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Abstract: The evolution of decentralized storage, propelled by blockchain 

advancements, has revolutionized data management. This paper focuses on content 

security in the InterPlanetary File System (IPFS), a leading decentralized storage 

network lacking inherent content encryption. To address this vulnerability, we 

propose a novel hybrid cryptographic algorithm, merging AES 128-bit encryption 

with Elliptic Curve Cryptography (ECC) key generation. The algorithm includes 

ECC key pairs, random IV generation, and content/AES key encryption using ECC 

public keys. Benchmarking against standard AES 256-bit methods shows a 

significant 20% acceleration in encryption speed and a 16% increase in decryption 

efficiency, affirming practicality for enhancing IPFS content security. This research 

contributes to securing decentralized storage and provides a performance-driven 

solution. The promising results highlight the viability of the proposed approach, 

advancing understanding and mitigating security concerns in IPFS and similar 

systems.  

Keywords: Blockchain, IPFS, Content security, Hybrid cryptography, Elliptic curve 

cryptography.  

1. Introduction 

The landscape of decentralized applications, particularly those built on blockchain 

technology, has brought about transformative possibilities, challenging traditional 

centralized frameworks [20]. Blockchain applications inherently possess robust 

security features through the utilization of digital signatures, cryptography, and 

hashing techniques. However, as these decentralized applications encounter 

limitations in storage capacity, the integration of decentralized storage solutions, such 

as the InterPlanetary File System (IPFS), becomes imperative [8]. While the 

blockchain itself boasts inherent security attributes, the integration of decentralized 

storage introduces new challenges, especially in the domain of content security. In 

contrast to traditional centralized storage systems, IPFS, a widely adopted 

decentralized storage solution, lacks built-in content security measures [6]. The 

absence of native content encryption poses a potential threat to the overall security of 
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applications utilizing both blockchain and decentralized storage. The combination of 

blockchain’s intrinsic security features with the vulnerabilities introduced by 

decentralized storage underscores the necessity for a holistic approach [21]. 

Blockchain’s digital signatures, cryptography, and hashing ensure the integrity and 

authenticity of data within the system. However, the decentralized nature of IPFS [5], 

coupled with its lack of built-in content security, leaves data accessible to anyone 

with knowledge of the Content IDentifier (CID). This poses a significant concern, as 

sensitive information stored on IPFS may be exposed without proper encryption 

safeguards. In addition to these challenges, blockchain applications incorporating 

decentralized storage face vulnerabilities arising from the complex interplay between 

blockchain technology and storage systems. One notable vulnerability lies in the 

potential exposure of sensitive data during the retrieval process, raising concerns 

about the confidentiality of data during transit from the decentralized storage layer to 

the blockchain application. Furthermore, the distributed consensus mechanism 

inherent in blockchain networks introduces challenges related to data consistency, 

potentially enabling malicious actors to exploit disparities for unauthorized access or 

manipulation. 

This paper addresses the critical intersection of blockchain-based applications 

and decentralized storage, recognizing the need to bridge the gap in content security. 

The focus is on IPFS, a prominent decentralized storage solution, which, while 

offering advantages in distribution and accessibility, presents challenges in ensuring 

the confidentiality of stored data. The subsequent sections delve into the intricacies 

of this challenge and propose a novel hybrid cryptographic algorithm. By blending 

the security strengths of symmetric key cryptography (AES 128-bit encryption) with 

asymmetric key cryptography (Elliptic Curve Cryptography – ECC), the proposed 

solution aims to fortify content security within IPFS. The algorithm encrypts both the 

file content and the AES key, mitigating the inherent vulnerability in IPFS and 

ensuring a secure and private storage environment for decentralized applications [4]. 

Through comprehensive benchmarking analyses and performance evaluations, this 

research aims to validate the effectiveness of the proposed hybrid approach. By 

addressing the security limitations introduced by decentralized storage, this work 

contributes to the broader discourse on enhancing the overall security posture of 

decentralized applications. This comprehensive exploration seeks to provide valuable 

insights and practical solutions for securing sensitive data within the evolving 

landscape of decentralized technologies.  

2. Literature survey 

The literature review indicates that existing research primarily focuses on 

decentralized storage, privacy-preserving blockchain models, and trust-based 

security mechanisms. However, a dedicated and standardized approach to content 

security within IPFS is lacking [7]. 

The integration of blockchain and the IPFS for secure Health Electronic Record 

(HER) management has been a subject of recent exploration [1]. Additionally, 

privacy concerns in supply chain traceability have prompted the development of 



 18 

privacy-preserving blockchain models [2], and trust-based security mechanisms such 

as BSDNFilter have been proposed for blockchain-based Software-Defined 

Networking (SDN) [3].  

Blockchain technology is also employed in certificateless public verification 

schemes [4] and secure information sharing in decentralized supply chain 

management systems [5]. Charitable donation systems [6] and charity foundation 

platforms [7] leverage blockchain technology for transparency and accountability. 

Within the realm of decentralized storage, Uddin et al. explore design principles 

based on information security in blockchain and IPFS [8]. Furthermore, efforts have 

been made towards decentralized cloud storage using IPFS [9], a blockchain-based 

private file storage-sharing method on IPFS [10], and a blockchain-based multi-party 

authorization for accessing IPFS encrypted data [11]. 

Despite these advancements in decentralized storage and blockchain 

applications, a significant research gap exists concerning standardized content 

encryption mechanisms within IPFS. The literature reveals that while IPFS employs 

transport encryption to secure data transmission, it lacks built-in content encryption, 

leaving data vulnerable to unauthorized access [2, 8]. This gap in content security 

within IPFS poses a substantial challenge, particularly as sensitive information stored 

on the IPFS network may be exposed without proper encryption safeguards. 

Research gap. The existing literature highlights the need for a comprehensive 

and standardized content security mechanism within IPFS. The literature review 

indicates that existing research primarily focuses on decentralized storage, privacy-

preserving blockchain models, and trust-based security mechanisms. However, a 

dedicated and standardized approach to content security within IPFS is lacking.  The 

proposed methodology fills this gap by introducing a hybrid cryptographic solution 

tailored to the decentralized and resource-variable nature of IPFS. 

3. Background 

3.1. Hybrid cryptographic approach selection 

The selection of a hybrid cryptographic approach, combining AES 128-bit symmetric 

key cryptography with ECC key generation for both private and public keys, is driven 

by the need to strike a balance between efficiency and security in the context of 

content security for IPFS.` 

3.2. Strengths of AES 128-bit symmetric key cryptography 

 Efficiency. AES 128-bit encryption is known for its computational efficiency 

while providing a high level of security [22]. It strikes a balance between performance 

and cryptographic strength, making it suitable for a decentralized storage system like 

IPFS where computational resources may vary across nodes [2]. 

 Speed. AES 128-bit encryption/decryption operations are faster compared to 

higher-bit variants. This is crucial for a distributed storage network where real-time 

access to data is essential. 
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 Widespread adoption. AES is a widely adopted standard for symmetric key 

cryptography, ensuring compatibility and interoperability with various systems and 

platforms [16]. 

3.3. Advantages of ECC key generation 

 Strong security with shorter key lengths. ECC offers robust security with 

shorter key lengths compared to traditional RSA. This is particularly advantageous 

in resource-constrained environments, common in decentralized networks, as shorter 

keys require less computational power for key generation and transmission. 

 Efficient key exchange. ECC provides efficient key exchange mechanisms, 

reducing the overhead associated with establishing secure communication channels. 

This is crucial for securely transmitting the AES key between the sender and the 

receiver in the proposed hybrid approach. 

 Suitability for resource-constrained environments. ECC’s efficient use of 

resources makes it well-suited for environments with limited computational capacity, 

ensuring that the proposed content security solution remains lightweight and feasible 

in decentralized storage scenarios. 

3.4. Balancing efficiency and security 

 Optimal resource utilization. By combining AES 128-bit encryption with 

ECC key generation, the hybrid approach optimally utilizes resources, ensuring a 

reasonable level of security without imposing excessive computational overhead. 

 Adaptability to decentralized environments. The hybrid approach is 

tailored to the decentralized nature of IPFS [3], where nodes may have varying 

computational capabilities. It allows for a standardized yet adaptable content security 

solution that can be efficiently implemented across a diverse network. 

3.5. Flexibility in key management 

 Separation of concerns. Separating the encryption of content using AES 

from the encryption of the AES key using ECC provides flexibility [17]. It allows for 

different key management strategies, contributing to the modular design of the 

proposed solution. 

In summary, the hybrid cryptographic approach is strategically chosen to 

harness the efficiency of AES 128-bit encryption and the security advantages of ECC 

key generation. This careful balance ensures that content security on IPFS remains 

robust, adaptable, and well-suited to the decentralized and resource-variable nature 

of the network. 

4. Mathematical background 

4.1. Elliptic Curve Cryptography with Secp256K1 curve specification 

Elliptic Curve Cryptography is a public-key cryptography technique that relies on the 

mathematics of elliptic curves over finite fields. The Secp256K1 curve, specifically 
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used in Bitcoin and other blockchain applications, is defined over a prime field and 

has gained prominence due to its efficiency and security properties. 
 

 
Fig. 1. ECC curve 

4.2. Secp256K1 curve specifications 

4.2.1. Equation of the curve 

The equation for the Secp256K1 elliptic curve is given by the equation 

y2=x3+7(modp) where p is a prime number that defines the size of the finite field. 

4.2.2. Curve parameters p, a, b 

p (prime modulus), p: = 2256−232−29−28−27−26−24−1, 

a: 0 and b: 7 

x:0662630222773436695787188951685343262506034537775941755001873

6038911672924055066263022277343669578718895168534326250603453777594

175500187360389116729240 

y:3267051002075881697808308513050704318447127338065924327593890

4335757337482424326705100207588169780830851305070431844712733806592

43275938904335757337482424 

n (order of the base point): 1579208923731619542357098500868790785283 

7564279074904382605163141518161494337115792089237316195423570985008

687907852837564279074904382605163141518161494337 

4.2.3. Curve parameters 

 Generator point G 

The generator point G is a fixed point on the curve, and it is used to derive public 

keys from private keys. 

It is a specific point on the curve that, when multiplied by an integer d (private 

key), yields another point on the curve (public key). 

4.2.4. Equations used in ECC 

 Point addition P+Q 

For two points P(xp, yp) and Q(xq, yq), the sum is calculated as:  

(1)    
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if
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(2)    xR = (λ2 − xp − xq) mod p, 

(3)    yR = (λ(xp − xR) − yp) mod p,  

where λ is the slope of the line passing through P and Q. 

 Point doubling (2P) 

The doubling of a point P(xp, yp) is calculated as:  

(4)    xR = (λ2 − 2xp) mod p, 

(5)    yR = (λ(xp − xR) − yp) mod p,      

where λ is the slope of the tangent line to the curve at point P. 

These equations form the basis for ECC operations on the Secp256K1 curve, 

providing secure and efficient key exchange in cryptographic applications. 

4.2.5. Key generation process 

 Private key d 

A random 256-bit number is chosen as the private key. 

 Public key Q 

The public key Q is derived by multiplying the generator point G with the 

private key d: Q=d×G 

4.2.6. ECC encryption and decryption 

ECC is primarily used for key exchange and digital signatures. In the proposed hybrid 

cryptographic approach, ECC is employed for key exchange. The AES key, generated 

for content encryption, is encrypted using the ECC public key. 

4.2.7. Key exchange process 

The receiver generates an ECC key pair (dreceiver, Qreceiver). 

4.2.8. AES key encryption 

The sender generates a random Initialization Vector (IV). 

The sender converts a password into a SHA-256 hash, which is used as the AES 

key. 

The AES key is encrypted using the ECC public key (Qreceiver). 

4.2.9. Transmission 

The encrypted AES key, along with the IV and the encrypted content, is saved to the 

file and uploaded to IPFS. 

Fig. 2 elaborates on a block diagram of a proposed Hybrid Cryptographic 

Algorithm. The block diagram illustrates the synergy between symmetric and 

asymmetric key cryptography, enhancing the overall security of the cryptographic 

system. This hybrid approach leverages the efficiency of symmetric key 

cryptography for data encryption while benefiting from the secure key exchange 

provided by asymmetric key cryptography. 
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Fig. 2. Block diagram of proposed Hybrid Cryptographic Algorithm 

5. Main contribution 

The main contribution of the research lies in the introduction of a novel hybrid 

cryptographic framework designed to enhance content security within the IPFS. By 

integrating ECC with the widely adopted Secp256K1 curve and combining it with 

AES 128-bit symmetric key cryptography, the proposed methodology establishes a 

dual-layered encryption strategy. This approach ensures not only the confidentiality 

of file content but also the secure transmission of the AES key. The benchmarking 

analyses showcase significant improvements, including a 20% acceleration in 

encryption speed and a 16% increase in decryption efficiency compared to the 

standard AES 256-bit encryption. This contribution addresses the existing content 
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security gap in IPFS, offering a practical and efficient solution tailored to the 

decentralized and resource-variable nature of the network. 

6. Proposed algorithm 

The proposed methodology introduces a robust content security mechanism for the 

IPFS by employing a novel hybrid cryptographic approach. This approach integrates 

ECC with the Secp256K1 curve, a widely adopted standard in blockchain 

applications. The ECC key generation process involves the creation of private and 

public key pairs, enabling secure key exchange and encryption. In conjunction, AES 

128-bit symmetric key cryptography is utilized for efficient encryption of file content. 

The algorithm initiates the generation of ECC key pairs, including a private key 

for decryption and a corresponding public key for encryption. Subsequently, a 

random Initialization Vector (IV) is generated on the sender’s side, and a user-

provided password is converted into an AES key using SHA-256 hashing. The file 

content is then encrypted using the AES key, and the AES key itself is encrypted 

using the recipient’s ECC public key. 

This dual-layered encryption strategy ensures both the confidentiality of the file 

content and the secure transmission of the AES key. The encrypted components, 

including the AES key, IV, and file content, are saved to a file and uploaded to IPFS. 

The recipient can then download the encrypted file from IPFS using its Content ID 

(CID) and proceed with the decryption process [2]. 

6.1. Enhanced hybrid cryptographic algorithm for IPFS content security 

The proposed methodology aims to fortify content security within the IPFS by 

introducing a hybrid cryptographic approach. This method combines the efficiency 

of symmetric key cryptography, exemplified by AES 128-bit encryption, with the 

robustness of asymmetric key cryptography through Elliptic Curve Cryptography 

(ECC) key generation. 

6.1.1. Algorithm 

Step 1. Receiver ECC Key Pair Generation: The receiver initializes the process by 

generating an ECC key pair: (dR, QR), where dR is the private key and QR is the public 

key. 

Step 2. Sender-side Random Initialization Vector (IV) Generation: On the 

sender side, a random Initialization Vector IVrand is generated. 

Step 3. Password to AES Key Conversion: The sender provides a password P, 

which is converted to a SHA-256 Hash: AES_Key=SHA-256(P). 

Step 4. Content Encryption using AES: The data or content within the files is 

encrypted using the AES key – Enc_Content=AES_Encrypt(Data, AES_Key). 

Step 5. ECC Public Key Encryption of AES Key: The AES key is encrypted 

using the receiver’s ECC public key – Enc_AES_Key=ECC_Encrypt(QR, 

AES_Key). 

Step 6. Save Encrypted Components to File: The encrypted AES key, along 

with the IV and the encrypted content, is saved to the file. 
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Step 7. Upload to IPFS and Generate CID: The encrypted file is uploaded to 

IPFS, and the Content ID (CID) is generated – CID=IPFS_Upload(Enc_File). 

Step 8. Receiver Download from IPFS: The receiver downloads the encrypted 

file from IPFS using the generated CID – Enc_File=IPFS_Download (CID). 

Step 9. Encrypted Content Extraction: The receiver extracts and checks the 

encrypted content  

(IV, Enc_AES_Key, Enc_File_Content) = Extract_Components (Enc_File). 

Step 10. AES Key Decryption using Receiver’s Private Key: The receiver 

decrypts the AES key using their private key – AES_Key=ECC_Decrypt(dR, 

Enc_AES_Key). 

Step 11. File Content Decryption using AES: The decrypted AES key is used to 

decrypt the file content – Dec_File_Content=AES_Decrypt(Enc_File_Content, 

AES_Key). 

Step 12. Save Decrypted File Contents: The final decrypted file contents are 

saved to a file 

Save_File(Dec_File_Content). 
 

 
Fig. 3. Hybrid cryptographic algorithm’s flowchart 
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Fig. 3 is a flowchart that visually represents the step-by-step process of the 

algorithm, making it easier to understand its logic and functionality. This flowchart 

visually guides the user through the sequential steps of the Hybrid Cryptographic 

Algorithm, providing a comprehensive overview of its operations. 

The proposed methodology’s flowchart ensures a robust and adaptable content 

security mechanism for IPFS, leveraging the strengths of both symmetric and 

asymmetric key cryptography. The hybrid approach addresses the existing 

vulnerability in IPFS, providing a standardized solution for secure data storage and 

retrieval within decentralized systems. 

7. Results and discussion  

To assess the efficacy of the proposed hybrid cryptographic approach, we conducted 

rigorous benchmarking against the conventional AES 256-bit encryption and 

decryption methods. The evaluation encompassed five distinct file sizes – 50 MB, 

100 MB, 200 MB, 500 MB, and 1 GB – providing a comprehensive analysis  

of performance across varying data volumes. The benchmarking process was 

executed on five different CPU platforms, ranging from a mid-range laptop CPU 

(Intel i5-8250U) to a high-performance workstation-level desktop CPU (AMD Ryzen 

9 5900X). 

The ensuing plots graphically represent the time efficiency achieved by both the 

proposed hybrid approach and the standard AES 256-bit algorithm. The vertical axis 

signifies the time required in seconds to encrypt the file, while the horizontal axis 

denotes the CPU platform, with color-coded distinctions for each file size. The 

deliberate arrangement of the performance bar chart, organized in descending order, 

facilitates a clear understanding of time efficiency, with the highest efficiency 

positioned at the top. This detailed performance evaluation aims to provide a nuanced 

perspective on the comparative efficiency of the cryptographic methods employed, 

shedding light on the practical implications of implementing the proposed hybrid 

approach for content security within the IPFS and decentralized storage systems. 

7.1. AES 256-bit encryption and decryption 

The provided data from Table 1. outlines the ENCryption (ENC) and DECryption 

(DEC) times (in s) for various file sizes (50 MB, 100 MB, 200 MB, 500 MB, 1000 

MB) using AES 256-bit encryption on different processors (Intel i5-8250U,  

i5-10400, AMD Ryzen 5 5600H, i7-11700, Ryzen 9 5900X). Key observations 

include processor-dependent performance impacts, with the Intel i7-11700 and AMD 

Ryzen 9 5900X demonstrating faster processing times across all file sizes. Larger 

files generally result in increased encryption and decryption times. 

The provided data from Table 1 outlines the ENC and DEC times (in s) for 

various file sizes (50 MB, 100 MB, 200 MB, 500 MB, 1000 MB) using AES 256-bit 

encryption on different processors (Intel i5-8250U, i5-10400, AMD Ryzen 5 5600H, 

i7-11700, Ryzen 9 5900X). Key observations include processor-dependent 

performance impacts, with the Intel i7-11700 and AMD Ryzen 9 5900X 



 26 

demonstrating faster processing times across all file sizes. Larger files generally 

result in increased encryption and decryption times. 

Table 1. AES 256-bit encryption and decryption 

File size (MB) Name Mode 50 100 200 500 1000 

AES 

256-bit 

time (s) 

Intel i5-8250U 
ENC 0.109 0.209 0.414 1.262 2.647 

DEC 0.073 0.144 0.282 0.740 1.484 

Intel i5-10400 
ENC 0.088 0.169 0.334 1.020 2.138 

DEC 0.059 0.116 0.228 0.597 1.199 

AMD Ryzen 5 5600H 
ENC 0.084 0.161 0.318 0.971 2.036 

DEC 0.056 0.111 0.217 0.569 1.142 

Intel i7-11700 
ENC 0.044 0.085 0.167 0.511 1.072 

DEC 0.030 0.058 0.114 0.299 0.601 

AMD Ryzen 9 5900X 
ENC 0.028 0.054 0.106 0.324 0.679 

DEC 0.019 0.037 0.072 0.190 0.381 

7.1.1. AES 256-bit encryption benchmarks 

Fig. 4. meticulously portrays the benchmarks for AES 256-bit encryption. The 

vertical axis quantifies the time, measured in seconds, required for file encryption, 

while the horizontal axis delineates various CPU platforms. The deliberate 

descending arrangement of the performance bar chart facilitates a discerning 

assessment of time efficiency across an array of platforms and file sizes. 

 

 
Fig. 4. AES 256-bit encryption benchmarks 

7.1.2. AES 256-bit decryption benchmarks  

Fig. 5. delves into the benchmarks for AES 256-bit decryption. The vertical axis 

illustrates the time taken for decryption, while the horizontal axis encapsulates 

diverse CPU platforms. This comparison offers a holistic perspective on decryption 

efficiency, crucial for understanding the intricacies of cryptographic operations 

across varying computational environments. 
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Fig. 5. AES 256-bit decryption benchmarks 

7.2. Hybrid AES + ECC time 256-bit encryption and decryption 

The data in Table 2 illustrates ENCryption (ENC) and DECryption (DEC) times  

(in s) for file sizes (50 MB, 100 MB, 200 MB, 500 MB, 1000 MB) using a hybrid 

AES + ECC cryptographic algorithm on processors (Intel i5-8250U, i5-10400, AMD 

Ryzen 5 5600H, i7-11700, Ryzen 9 5900X). Key observations include processor-

dependent performance impacts, with the Intel i7-11700 and AMD Ryzen 9 5900X 

showing faster processing times across all file sizes. Larger files generally result in 

increased encryption and decryption times due to added computational load. The 

hybrid algorithm consistently demonstrates efficient cryptographic operations, 

balancing security and computational efficiency. The AMD Ryzen 9 5900X 

consistently outperforms other processors, emphasizing the need for careful 

consideration of both processor capabilities and cryptographic algorithms based on 

specific use cases and performance requirements.  

Table 2. Hybrid AES + ECC Time 256-bit Encryption and decryption 
File size, MB Name Mode 50 100 200 500 1000 

Hybrid AES + ECC time (s) 

Intel i5-8250U ENC 0.088 0.168 0.329 1.104 2.106 

DEC 0.065 0.124 0.244 0.661 1.223 

Intel i5-10400 ENC 0.071 0.135 0.266 0.891 1.701 

DEC 0.053 0.100 0.197 0.534 0.988 

AMD Ryzen 5 5600H ENC 0.068 0.129 0.253 0.849 1.620 

DEC 0.050 0.095 0.187 0.508 0.940 

Intel i7-11700 ENC 0.036 0.068 0.133 0.447 0.853 

DEC 0.026 0.050 0.099 0.267 0.495 

AMD Ryzen 9 5900X ENC 0.023 0.043 0.084 0.283 0.540 

DEC 0.017 0.032 0.062 0.169 0.313 

7.2.1. Hybrid AES + ECC encryption benchmarks 

Fig. 6. meticulously showcases the benchmarks for the proposed hybrid approach, 

juxtaposing its encryption efficiency against the standard AES 256-bit method. This 

chart provides a nuanced comprehension of the hybrid approach's performance 

dynamics, considering various file sizes and CPU platforms. The visual 

representation aids in discerning the advantages conferred by the hybrid 

cryptographic strategy. 
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Fig. 6. Hybrid AES + ECC encryption benchmarks 

7.2.2. Hybrid AES + ECC decryption benchmarks 

Complementing the encryption benchmarks, Fig. 7 elucidates the decryption 

efficiency of the hybrid approach. Analogous to the encryption benchmarks, this 

figure facilitates a comparative analysis across diverse file sizes and CPU platforms. 

The insights derived from this comparison contribute to a holistic understanding of 

the cryptographic prowess of the hybrid approach. 

 
Fig. 7. Hybrid AES + ECC decryption benchmarks 

7.3. Average time comparison for encryption and decryption  

The presented data in Table 3. provides median times (in s) for different file sizes  

(50 MB, 100 MB, 200 MB, 500 MB, 1000 MB) in various encryption modes (ENC 

and DEC) using AES 256-bit and Hybrid AES + ECC cryptographic algorithms. 

When comparing median times, for AES 256-bit encryption, the algorithm exhibits 

efficient cryptographic operations, with slightly longer times compared to Hybrid 

AES + ECC. The Hybrid AES + ECC Algorithm, known for its balance between 

security and computational efficiency, demonstrates competitive median times across 

all file sizes. These findings highlight the trade-offs between encryption methods and 

emphasize the importance of selecting algorithms based on specific performance 

requirements and use cases. 
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Table 3. Average Time Comparison for encryption and decryption 
File size (MB) Name Mode 50 100 200 500 1000 

Median time  

for comparison (s) 

AES 256-bit 
ENC 0.084 0.163 0.319 0.983 2.260 

DEC 0.059 0.111 0.218 0.580 1.112 

Hybrid  

AES + ECC 

ENC 0.069 0.129 0.254 0.880 1.624 

DEC 0.050 0.097 0.187 0.526 0.940 

Figs 8 and 9 consolidate the temporal aspects of encryption and decryption, 

respectively. Offering a synthesized perspective, these charts provide a comparative 

overview of the average time efficiency between the proposed hybrid approach and 

the standard AES 256-bit method. 

 

 
Fig 8. Average time comparison for encryption 

 

 
Fig. 9. Average time comparison for decryption 

 

The integrated benchmarks distinctly underscore the superior performance 

exhibited by the hybrid cryptographic approach. Specifically, it manifests a 

remarkable 20% acceleration in encryption and a substantial 16% increase in 

decryption efficiency in contrast to the widely utilized AES-256-bit Algorithm. These 

outcomes underscore the robustness and efficiency of the proposed approach, 
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positioning it as an innovative and pragmatic solution for fortifying content security 

within IPFS and decentralized storage systems at large. The hybrid cryptographic 

approach demonstrated notable advantages over the traditional AES-256 Algorithm 

in terms of speed and efficiency. The flexibility of combining symmetric and 

asymmetric cryptography provides an optimal balance between performance and 

security. Moreover, the experiment underscores the significance of addressing 

content security within IPFS to fortify its position as a reliable and secure 

decentralized storage solution. 

8. Conclusion 

In conclusion, this research introduces a pioneering hybrid cryptographic framework 

to address the critical content security gap within the IPFS. By seamlessly integrating 

the efficiency of symmetric key cryptography (AES 128-bit) with the robustness of 

asymmetric key cryptography (ECC), our proposed algorithm achieves a substantial 

performance boost. The benchmarks affirm a remarkable 20% acceleration in 

encryption speed and a 16% increase in decryption efficiency compared to the 

standard AES 256-bit method. This work not only advances the understanding of 

secure decentralized storage but also provides a practical and efficient solution to 

fortify content security in IPFS. The hybrid cryptographic approach emerges as a 

promising tool to strengthen the security fabric of blockchain-based applications 

reliant on decentralized storage. 
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