Solution 2.1 0.746 0.078 0.554 0.293 0.736 19 0.615 

Solution 2.2 0.576 0.235 0.139 0.928 0.045 5 0.150 

Solution 2.3 0.619 0.111 –0.899 0.239 0.100 10 0.626 

Torus-shaped 

distribution of 

agents 

Solution 3.1 0.185 0.121 0.082 0.028 0.868 17 0.531 

Solution 3.2 0.555 0.433 –0.040 0.688 0.761 4 0.918 

Solution 3.3 0.595 0.112 –0.821 0.031 0.761 6 0.702 

Chess 

distribution of 

agents 

Solution 4.1 0.488 0.110 0.313 0.073 0.115 17 0.246 

Solution 4.2 0.012 0.073 0.023 0.522 0.327 4 0.000 

Solution 4.3 0.703 0.110 –0.869 0.146 0.115 15 0.846 

Diagonal 

distribution of 

agents 

Solution 5.1 0.385 0.203 0.043 0.041 0.004 14 0.164 

Solution 5.2 0.722 0.095 0.499 0.070 0.595 2 0.654 

Solution 5.3 0.143 0.149 –0.838 0.228 0.105 13 0.242 

Cone-shaped 

distribution of 

agents 

Solution 6.1 0.165 0.027 0.248 0.031 0.236 14 0.185 

Solution 6.2 0.772 0.098 0.270 0.078 0.541 2 0.322 

Solution 6.3 0.424 0.009 –0.558 0.024 0.732 11 0.064 

 

As evident from Fig. 4 and Table 4, the MORCGA-MOPSO-II Algorithm 

allows us to find optimal solutions and approximate the Pareto front for the 

considered bi-objective optimization problem (i.e., Problem A). As the total number 

of agents with money decreases, the average utility of future consumption also 

increases, as this leads to an increase in the number of trade transactions. However, 

when the concentration of money becomes too high (i.e., there is significant monetary 

inequality between agents), average consumption decreases. Therefore, the optimal 

number of agents with money lies in the range of 300-1000 agents, where 1000 

corresponds to the initial number of these agents (Fig. 4). 

5. Conclusion 

This paper proposes an improved parallel biobjective hybrid real-coded genetic 

algorithm with clustering-based selection (MORCGA-MOPSO-II). The main feature 

of this algorithm is the proposed selection procedure, which is based on the use of 

one of the clustering techniques (e.g., the k-Means, the c-Means, etc.). Moreover, it 

is suggested to use a novel clustering-based mutation operator (CL-mutation) directed 

towards the obtained cluster centers. The CL-mutation generates multiple offspring 
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individuals with the use of heavy-tailed distributions. At the same time, Multi-

Objective Particle Swarm Optimization (MOPSO) and some other genetic algorithms 

such as SPEA2 can achieve the best values for time efficiency. However, hybrid 

genetic algorithms such as MORCGA-MOPSO-II have greater opportunities to 

improve the quality of the obtained solutions, in particular, due to their ability to use 

clustering-based selection and subsequent guided mutations, such as the CL mutation 

proposed in this study. 

The proposed algorithm (MORCGA-MOPSO-II) allows us to find optimal 

solutions and approximate the Pareto fronts for biobjective optimization problems. In 

particular, it aims to maximize the average utility of future consumption for an 

ensemble of agents and the total number of agents with money over the sets of control 

parameters, such as the readiness of agents to conclude barter and monetary 

transactions, the radius of trading interactions, etc. 

Further research will focus on applying the proposed hybrid real-coded genetic 

algorithm in large-scale multiagent socioeconomic systems.   
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