
 3 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 24, No 2 

Sofia  2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2024-0012 

 

 

Maximal Generalized Network Flow Accounting for Motivation 

Vassil Sgurev, Lyubka Doukovska, Ekaterina Tsopanova 

Bulgarian Academy of Sciences, Institute of Information and Communication Technologies, 1113 Sofia, 

Bulgaria  

E-mails: vsgurev@gmail.com lyubka.doukovska@iict.bas.bg tsopanova.ekaterina@gmail.com 

Abstract: In the present work, the maximal generalized network flow, often referred 

to as the profit-loss flow, is examined, considering the motivation in the decision-

making systems built on this flow. The general description of the features of 

motivation as a psychological process actively involved in decision-making systems 

through the generalized network flow is given. A method is proposed to embed 

motivation in a generalized network flow through the motivation coefficients on 

different network sections (arcs). It is shown that the proposed method offers more 

possibilities than the classical network flow. It is proven that the initial resource in 

the source does not match the final resource in the consumer. This has been suggested 

to be due to the influence of motivation. The theoretical and experimental results 

convincingly prove the possibilities of considering motivation in decision-making 

systems when managing the transportation of resources in an arbitrary transport 

network. 

Keywords: Intelligent systems, Generalized network flow, Decision-making systems, 

Motivation.  

1. Introduction 

The topic of motivation is taking a more and more important place in the 

everchanging modern economic world. There is a search for and application of 

methods, techniques, and means for securing qualified, highly productive, and loyal 

personnel, capable of achieving the organization's goals in medium-term and long-

term perspective. The accent is placed upon the need for people to be stimulated or 

motivated, which in turn determines specific directions in human behavior. 

Psychology is one of the fastest-growing research fields of human behavior. In 

this behavior, an essential role is played by motivation, which is an important factor 

for human survival and progress. The rapid development of various fields of science 

and technology leads to the integration of one scientific field into another and to their 

mutual enrichment with modern research methods and means [9, 10].  

In recent years, there has been a trend towards intensive use of mathematical 

methods, models, and software tools to describe various processes in psychology, 

including motivation. Decision-making systems play a very important role in this 
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activity. In paper [13] analyzes the different definitions of a negator of a probability 

mass function and a basic belief assignment. 

Based on the analysis, it is constated that discrete systems for decision-making 

based on network flows allow a precise and adequate accounting of the behavior of 

motivation in these systems. The object of this research is the influence of the 

subjective factor in decision-making systems and in particular that of motivation in 

human-machine decision-making systems. 

The present work examines the problems of describing motivation from the 

point of view of decision-making capabilities. To solve this problem, a discrete 

mathematical model based on a certain class of network flows is proposed. It is shown 

that the min-cut-maxflow theorem holds in the maximal generalized network flow. It 

is proven that the number of minimal cuts in the generalized network flow is equal to 

or greater than in the analogous classical network flow. It is shown that the values of 

the different minimal cuts of the generalized maximal network flow can be different. 

The obtained theoretical results are confirmed by a numerical example for the 

determination of the maximal generalized network flow with motivation. 

2. Motivation in decision-making systems 

Motivation is an extremely complex psychological process that is involved not only 

in making operational and strategic decisions but also in a person’s daily life [11, 12]. 

There are many different types of motivation. The most general is the 

classification of intrinsic and extrinsic motivation. 

As a result of the research activity, various theories have been developed and 

applied, each of which seeks to explain this complex psychological process, which in 

certain situations can have a decisive influence on making a variety of decisions. 

The advent of computer technology has led to the creation of information 

processing systems through which effective decisions can be made or to support the 

making of such decisions. 

In this class, decision-making systems require careful selection of appropriate 

mathematical structures that best suit their operation. 

In production, military, and transportation systems, the main features of these 

systems are embedded, as well as the methods to calculate the optimal or pseudo-

optimal solutions. Motivation or other psychological processes should also be 

appropriately incorporated into these frameworks. 

In most complex systems like these to manage large production complexes and 

traffic on complex transport networks, the man – dispatcher or manager – has a 

decisive influence. When he is well motivated, his human-machine decisions are 

better reasoned and effective. Insufficiently well-reasoned decisions lead to 

significant losses, especially in large controlled systems. All this leads to the need for 

preliminary formalization of motivation and to the possibilities of its being built into 

the basic model of the management system. It is necessary to transfer bridges between 

psychological processes – such as motivation and the deterministic models of control 

that are currently widespread. 
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Relatively good opportunities to embed motivation in mathematical 

management models offer the processes for managing the transportation of resources 

on production transport networks [1, 2]. 

Using network flows to build the control system proves to be an effective tool 

in many cases. It is relatively easy to incorporate the motivation processes, which can 

have different values for different sections of the networks. Generalized network 

flows, often called gain and loss flows, provide the best opportunities for this. There, 

the influence of motivation on decisions can be assessed both quantitatively and 

qualitatively. Decisions are made and implemented upon reaching the end of the 

section along which the resource is being transported and determining how much of 

this resource and which of the following sections should be taken [3]. 

Such consistent decisions on the transportation of the resource in the network 

are necessary, which allow reaching the maximal possible transportation of the 

product, taking into account the motivation and the costs of the respective sections. 

In the language of network flows, this means to determine the maximal generalized 

network flow with consideration of motivation. 

3. Features of the maximal generalized network flow with consideration 

of motivation 

For the formal description of the maximal generalized flow with consideration of the 

motivation, the following notations are needed [1-3]: 

 JIUX ,,,  – symbols of sets; 

 ...,,),,(,,
ijijiji

acjixx  – symbols of set elements; 

X  – power of the set X; 

 – empty set symbol; 

I – set of the indices of the elements ix  of X; 

  ;;...,,,,
321

IiiiiiI
jk
  

X – set of all vertices of the graph   :, UXG  

  ;;;...,,,,
321

IiXxxxxxX
in

  

where ix is a vertex of the graph; 

U – set of all arcs of the graph  UXG ,  for which ;),( Uxxx
jiij
  

J – set of all pairs of indices corresponding to the arcs. 

(1)  UxIjIijiJ
ij
 ;;),( , 

where: 

(2)    ;),(; JjixUIixX
iji

  

1

i – direct image equal to the set of the indices of all vertices  ,
j

x  that are 

terminal vertices of the arc ,),(
jiij

xxx   i.e.,: 

(3)  ;;),(1 IjJjiji   
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1

i – inverse image showing the set of indices of all vertices that are terminal 

vertices of the arc :),(
ijji

xxx   

(4)  ;;),(1 IjJijji   

the graph  UXG ,  can be defined not only by the sets X and U but also by the set X 

and the images 
1  and ,1  then written   ., XG  

The following functions need to be defined on the graph structure: 

ij
f  – arc flow function on the arc ;Ux

ij
  

0
V – initial flow in the source s: 

;;
00

Xxxs   

V – final flow in the consumer t: 

;;
0

Xxxt   

max0
)(V – maximal initial flow in source s; 

max
V – maximal final flow in the consumer t; 

ij
C – a function of throughput over the arc ;

ij
x  

ij
a – transport value per unit flow on the arc .

ij
x  

The following restrictions are observed when defining network flows: 

(5) 
ij

f0  for each ;),( Jji   

(6) ;0;0
0

 VV  

(7) ;0;0)(
maxmax0

 VV  

(8) 
ijij

Cf 0  for each ;),( Jji   

ij
g – profit and loss ratio or generalized ratio. 

In the present work, 
ij

g will also be called the motivation coefficient: 

(9) .),(;0 Jjig
ij

  

There are three possibilities: 

(10) a) ;),(;1 Jjig
ij

  

where the arc flow function increases with ;0
ijijij

ffg  

(11) b) ;),(;10 Jjig
ij

  

then the arc flow function is reduced by ;),(;0 Jjifgf
ijijij

  

(12) c) ;),(;1 Jjig
ij

  

In this case, the arc flow function always retains its value. 

The concept of cut plays an essential role in defining the maximal network flow. 

Usually, the cut is denoted by the symbol   ,,
00

XX  where 
0

X  and 0
X  are subsets 

of X for which XX 
0

 and .
0

XX   They obey the rules for breaking up the set X 

according to: 

(13) 
00

XX   and .
00

XXX   
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Each arc of the cut  
00

, XX  has a starting vertex 
i

x  from 
0

X  and an ending 

vertex from ,
0

X  i.e., for each cut  
00

, XX  and  
00

, XX  can be written: 

(14)    ;),(;;,
0000

JjiXxXxxXX
jiij

  

(15)    .),(;;,
0000

JijXxXxxXX
ijji

  

On the sections, the total values of the flow function, the throughput function, 

and the price per unit of transported resource can be defined: 

(16)  ;,
00

),( 00

XXff
XXx

ij

ij




 

(17)  ;,
00

),( 00

XXCC
XXx

ij

ij




 

(18)  .,
00

),( 00

XXaa
XXx

ij

ij




 

In a similar way, the dimensions for the cuts    
0000

,;, XXCXXf  and 

 
00

, XXa  are determined. 

The classic network flow between source s and consumer t can be defined as 

follows [4, 5, 6]: 

(19) 














 


;iff,

;,iff,0

; iff,

0

0

11

txV

tsx

sxV

ff

i

i

i

j

ji

j

ij

ii 

 

(20) 
ijij

Cf   for each ;),( Jji   

(21) 
ij

f0   for each .),( Jji   

In this flow, the arc stream functions are not modified by the coefficients 

 Jjig
ij

),(  and the right-hand side of the conservation equation (19) is always 

equal to zero and .
0

VV   

Greater modeling and management capabilities can be obtained using the so-

called generalized network flow (or flow with gains and losses). It is defined as 

follows: 

for each Ii  and Jji ),(  

(22) 














 


;iff,

;,iff,0

;iff,

0

0

11

txV

tsx

sxV

fgf

i

i

i

j

jiji

j

ij

ii 

 

(23) 
ijij

Cf   for each ;),( Jji   

(24) 
ij

f0  for each .),( Jji   

Moreover, in the most general case, for the generalized flow: 

(25) .
0

VV   

The maximal possible generalized flow (resource) that can be delivered to the 

consumer V, will be determined by the following goal function: 
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(26) .maxVL  

If maximization of the resource from the source 0V is required, then the goal 

function has the form [7, 8]: 

(27) .max'
0
VL  

A goal function in which maximization of the sum of the two parameters 0V  and 

V is sought is also possible, then: 

(28) .max"
0

 VVL  

Determining the maximal generalized network flow is reduced to solving the 

linear programming problem (22) to (24) for one of the three-goal functions L, 'L  or 

"L . This is done using a standard linear optimization package. 

When the cuts are obtained such that there is equality between the maximal flow 

over those cuts (the minimal cut), then for each such cut the well-known mincut-

maxflow theorem of Ford and Fulkerson holds. According to this theorem, if it is 

such a cut, then the dependencies are observed for it: 

(29) ),(),(
0000max

XXCXXfV   

where: 

(30) .0),(
00
XXf  

A cut that satisfies the above two dependencies is called a minimal cut, and the 

corresponding flow on the same cut is called a maximal flow. 

In the classical network flow from (19) to (21), if there are several minimal cuts, 

then they always have the same value among themselves. The same applies to the 

maximal flows in these same sections. 

This is not the case with the generalized network flow. It is a result of the 

following. 

Statement: If there are several sections with saturated arcs in the generalized 

network flow, the throughput values on the different sections may not match each 

other. The same applies to the flows in these sections. 

To prove this statement, it is sufficient to indicate at least two cuts in some 

generalized network flow for which the values of the corresponding maximal flows 

and minimal cuts do not coincide with each other. 

Fig. 1 shows a generalized network flow with quadriminimal cuts that satisfy 

the above statement. 

 

 
Fig. 1. Generalized network flow 
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These cuts will be denoted generally by ),,( 00

rr XX  where r is the ordinal index 

of each of the cuts  .4,3,2,1r  

The functions    
ijij

Cf ,    
ij

g  are respectively equal to: 

;5,1;8,1;3;2
4,34,23,12,1

KfKfKfKf   

;5,1;8,1;3;2
4,34,23,12,1

KCKCKCKC   

.1;1;5,0;9,0
4,34,23,12,1
 gggg  

The quantity 
0

V  has an initial value of 5K, where K is a positive finite number. 

After solving the optimization problem from (22) to (24) under the goal function 

(27), a maximal generalized network flow with value K3,3V  and with arc flow 

functions with the above values is obtained. 

All the arcs of the graph of Fig. 1 have equality between the respective arc flow 

functions and throughputs, i.e. they are all saturated arcs. There are four cuts –  

 ,1

0
X  ),1

0
X ),,(),,(),,( 4

0

4

0

3

0

3

0

2

0

2

0
XXXXXX  for each of which can be recorded: 

;3,38,15,1),(;532),( 2

0

2

0

1

0

1

0
KKKXXfKKKXXf   

;3,38,15,1),(;532),( 2

0

2

0

1

0

1

0
KKKXXCKKKXXC   

;8,48,13),(;5,35,12),( 4

0

4

0

3

0

3

0
KKKXXfKKKXXf   

.8,48,13),(;5,35,12),( 4

0

4

0

3

0

3

0
KKKXXCKKKXXC   

On the chain of ascending values of the flows on the sections: 

(31) 3,3 3,5 4,8 5 .K K K K    

Corresponds to a similar chain of sections, also arranged in ascending order: 

(32) ).,(),(),(),( 1

0

1

0

4

0

4

0

3

0

3

0

2

0

2

0
XXXXXXXX   

This proves the statement that a generalized network flow can have multiple 

maximal flows with non-matching flow values. 

For the generalized network flow of Fig. 1, the value of the maximal final flow 

V coincides with the stream function on the cut .3,3:),( 2

0

2

0
KVXX  The difference 

V  between the resource at the start and end points is: 

(33) ,7,13,35
0

KKKVVV   

i.e., due to insufficient motivation at the end point t reaches 1.7K less resources than 

at the start point .
1

xs   The difference V  remains in the intermediate points 

  .,\ tsX  

For each of the minimal cuts with indices  4,3,2,1r , the min-cut-maxflow 

theorem of Ford and Fulkerson is true: 

(34)       ,,,,
000000max

rrrrrrr XXCXXfXXfV   

where: 

(35)   .0,
00

rr XXf  

Some conclusions can be drawn from the proven statement. 

If all the coefficients  Jjig
ij

),(  take the value of unity, then the 

generalized network flow will become a classical network flow: 
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 The values of the resulting minimal cuts will be the same; 

 The number of minimal cuts may be different from the number of these cuts 

in the generalized network flow; 

 The value of the flow 0V  in the source, S is always equal to V in the  

consumer t. 

4. Numerical example of maximal generalized network flow with 

consideration of motivation 

In the previous Section 3, the formal description of a generalized network flow is 

given, with consideration of the motivation – as well as the notations, which are 

necessary to work with this flow. 

І. As an example, Fig. 2 shows a graph with 5 vertices and 7 arcs. Data for the 

throughput function, coefficients  Jjig
ij

),( , and arc estimates  Jjia
ij

),(  

are shown in Table 1. 

Table 1 

Arcs 

Parameters 
(1,2) (1,3) (1,4) (2,5) (3,4) (3,5) (4,5) 

Cij 5 6 2 4,8 4 6 6,84 

gij 1,2 1,4 1,5 0,8 1,6 1,1 0,5 

aij 3 4 3 3 6 3 7 

 

The initial flow 
0

V  has a value .8,12
0
V  

 
Fig. 2. Throughput data of each arc 

The same Fig. 2 shows the throughput data of each arc – in parentheses, of the 

arc coefficients underlined below, and of the arc ratings in a circle. After the optimal 

solution, the resulting arc flow functions are shown without additional symbols. 

The optimization problem of finding the maximal generalized flow with 

consideration of the motivation and at initial flow 8,12
0
V  is solved using the linear 

programming package LPSolveIDE. The following equalities and inequalities (22) to 

(24) are used under goal function (26). For the generalized network flow of Fig. 2, 

they have the following form: 
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for each  5,4...,,2,1i  and ,),( Jji   

;8,12:
4,13,12,11
 fffa  

;02,1:
2,15,22
 ffa  

;04,1:
3,15,34,33
 fffa  

;05,16,1:
4,14,35,44
 fffa  

;05,01,18,0:
5,45,35,25

 vfffa  

;5:
2,16
fa  

;6:
3,17
fa  

;2:
4,18
fa  

;8,4:
5,29
fa  

;4:
4,310
fa  

;6:
5,311
fa  

;84,6:
5,412
fa  

;0:
2,113
fa  

;0:
3,114
fa  

;0:
4,115
fa  

;0:
5,216
fa  

;0:
4,317
fa  

;0:
5,318
fa  

.0:
5,419
fa  

The goal function of (27) corresponds to the maximal generalized network flow 

with consideration of motivation. Using the above standard linear programming 

package leads to the following arc functions and final flow :86,13V  

.84,6;6;4,2;8,4;2;6;4
5,45,34,35,24,13,12,1
 fffffff  

If the differences Jjifc
ijijij

 ),(;  are calculated, then those with zero 

value saturated arcs, namely: 

.0;0;1;0;0;0;1
5,45,34,35,24,13,12,1
   

Only two of the arcs of the graph, namely  ,
4,32,1

xx   are unsaturated with flow 

values; the remaining arcs are saturated with flow. 

This result shows that between the two flows 
0

V  and V exist two cuts with 

equality between the maximal flow and the minimal cut. They have the following 

parameters: 

1.        ),(;,,),(;,,;,
005,24,13,1005430210

xxxxxxxxxxxxxx   

where the min-cut-maxflow theorem of Ford and Fulkerson is obeyed; 

(36) ;8,128,462),(),(
00000

VxxfxxC   
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(37) .0),(),(
0000
 xxfxxC  

2. The second cut has the following parameters: 

      ;),(;,,),(;;,,, 1

0

1

05,45,35,2

1

0

1

05

1

04321

1

0
 XXxxxXXxXxxxxX  

(38) ;86,1342,36,684,3),(),( 1

0

1

0

1

0

1

0
VXXfXXC   

(39) .0),(),( 1

0

1

0

1

0

1

0
 XXfXXC  

The difference V between the two fluxes 
0

V  and V is 06,18,1286,13 V  

– approximately 8% of the initial flow .
0

V The flow increase V is entirely due to 

motivation. This is because the coefficients used  Gjig
ij

),(  are mostly above 

unity and increase the maximal flow. If they are mostly in the range of 0 to 1, 

motivation will have a decreasing effect on the flow .
0

V  This confirms the conclusion 

about the role of motivation in network decision-making systems. 

ІІ. Fig. 3 shows a case that corresponds to a maximal flow without motivation. 

Its data is the same as in Table 1. The difference is that the coefficients 1
ij

g  for 

each .),( Gji   

 
Fig. 3. Throughputs for each arc 

In the same Fig. 3, the values of the throughputs for each arc are shown – in 

parentheses, for the arc estimates – in a circle. The arc flow functions corresponding 

to the maximal flow are shown without symbols. 

The maximal network flow of Fig. 3 can be determined based on the same goal 

function (26) and the dependencies from 
1

a  to 
19

a  where all the coefficients 

 Gjig
ij

),(  from 
1

a to 
5

a take the value of unity. 

The same PSolveIDE linear programming application package is used as in the 

flow of Fig. 2. 

The following results were obtained, which are indicated in the arcs of Fig. 3: 

(40)   .2;6;0;8,4;2;6;8,4
5,45,34,35,24,13,12,1
 fffffff  

Saturated is the set  .,,,
5,35,24,13,1

xxxx  

With the network flow thus defined, there is only one section between the source 

1
xs   and the consumer 

5
xt   which is saturated. 

(41)          .),(;,,),(;,,;,
005,34,13,1005430210

 xxxxxxxxxxxxxx  

Ford and Fulkerson’s mincut-maxflow theorem holds. 
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(42) ;8,128,426),(),(
00000

VVxxfxxC   

(43) .0),(),(
0000
 xxfxxC  

The difference between 
0V  and V is zero, as in classical network flow. 

This once again confirms the conclusion from the previous problem that there 

may be a discrepancy between the values of 
0

V  and V: 

VV 
0

, 

can only be if the motivation through the coefficients  Jjig
ij

),(  is introduced. 

The number of minimal cuts can be different for network flows with or without 

motivation, where  Gjig
ij

),(  have a single value. In problem II, the minimal 

cuts are two, and in problem I – only one. A case where the min-cut-maxflow cut is 

not equal to 
0

V  or V may be shown. 

In both cases – I and II – the increase in the maximal flow can be most 

effectively achieved by increasing the throughput of one of the arcs of the minimal 

section. 

A comparison can be made between the total values of the transported resource 

– with or without motivation. This is possible because in both cases the values 

 Gjia
ij

),(  and  GjiC
ij

),(  for transportation along the specified sections 

(arcs) are the same. Considering the motivation, in Fig. 2 the total value of the 

transported resource is: 

(44)   .68,13688,47184,144,1462412
),(


Gji

ijij
fa  

For the unmotivated network flow of Fig. 3, the same parameter for the total 

value of the transports at maximal flow is: 

(45)   .8,90141804,146244,14
),(


Gji

ijij
fa  

Comparing the two total costs of transportation with and without incentives 

shows that in the first case, the volume of transportation increases by 8% and the 

costs increase by 50%. This is related to the fact that as the flow network saturation 

increases, the increase of a unit of transported resource leads to relatively higher 

costs. 

Conclusion 

The results presented in the paper define the need to combine psychological and 

mathematical models for decision-making in comparison to their separate uses. And 

that in turn leads to the emergence of new research tasks in the decision-making 

process. The results can be formed as follows: 

1. The particularities of motivation as a psychological process from the point of 

view of considering influence and in decision-making systems are brought out; 

2. The use of a generalized network flow with consideration of the motivation 

to manage the removal of resources in a complex transport network is assumed; 
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3. A method for embedding motivation in a generalized network flow with 

gains and losses is proposed; 

4. A method to determine the maximal generalized network flow with 

motivation has been developed; 

5. It is proved that for this flow, in the most general case, the final resource at 

the consumer does not coincide with the initial resource at the source. The reason for 

this is the influence of motivation; 

6. It is shown that the requirements of the min-cut-maxflow theorem are met at 

the maximal generalized network flow with motivation; 

7. It is proved that in the maximal generalized network flow with motivation, 

the number of minimal cuts is equal to or greater than in the classical network flow; 

8. The results of a numerical example to compare the capabilities of the 

maximal generalized network flow with motivation and the maximal classical 

network flow with the same output parameters are shown. It is shown that due to 

motivation, the capabilities of generalized network flow are generally better than 

classical network flow; 

9. The obtained theoretical and experimental results confirm the possibility of 

embedding motivation in decision-making systems. 
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