
 16

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 24, No 2

Sofia  2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0013

Securing Decentralized Storage in Blockchain: A Hybrid

Cryptographic Framework

Jadhav Swati, Pise Nitin

School of Computer Engineering and Technology, Dr. Vishwanath Karad MIT World Peace University,

Pune, India

E-mails: swati.jadhav@vit.edu nitin.pise@mitwpu.edu.in

Abstract: The evolution of decentralized storage, propelled by blockchain

advancements, has revolutionized data management. This paper focuses on content

security in the InterPlanetary File System (IPFS), a leading decentralized storage

network lacking inherent content encryption. To address this vulnerability, we

propose a novel hybrid cryptographic algorithm, merging AES 128-bit encryption

with Elliptic Curve Cryptography (ECC) key generation. The algorithm includes

ECC key pairs, random IV generation, and content/AES key encryption using ECC

public keys. Benchmarking against standard AES 256-bit methods shows a

significant 20% acceleration in encryption speed and a 16% increase in decryption

efficiency, affirming practicality for enhancing IPFS content security. This research

contributes to securing decentralized storage and provides a performance-driven

solution. The promising results highlight the viability of the proposed approach,

advancing understanding and mitigating security concerns in IPFS and similar

systems.

Keywords: Blockchain, IPFS, Content security, Hybrid cryptography, Elliptic curve

cryptography.

1. Introduction

The landscape of decentralized applications, particularly those built on blockchain

technology, has brought about transformative possibilities, challenging traditional

centralized frameworks [20]. Blockchain applications inherently possess robust

security features through the utilization of digital signatures, cryptography, and

hashing techniques. However, as these decentralized applications encounter

limitations in storage capacity, the integration of decentralized storage solutions, such

as the InterPlanetary File System (IPFS), becomes imperative [8]. While the

blockchain itself boasts inherent security attributes, the integration of decentralized

storage introduces new challenges, especially in the domain of content security. In

contrast to traditional centralized storage systems, IPFS, a widely adopted

decentralized storage solution, lacks built-in content security measures [6]. The

absence of native content encryption poses a potential threat to the overall security of

mailto:swati.jadhav@vit.edu

 17

applications utilizing both blockchain and decentralized storage. The combination of

blockchain’s intrinsic security features with the vulnerabilities introduced by

decentralized storage underscores the necessity for a holistic approach [21].

Blockchain’s digital signatures, cryptography, and hashing ensure the integrity and

authenticity of data within the system. However, the decentralized nature of IPFS [5],

coupled with its lack of built-in content security, leaves data accessible to anyone

with knowledge of the Content IDentifier (CID). This poses a significant concern, as

sensitive information stored on IPFS may be exposed without proper encryption

safeguards. In addition to these challenges, blockchain applications incorporating

decentralized storage face vulnerabilities arising from the complex interplay between

blockchain technology and storage systems. One notable vulnerability lies in the

potential exposure of sensitive data during the retrieval process, raising concerns

about the confidentiality of data during transit from the decentralized storage layer to

the blockchain application. Furthermore, the distributed consensus mechanism

inherent in blockchain networks introduces challenges related to data consistency,

potentially enabling malicious actors to exploit disparities for unauthorized access or

manipulation.

This paper addresses the critical intersection of blockchain-based applications

and decentralized storage, recognizing the need to bridge the gap in content security.

The focus is on IPFS, a prominent decentralized storage solution, which, while

offering advantages in distribution and accessibility, presents challenges in ensuring

the confidentiality of stored data. The subsequent sections delve into the intricacies

of this challenge and propose a novel hybrid cryptographic algorithm. By blending

the security strengths of symmetric key cryptography (AES 128-bit encryption) with

asymmetric key cryptography (Elliptic Curve Cryptography – ECC), the proposed

solution aims to fortify content security within IPFS. The algorithm encrypts both the

file content and the AES key, mitigating the inherent vulnerability in IPFS and

ensuring a secure and private storage environment for decentralized applications [4].

Through comprehensive benchmarking analyses and performance evaluations, this

research aims to validate the effectiveness of the proposed hybrid approach. By

addressing the security limitations introduced by decentralized storage, this work

contributes to the broader discourse on enhancing the overall security posture of

decentralized applications. This comprehensive exploration seeks to provide valuable

insights and practical solutions for securing sensitive data within the evolving

landscape of decentralized technologies.

2. Literature survey

The literature review indicates that existing research primarily focuses on

decentralized storage, privacy-preserving blockchain models, and trust-based

security mechanisms. However, a dedicated and standardized approach to content

security within IPFS is lacking [7].

The integration of blockchain and the IPFS for secure Health Electronic Record

(HER) management has been a subject of recent exploration [1]. Additionally,

privacy concerns in supply chain traceability have prompted the development of

 18

privacy-preserving blockchain models [2], and trust-based security mechanisms such

as BSDNFilter have been proposed for blockchain-based Software-Defined

Networking (SDN) [3].

Blockchain technology is also employed in certificateless public verification

schemes [4] and secure information sharing in decentralized supply chain

management systems [5]. Charitable donation systems [6] and charity foundation

platforms [7] leverage blockchain technology for transparency and accountability.

Within the realm of decentralized storage, Uddin et al. explore design principles

based on information security in blockchain and IPFS [8]. Furthermore, efforts have

been made towards decentralized cloud storage using IPFS [9], a blockchain-based

private file storage-sharing method on IPFS [10], and a blockchain-based multi-party

authorization for accessing IPFS encrypted data [11].

Despite these advancements in decentralized storage and blockchain

applications, a significant research gap exists concerning standardized content

encryption mechanisms within IPFS. The literature reveals that while IPFS employs

transport encryption to secure data transmission, it lacks built-in content encryption,

leaving data vulnerable to unauthorized access [2, 8]. This gap in content security

within IPFS poses a substantial challenge, particularly as sensitive information stored

on the IPFS network may be exposed without proper encryption safeguards.

Research gap. The existing literature highlights the need for a comprehensive

and standardized content security mechanism within IPFS. The literature review

indicates that existing research primarily focuses on decentralized storage, privacy-

preserving blockchain models, and trust-based security mechanisms. However, a

dedicated and standardized approach to content security within IPFS is lacking. The

proposed methodology fills this gap by introducing a hybrid cryptographic solution

tailored to the decentralized and resource-variable nature of IPFS.

3. Background

3.1. Hybrid cryptographic approach selection

The selection of a hybrid cryptographic approach, combining AES 128-bit symmetric

key cryptography with ECC key generation for both private and public keys, is driven

by the need to strike a balance between efficiency and security in the context of

content security for IPFS.`

3.2. Strengths of AES 128-bit symmetric key cryptography

 Efficiency. AES 128-bit encryption is known for its computational efficiency

while providing a high level of security [22]. It strikes a balance between performance

and cryptographic strength, making it suitable for a decentralized storage system like

IPFS where computational resources may vary across nodes [2].

 Speed. AES 128-bit encryption/decryption operations are faster compared to

higher-bit variants. This is crucial for a distributed storage network where real-time

access to data is essential.

 19

 Widespread adoption. AES is a widely adopted standard for symmetric key

cryptography, ensuring compatibility and interoperability with various systems and

platforms [16].

3.3. Advantages of ECC key generation

 Strong security with shorter key lengths. ECC offers robust security with

shorter key lengths compared to traditional RSA. This is particularly advantageous

in resource-constrained environments, common in decentralized networks, as shorter

keys require less computational power for key generation and transmission.

 Efficient key exchange. ECC provides efficient key exchange mechanisms,

reducing the overhead associated with establishing secure communication channels.

This is crucial for securely transmitting the AES key between the sender and the

receiver in the proposed hybrid approach.

 Suitability for resource-constrained environments. ECC’s efficient use of

resources makes it well-suited for environments with limited computational capacity,

ensuring that the proposed content security solution remains lightweight and feasible

in decentralized storage scenarios.

3.4. Balancing efficiency and security

 Optimal resource utilization. By combining AES 128-bit encryption with

ECC key generation, the hybrid approach optimally utilizes resources, ensuring a

reasonable level of security without imposing excessive computational overhead.

 Adaptability to decentralized environments. The hybrid approach is

tailored to the decentralized nature of IPFS [3], where nodes may have varying

computational capabilities. It allows for a standardized yet adaptable content security

solution that can be efficiently implemented across a diverse network.

3.5. Flexibility in key management

 Separation of concerns. Separating the encryption of content using AES

from the encryption of the AES key using ECC provides flexibility [17]. It allows for

different key management strategies, contributing to the modular design of the

proposed solution.

In summary, the hybrid cryptographic approach is strategically chosen to

harness the efficiency of AES 128-bit encryption and the security advantages of ECC

key generation. This careful balance ensures that content security on IPFS remains

robust, adaptable, and well-suited to the decentralized and resource-variable nature

of the network.

4. Mathematical background

4.1. Elliptic Curve Cryptography with Secp256K1 curve specification

Elliptic Curve Cryptography is a public-key cryptography technique that relies on the

mathematics of elliptic curves over finite fields. The Secp256K1 curve, specifically

 20

used in Bitcoin and other blockchain applications, is defined over a prime field and

has gained prominence due to its efficiency and security properties.

Fig. 1. ECC curve

4.2. Secp256K1 curve specifications

4.2.1. Equation of the curve

The equation for the Secp256K1 elliptic curve is given by the equation

y2=x3+7(modp) where p is a prime number that defines the size of the finite field.

4.2.2. Curve parameters p, a, b

p (prime modulus), p: = 2256−232−29−28−27−26−24−1,

a: 0 and b: 7

x:0662630222773436695787188951685343262506034537775941755001873

6038911672924055066263022277343669578718895168534326250603453777594

175500187360389116729240

y:3267051002075881697808308513050704318447127338065924327593890

4335757337482424326705100207588169780830851305070431844712733806592

43275938904335757337482424

n (order of the base point): 1579208923731619542357098500868790785283

7564279074904382605163141518161494337115792089237316195423570985008

687907852837564279074904382605163141518161494337

4.2.3. Curve parameters

 Generator point G

The generator point G is a fixed point on the curve, and it is used to derive public

keys from private keys.

It is a specific point on the curve that, when multiplied by an integer d (private

key), yields another point on the curve (public key).

4.2.4. Equations used in ECC

 Point addition P+Q

For two points P(xp, yp) and Q(xq, yq), the sum is calculated as:

(1)

if

if

otherwise

P P

P Q Q Q

R

  
 

    
 
 

,

 21

(2)  xR = (λ2 − xp − xq) mod p,

(3) yR = (λ(xp − xR) − yp) mod p,

where λ is the slope of the line passing through P and Q.

 Point doubling (2P)

The doubling of a point P(xp, yp) is calculated as:

(4) xR = (λ2 − 2xp) mod p,

(5) yR = (λ(xp − xR) − yp) mod p,

where λ is the slope of the tangent line to the curve at point P.

These equations form the basis for ECC operations on the Secp256K1 curve,

providing secure and efficient key exchange in cryptographic applications.

4.2.5. Key generation process

 Private key d

A random 256-bit number is chosen as the private key.

 Public key Q

The public key Q is derived by multiplying the generator point G with the

private key d: Q=d×G

4.2.6. ECC encryption and decryption

ECC is primarily used for key exchange and digital signatures. In the proposed hybrid

cryptographic approach, ECC is employed for key exchange. The AES key, generated

for content encryption, is encrypted using the ECC public key.

4.2.7. Key exchange process

The receiver generates an ECC key pair (dreceiver, Qreceiver).

4.2.8. AES key encryption

The sender generates a random Initialization Vector (IV).

The sender converts a password into a SHA-256 hash, which is used as the AES

key.

The AES key is encrypted using the ECC public key (Qreceiver).

4.2.9. Transmission

The encrypted AES key, along with the IV and the encrypted content, is saved to the

file and uploaded to IPFS.

Fig. 2 elaborates on a block diagram of a proposed Hybrid Cryptographic

Algorithm. The block diagram illustrates the synergy between symmetric and

asymmetric key cryptography, enhancing the overall security of the cryptographic

system. This hybrid approach leverages the efficiency of symmetric key

cryptography for data encryption while benefiting from the secure key exchange

provided by asymmetric key cryptography.

 22

Fig. 2. Block diagram of proposed Hybrid Cryptographic Algorithm

5. Main contribution

The main contribution of the research lies in the introduction of a novel hybrid

cryptographic framework designed to enhance content security within the IPFS. By

integrating ECC with the widely adopted Secp256K1 curve and combining it with

AES 128-bit symmetric key cryptography, the proposed methodology establishes a

dual-layered encryption strategy. This approach ensures not only the confidentiality

of file content but also the secure transmission of the AES key. The benchmarking

analyses showcase significant improvements, including a 20% acceleration in

encryption speed and a 16% increase in decryption efficiency compared to the

standard AES 256-bit encryption. This contribution addresses the existing content

 23

security gap in IPFS, offering a practical and efficient solution tailored to the

decentralized and resource-variable nature of the network.

6. Proposed algorithm

The proposed methodology introduces a robust content security mechanism for the

IPFS by employing a novel hybrid cryptographic approach. This approach integrates

ECC with the Secp256K1 curve, a widely adopted standard in blockchain

applications. The ECC key generation process involves the creation of private and

public key pairs, enabling secure key exchange and encryption. In conjunction, AES

128-bit symmetric key cryptography is utilized for efficient encryption of file content.

The algorithm initiates the generation of ECC key pairs, including a private key

for decryption and a corresponding public key for encryption. Subsequently, a

random Initialization Vector (IV) is generated on the sender’s side, and a user-

provided password is converted into an AES key using SHA-256 hashing. The file

content is then encrypted using the AES key, and the AES key itself is encrypted

using the recipient’s ECC public key.

This dual-layered encryption strategy ensures both the confidentiality of the file

content and the secure transmission of the AES key. The encrypted components,

including the AES key, IV, and file content, are saved to a file and uploaded to IPFS.

The recipient can then download the encrypted file from IPFS using its Content ID

(CID) and proceed with the decryption process [2].

6.1. Enhanced hybrid cryptographic algorithm for IPFS content security

The proposed methodology aims to fortify content security within the IPFS by

introducing a hybrid cryptographic approach. This method combines the efficiency

of symmetric key cryptography, exemplified by AES 128-bit encryption, with the

robustness of asymmetric key cryptography through Elliptic Curve Cryptography

(ECC) key generation.

6.1.1. Algorithm

Step 1. Receiver ECC Key Pair Generation: The receiver initializes the process by

generating an ECC key pair: (dR, QR), where dR is the private key and QR is the public

key.

Step 2. Sender-side Random Initialization Vector (IV) Generation: On the

sender side, a random Initialization Vector IVrand is generated.

Step 3. Password to AES Key Conversion: The sender provides a password P,

which is converted to a SHA-256 Hash: AES_Key=SHA-256(P).

Step 4. Content Encryption using AES: The data or content within the files is

encrypted using the AES key – Enc_Content=AES_Encrypt(Data, AES_Key).

Step 5. ECC Public Key Encryption of AES Key: The AES key is encrypted

using the receiver’s ECC public key – Enc_AES_Key=ECC_Encrypt(QR,

AES_Key).

Step 6. Save Encrypted Components to File: The encrypted AES key, along

with the IV and the encrypted content, is saved to the file.

 24

Step 7. Upload to IPFS and Generate CID: The encrypted file is uploaded to

IPFS, and the Content ID (CID) is generated – CID=IPFS_Upload(Enc_File).

Step 8. Receiver Download from IPFS: The receiver downloads the encrypted

file from IPFS using the generated CID – Enc_File=IPFS_Download (CID).

Step 9. Encrypted Content Extraction: The receiver extracts and checks the

encrypted content

(IV, Enc_AES_Key, Enc_File_Content) = Extract_Components (Enc_File).

Step 10. AES Key Decryption using Receiver’s Private Key: The receiver

decrypts the AES key using their private key – AES_Key=ECC_Decrypt(dR,

Enc_AES_Key).

Step 11. File Content Decryption using AES: The decrypted AES key is used to

decrypt the file content – Dec_File_Content=AES_Decrypt(Enc_File_Content,

AES_Key).

Step 12. Save Decrypted File Contents: The final decrypted file contents are

saved to a file

Save_File(Dec_File_Content).

Fig. 3. Hybrid cryptographic algorithm’s flowchart

 25

Fig. 3 is a flowchart that visually represents the step-by-step process of the

algorithm, making it easier to understand its logic and functionality. This flowchart

visually guides the user through the sequential steps of the Hybrid Cryptographic

Algorithm, providing a comprehensive overview of its operations.

The proposed methodology’s flowchart ensures a robust and adaptable content

security mechanism for IPFS, leveraging the strengths of both symmetric and

asymmetric key cryptography. The hybrid approach addresses the existing

vulnerability in IPFS, providing a standardized solution for secure data storage and

retrieval within decentralized systems.

7. Results and discussion

To assess the efficacy of the proposed hybrid cryptographic approach, we conducted

rigorous benchmarking against the conventional AES 256-bit encryption and

decryption methods. The evaluation encompassed five distinct file sizes – 50 MB,

100 MB, 200 MB, 500 MB, and 1 GB – providing a comprehensive analysis

of performance across varying data volumes. The benchmarking process was

executed on five different CPU platforms, ranging from a mid-range laptop CPU

(Intel i5-8250U) to a high-performance workstation-level desktop CPU (AMD Ryzen

9 5900X).

The ensuing plots graphically represent the time efficiency achieved by both the

proposed hybrid approach and the standard AES 256-bit algorithm. The vertical axis

signifies the time required in seconds to encrypt the file, while the horizontal axis

denotes the CPU platform, with color-coded distinctions for each file size. The

deliberate arrangement of the performance bar chart, organized in descending order,

facilitates a clear understanding of time efficiency, with the highest efficiency

positioned at the top. This detailed performance evaluation aims to provide a nuanced

perspective on the comparative efficiency of the cryptographic methods employed,

shedding light on the practical implications of implementing the proposed hybrid

approach for content security within the IPFS and decentralized storage systems.

7.1. AES 256-bit encryption and decryption

The provided data from Table 1. outlines the ENCryption (ENC) and DECryption

(DEC) times (in s) for various file sizes (50 MB, 100 MB, 200 MB, 500 MB, 1000

MB) using AES 256-bit encryption on different processors (Intel i5-8250U,

i5-10400, AMD Ryzen 5 5600H, i7-11700, Ryzen 9 5900X). Key observations

include processor-dependent performance impacts, with the Intel i7-11700 and AMD

Ryzen 9 5900X demonstrating faster processing times across all file sizes. Larger

files generally result in increased encryption and decryption times.

The provided data from Table 1 outlines the ENC and DEC times (in s) for

various file sizes (50 MB, 100 MB, 200 MB, 500 MB, 1000 MB) using AES 256-bit

encryption on different processors (Intel i5-8250U, i5-10400, AMD Ryzen 5 5600H,

i7-11700, Ryzen 9 5900X). Key observations include processor-dependent

performance impacts, with the Intel i7-11700 and AMD Ryzen 9 5900X

 26

demonstrating faster processing times across all file sizes. Larger files generally

result in increased encryption and decryption times.

Table 1. AES 256-bit encryption and decryption

File size (MB) Name Mode 50 100 200 500 1000

AES

256-bit

time (s)

Intel i5-8250U
ENC 0.109 0.209 0.414 1.262 2.647

DEC 0.073 0.144 0.282 0.740 1.484

Intel i5-10400
ENC 0.088 0.169 0.334 1.020 2.138

DEC 0.059 0.116 0.228 0.597 1.199

AMD Ryzen 5 5600H
ENC 0.084 0.161 0.318 0.971 2.036

DEC 0.056 0.111 0.217 0.569 1.142

Intel i7-11700
ENC 0.044 0.085 0.167 0.511 1.072

DEC 0.030 0.058 0.114 0.299 0.601

AMD Ryzen 9 5900X
ENC 0.028 0.054 0.106 0.324 0.679

DEC 0.019 0.037 0.072 0.190 0.381

7.1.1. AES 256-bit encryption benchmarks

Fig. 4. meticulously portrays the benchmarks for AES 256-bit encryption. The

vertical axis quantifies the time, measured in seconds, required for file encryption,

while the horizontal axis delineates various CPU platforms. The deliberate

descending arrangement of the performance bar chart facilitates a discerning

assessment of time efficiency across an array of platforms and file sizes.

Fig. 4. AES 256-bit encryption benchmarks

7.1.2. AES 256-bit decryption benchmarks

Fig. 5. delves into the benchmarks for AES 256-bit decryption. The vertical axis

illustrates the time taken for decryption, while the horizontal axis encapsulates

diverse CPU platforms. This comparison offers a holistic perspective on decryption

efficiency, crucial for understanding the intricacies of cryptographic operations

across varying computational environments.

 27

Fig. 5. AES 256-bit decryption benchmarks

7.2. Hybrid AES + ECC time 256-bit encryption and decryption

The data in Table 2 illustrates ENCryption (ENC) and DECryption (DEC) times

(in s) for file sizes (50 MB, 100 MB, 200 MB, 500 MB, 1000 MB) using a hybrid

AES + ECC cryptographic algorithm on processors (Intel i5-8250U, i5-10400, AMD

Ryzen 5 5600H, i7-11700, Ryzen 9 5900X). Key observations include processor-

dependent performance impacts, with the Intel i7-11700 and AMD Ryzen 9 5900X

showing faster processing times across all file sizes. Larger files generally result in

increased encryption and decryption times due to added computational load. The

hybrid algorithm consistently demonstrates efficient cryptographic operations,

balancing security and computational efficiency. The AMD Ryzen 9 5900X

consistently outperforms other processors, emphasizing the need for careful

consideration of both processor capabilities and cryptographic algorithms based on

specific use cases and performance requirements.

Table 2. Hybrid AES + ECC Time 256-bit Encryption and decryption
File size, MB Name Mode 50 100 200 500 1000

Hybrid AES + ECC time (s)

Intel i5-8250U ENC 0.088 0.168 0.329 1.104 2.106

DEC 0.065 0.124 0.244 0.661 1.223

Intel i5-10400 ENC 0.071 0.135 0.266 0.891 1.701

DEC 0.053 0.100 0.197 0.534 0.988

AMD Ryzen 5 5600H ENC 0.068 0.129 0.253 0.849 1.620

DEC 0.050 0.095 0.187 0.508 0.940

Intel i7-11700 ENC 0.036 0.068 0.133 0.447 0.853

DEC 0.026 0.050 0.099 0.267 0.495

AMD Ryzen 9 5900X ENC 0.023 0.043 0.084 0.283 0.540

DEC 0.017 0.032 0.062 0.169 0.313

7.2.1. Hybrid AES + ECC encryption benchmarks

Fig. 6. meticulously showcases the benchmarks for the proposed hybrid approach,

juxtaposing its encryption efficiency against the standard AES 256-bit method. This

chart provides a nuanced comprehension of the hybrid approach's performance

dynamics, considering various file sizes and CPU platforms. The visual

representation aids in discerning the advantages conferred by the hybrid

cryptographic strategy.

 28

Fig. 6. Hybrid AES + ECC encryption benchmarks

7.2.2. Hybrid AES + ECC decryption benchmarks

Complementing the encryption benchmarks, Fig. 7 elucidates the decryption

efficiency of the hybrid approach. Analogous to the encryption benchmarks, this

figure facilitates a comparative analysis across diverse file sizes and CPU platforms.

The insights derived from this comparison contribute to a holistic understanding of

the cryptographic prowess of the hybrid approach.

Fig. 7. Hybrid AES + ECC decryption benchmarks

7.3. Average time comparison for encryption and decryption

The presented data in Table 3. provides median times (in s) for different file sizes

(50 MB, 100 MB, 200 MB, 500 MB, 1000 MB) in various encryption modes (ENC

and DEC) using AES 256-bit and Hybrid AES + ECC cryptographic algorithms.

When comparing median times, for AES 256-bit encryption, the algorithm exhibits

efficient cryptographic operations, with slightly longer times compared to Hybrid

AES + ECC. The Hybrid AES + ECC Algorithm, known for its balance between

security and computational efficiency, demonstrates competitive median times across

all file sizes. These findings highlight the trade-offs between encryption methods and

emphasize the importance of selecting algorithms based on specific performance

requirements and use cases.

 29

Table 3. Average Time Comparison for encryption and decryption
File size (MB) Name Mode 50 100 200 500 1000

Median time

for comparison (s)

AES 256-bit
ENC 0.084 0.163 0.319 0.983 2.260

DEC 0.059 0.111 0.218 0.580 1.112

Hybrid

AES + ECC

ENC 0.069 0.129 0.254 0.880 1.624

DEC 0.050 0.097 0.187 0.526 0.940

Figs 8 and 9 consolidate the temporal aspects of encryption and decryption,

respectively. Offering a synthesized perspective, these charts provide a comparative

overview of the average time efficiency between the proposed hybrid approach and

the standard AES 256-bit method.

Fig 8. Average time comparison for encryption

Fig. 9. Average time comparison for decryption

The integrated benchmarks distinctly underscore the superior performance

exhibited by the hybrid cryptographic approach. Specifically, it manifests a

remarkable 20% acceleration in encryption and a substantial 16% increase in

decryption efficiency in contrast to the widely utilized AES-256-bit Algorithm. These

outcomes underscore the robustness and efficiency of the proposed approach,

 30

positioning it as an innovative and pragmatic solution for fortifying content security

within IPFS and decentralized storage systems at large. The hybrid cryptographic

approach demonstrated notable advantages over the traditional AES-256 Algorithm

in terms of speed and efficiency. The flexibility of combining symmetric and

asymmetric cryptography provides an optimal balance between performance and

security. Moreover, the experiment underscores the significance of addressing

content security within IPFS to fortify its position as a reliable and secure

decentralized storage solution.

8. Conclusion

In conclusion, this research introduces a pioneering hybrid cryptographic framework

to address the critical content security gap within the IPFS. By seamlessly integrating

the efficiency of symmetric key cryptography (AES 128-bit) with the robustness of

asymmetric key cryptography (ECC), our proposed algorithm achieves a substantial

performance boost. The benchmarks affirm a remarkable 20% acceleration in

encryption speed and a 16% increase in decryption efficiency compared to the

standard AES 256-bit method. This work not only advances the understanding of

secure decentralized storage but also provides a practical and efficient solution to

fortify content security in IPFS. The hybrid cryptographic approach emerges as a

promising tool to strengthen the security fabric of blockchain-based applications

reliant on decentralized storage.

R e f e r e n c e s

1. Routray, S., et al. Secure Storage of Electronic Medical Records (EMR) on Interplanetary File

System (IPFS) Using Cloud Storage and Blockchain Ecosystem. – In: Proc. of 4th International

Conference on Electrical, Computer and Communication Technologies (ICECCT’21),

November 2021, pp. 1-9.

2. J a y a b a l a n, J., et al. Blockchain and IPFS Integrated Framework for Secure EHR Management.

– IEEE Trans. Biomed. Eng., Vol. 68, 2021, No 10, pp. 2902-2910.

3. L i, J., et al. Privacy-Preserving Blockchain Model for Supply Chain Traceability. – IEEE Trans.

Ind. Inform., Vol. 17, 2022, No 8, pp. 5236-5245.

4. M e n g, W., et al. BSDNFilter: A Trust-Based Security Mechanism for Blockchain-Based SDN. –

In: Proc. of IEEE Int. Conf. BlockchainCryptocurrency (ICBC’21), 2021.

5. Z h a n g, Y., et al. CPVPA: Certificateless Public Verification Scheme Using Blockchain. – IEEE

Trans. Cloud Comput., Vol. 10, 2022, No 5, pp. 994-1007.

6. Z h a n g, G., et al. Blockchain-Based Decentralized SCM System with Secure Information Sharing.

– IEEE Trans. Eng. Manage., Vol. 69, 2022, No 2, pp. 234-246.

7. H e, B., et al. Charitable Donation System Based on Ethereum Blockchain. – IEEE Trans. Serv.

Comput., Vol. 15, 2022, No 4, pp. 639-651.

8. B a r g e r, A., et al. Blockchain-Based Charity Foundation Platform on Hyperledger Fabric. – IEEE

Trans. Technol. Soc., Vol. 10, 2023, No 3, pp. 543-555.

9. U d d i n, M. N., et al. Design Principles Based on Information Security in Blockchain and IPFS. –

IEEE Trans. Depends. Secure Comput., Vol. 19, 2022, No 1, pp. 76-89.

10. D o a n, T. V., V. B a j p a i, Y. P s a r a s, J. O t t.Towards Decentralized Cloud Storage with IPFS:

Opportunities, Challenges, and Future Directions. – arXiv 2022, arXiv:2202.06315.

11. K a n g, P., W. Y a n g, J. Z h e n g. Blockchain Private File Storage-Sharing Method Based on IPFS.

– Sensors, Vol. 22, 2022, No 14, 5100.

 31

12. B a t t a h, A. A., et al. Blockchain-Based Multi-Party Authorization for Accessing IPFS Encrypted

Data. – IEEE Access, Vol. 8, pp. 196813-196825.

13. Z h a n g, Q., Z. Z h a o. Distributed Storage Scheme for Encryption Speech Data Based on

Blockchain and IPFS. – The Journal of Supercomputing, Vol. 79, 2023, No 1, pp. 897-923.

14. U l l a, M. M., M. S. K h a n, D. S. S a k k a r i. Implementation of Elliptic Curve Cryptosystem with

Bitcoin Curves on SECP256k1, NIST256p, NIST521p, and LLL. – Journal of ICT

Standardization, Vol. 11, 2023, No 4, pp. 329-353.

15. B o s, J. W., et al. Elliptic Curve Cryptography in Practice. – In: Proc. of 18th International

Conference of Financial Cryptography and Data Security (FC’14), Christ Church, Barbados,

3-7 March 2014, Berlin, Heidelberg, Springer, Revised Selected Papers 18, pp. 157-175.

16. S t o r u b l e v t c e v, N. Cryptography in Blockchain. – In: Proc. of 19th International Conference

of Computational Science and Its Applications (ICCSA’19), Saint Petersburg, Russia, 1-4 July

2019, Springer International Publishing, Proceedings, Part II 19, 2019, pp. 495-508.

17. C h o i, S., et al. A Server-Based Distributed Storage Using Secret Sharing with AES-256 for

Lightweight Safety Restoration. – IEICE Transactions on Information and Systems, Vol. 103,

No 7, pp. 1647-1659.

18. R a j p u t, S., J. S. D h o b i, L. J. G a d h a v i. Enhancing Data Security Using AES Encryption

Algorithm in Cloud Computing. – In: Proc. of 1st International Conference on Information and

Communication Technology for Intelligent Systems, Springer International Publishing,

Vol. 2, 2016, pp. 135-143.

19. S a s s a n i, B. A., et al. Evaluating Encryption Algorithms for Sensitive Data Using Different

Storage Devices. – Scientific Programming, 2020, pp. 1-9.

20. A l z o u b i, Y e h i a I b r a h i m, A l j a a f r e h, A l i. Blockchain-Fog Computing Integration

Applications: A Systematic Review. – Cybernetics and Information Technologies, Vol. 23,

2023, No 1, pp. 3-37.

21. J a d h a v, S. V., S. P. P a t i l, S. B. P a t i l, D. D. P a t o d i a, A. P o k h a r k a r. Decentralized Data

Storage Solutions Using Hyperledger Fabric. – In: Proc. of International Conference on Signal

Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT’23),

Karaikal, India, 2023, pp. 1-6. DOI: 10.1109/IConSCEPT57958.2023.10170327.

22. K a n s h i, A v a n e e s h, S o u n d r a p a n d i y a n, R a j k u m a r, V. S. A n i t a S o f i a,

V. R. R a j a s e k a r. Hybridized Cryptographic Encryption and Decryption Using Advanced

Encryption Standard and Data Encryption Standard. – Cybernetics and Information

Technologies, Vol. 23, 2023, No 4, pp. 63-78.

Received: 31.01.2024; Accepted: 05.03.2024 (fast track)

